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Abstract. In this paper, we examine the challenge of performing analyses of
opinion dynamics in online social networks. We present a model for studying

the influence exerted by peers within the network, emphasizing the role that

skepticism can play with respect to establishing consensus of opinion. From
here, we focus on some key extensions to the model, with respect to the na-

ture of peers (their familiarity relationships, their empathy) and the presence
of peers with particular profiles, as well as with specific clustering of peer

relationships. Specifically, we show that the influence of trusted confidants

on individuals behaves in a predictable fashion; moreover, we show that the
underlying model is robust to individual variations in empathy within the pop-

ulation. These empirical results provide important insights to those seeking to

examine and analyze patterns of influence within social networks.

1. Overview. In this paper, we explore an important component of the effective
understanding of influence in social networks, a topic which has significant interest
currently to those in a variety of organizations who face the challenge of perform-
ing meaningful analyses in the face of big data. The work that we present in this
paper provides insights into how to properly arrange and interpret social network
relationships. Our proposed models are introduced; their effectiveness is illustrated
through a series of detailed simulations of environments in which users may be par-
ticipating with their peers, exchanging information, being susceptible to influence
and reaching final decisions about actions to take. The strategy that we adopt in
fact coincides exactly with the methods promoted by Professor Cercone (advice that
in fact one of us once received from him and remember quite vividly), namely to
properly establish the grounding for proposed models in artificial intelligence first
and foremost through a proof-of-concept analysis. We are quite proud to be offering
a contribution in the memory of Professor Cercone, of value towards a topic area
with which he was intimately involved: that of big data and information analytics.
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2. Introduction. This paper studies the challenge of analyzing the dynamics of
opinions within online social networks. The problem we focus on is how to model
the behavior of a peer who is forming an opinion in order to make a decision, under
the influence of others within the social network. Depending on the nature of the
peers in the networks and their relationships in the social network, convergence
of opinions may be promoted. We are interested in the role that extremists and
stubborn agents may play in promoting a polarization of opinions and whether this
can be addressed by imbuing peers with an appropriate level of skepticism.

Various settings today place users in environments where massive numbers of
other peers may potentially serve to cause an adjustment in opinion. Comprehensive
analysis of the opinion dynamics may then be of great importance. This may
be challenging to perform. For example, social networks may enable voters to
discuss possible candidates in an upcoming national election. Pollsters may then
be interested in analyzing the opinion dynamics that tend to emerge, in order to
predict how people may end up voting. Businesses may seek to influence peers in
a social network, to convince them to purchase the company’s products; knowing
how the opinions of these peers could be changed, if the business were able to
project an opinion into this network, would be very valuable in order to determine
appropriate strategies. By studying the dynamics that results under a variety of
specific scenarios, we are able to equip organizations with a way to gain their desired
insights.

Our approach is one where we suggest adopting skepticism in the presence of
others whose beliefs radically differ from one’s own. Our aim is to examine where
convergence of beliefs can still emerge. This is done by first describing a core
model ([17]) which examines conditions under which the opinions of moderates
stratify, under varying degrees of empathy, using distinct techniques for measuring
the trust of peers, in the context of certain structures of graphical relationships for
the network.

We then expand the model to consider two separate but valuable extensions,
each of which serves to confirm the robustness of the original design, under a wide
variety of differing environments.

With the initial extension, the empathy of the agents is kept constant in order
to examine the difference of influence between acquaintances and confidants, within
the social network. In distinguishing these two primary kinds of peer relationships,
we are able to produce a more detailed analysis of influence, linked to these roles.

In the second extension, we first of all experiment with modeling the parameter
of empathy as a distribution instead of a constant, in order to examine how much
polarization of opinion is achieved, with extremists in the network. We also in-
troduce curmudgeons into the population, individuals who constantly question the
group’s norms and may be viewed as extremists with moderate opinions, in order
to examine the dynamics that ensue and the effect on convergence of overall opin-
ions. A final variation examined is admitting scenarios where peers tend to collect
into small cliques, known as cavemen graphs; this is done in order to examine the
behavior of changing opinions, within this stratified network.

All together, we reveal important relationships exhibited in social networks among
peers, when forming opinions for decision making. In scenarios where massive num-
bers of other agents may pose a challenge to enabling opinions to be formed with
some clarity, our methods provide valuable insights for how peers should be orga-
nizing, reasoning and acting, towards carrying out effective actions.
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3. Background. In this section, we provide an introduction to opinion dynamics,
followed by the presentation of some existing work that serves as the backdrop to
the new models that are developed in this paper. Included here is a cogent summary
of the approach of Tsang and Larson [17] which forms the basis of our research.

3.1. Opinion dynamics. The study of opinion dynamics has early applications
in fields such as the early adoption of antibiotics, hybrid corn, etc. This process
is referred to as “innovation diffusion” and has traditionally been modeled by bi-
nary variables which model whether agents adopt the new techniques or not [17].
While this binary decision model is appropriate for the above decisions, this does
not suffice while capturing more complex opinions like political leanings, socioeco-
nomic standing, fashion trends, movie preferences, etc. Modern opinion dynamics
generalizes this innovation model by expressing opinion as continuous values in the
interval [0, 1].

In an iteration, agents interact with each other and consequently change their
opinion. Agents have opinions in the interval [0, 1]. Some agents, termed “extrem-
ists”, have opinions close to either 0 or 1, and do not update over time (they are
termed as 0-extremists and 1-extremists, respectively); also, it is accepted that the
populations frequently converge to a single opinion after sufficient iterations. An
interesting point to study is if it is possible to have a certain fraction of the pop-
ulation disagree (or have slightly different opinions) even after convergence. This
is very important: if there is no diversity of opinion, then that group will only
think along a converged set of ideas and is vulnerable to unexpected changes in the
environment. This is termed as cognitive collapse in the literature [12].

A phenomena that is observed in real life is that, agents are more likely to
interact with each other when they are already similar to each other. To model
this, simulations incorporate homophily from the literature [17]. Homophily is
the principle that similar people are more likely to interact with each other than
dissimilar people [10]. Homophily makes sure that agents who have similar opinions
are more likely to interact with one another. Another related phenomena which
motivates cognitive scientists is cognitive bias; this refers to when subjects arrive
at irrational conclusions based on subjective reconstruction of reality [1]. We are
specifically concerned with motivated cognition, a particular type of cognition bias,
where observations are evaluated in ways that is compatible with the individual’s
belief. Examples of this bias are seen in studies where participants are asked to rate
the attractiveness of a person; it was observed that participants consistently rated
the person higher if they were led to believe they were going on a date later on in
the experiment [9].

Opinion dynamics among agents in a social network has also been widely studied
in terms of trust model selection and experimental verification [6]. Most of existing
methodologies model whether an agent would adopt opinions from its neighbours,
and how users updating their own opinions lead to evolution of opinions[2]. Then
the convergence or divergence of opinions and the emergence of a consensus or
polarization status can be observed and evaluated [7]. There are three main types
of components defined in most of these models: Neighbours, Opinions, Trust.
The Neighbours for a specific user in the social network are defined as those who
follow this user and those followed by this user [13]. As for the Opinion held by
each agent, while binary variables 0 or 1 are suitable to model many decisions such
as political elections, the field of opinion dynamics utilizes continuous values in the
interval [0, 1] to describe opinions where 0 and 1 represent the extreme ends of the
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spectrum. Finally, the Trust value between agents is also depicted as a value in
the interval [0, 1]. According to the opinions distribution, the values of opinions
can always be normalized to the interval [0, 1]. This enables us to more accurately
measure the degree of trust between different types of agent pairs.

3.2. Tsang and Larson’s opinion dynamics for skeptical agents. The work
by Tsang and Larson [17] focuses on how agents with extreme opinions affects
the general population. As mentioned in Section 3.1, this paper models opinions
as continuous values between the interval [0, 1]. It also makes use of homophilic
networks, where agents are more likely to interact with agents similar to itself, and
the fact that these network may fail to converge to a single opinion when: agents are
least skeptical, and when they stabilize themselves with opinions from extremists
from both camps (close to 0 and 1, respectively). The concept of skepticism is
explained in more detail in Section 3.5.

The Opinion Dynamics Model used has agents embedded in a social network with
each agent having an opinion xi ∈ [0, 1]. Each agent is influenced by its neighbors,
N(i) = {v ∈ V |(i, v) ∈ E} and each agent i values opinions of neighbor j by weight
wi,j > 0. A trust function based on distance between opinions is also defined in
Equation 1.

T (x, x
′
) = exp(− (x− x′

)2

h
) (1)

where h is the empathy of the population, a higher empathy reflects a population
more willing to be persuaded. The opinion and weight update at each iteration is
performed by the equations below:

xi ←
(wi,ixi +

∑
j∈N(i) wi,jxj)

(wi,i +
∑

j∈N(i) wi)
(2)

wi,j ←
(wi,j + rT (xi, xj))

(1 + r)
(3)

Here, r is the learning rate of the population; the higher the learning rate the
more an agent distrusts agents with different opinions. Note that opinion update
in Equation 2 is performed before the weight update in Equation 3.

The random graph models used for simulation are the Barabasi-Albert graph
model and a homophily model based on the Erdös-Reyni random graph. The
Barabasi-Albert model is an algorithm to generate a random network using a prefer-
ential attachment process [15]. It is constructed iteratively by adding vertices with
an attachment parameter m to m existing vertices with probability proportional to
their respective degrees.

An Erdös-Reyni graph model with connecting probability p is constructed by
considering every two pair of vertices and drawing an edge between them with
probability p. Homophily is incorporated by weighting this probability to (1− d)p,
where d = |xi − xj |.

Tsang and Larson test their model by averaging their results over 25 replicated
trials (each with a maximum of 500 rounds). Their evaluation shows that they have
constructed a robust model of opinion dynamics, with agents operating in preferen-
tial attachment, resulting in a small-world network which quickly converges to an
early, loose consensus. They also show that the final outcome of the equilibrium,
whether the population converges to a moderate or extreme opinion, will be based
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on agent empathy and as a secondary factor, the network’s connectivity. In Sec-
tion 6 we show a couple of graphs which display output from algorithms encoded
to run this model in specific social networking environments. These graphs will be
used to contrast with the results we obtain from the extensions presented in this
paper, as part of our discussion of the new results that emerge in our work.

3.3. Considering loners in the population. It is pertinent to note the work
of Swarup et al. [16], who studied the convergence of language norms, how new
features in languages occur, and when they expire. This approach differs from the
work of Tsang and Larson in that they consider bidirectional graphs, where agent
A can be influenced by agent B, but vice-versa may not be possible. Their model
assumes the existence of loners, who are not influenced by anyone else, and who are
responsible for introduction of new features to the language. These loners draw an
interesting parallel to the curmudgeons introduced by Parunak et al. [12], which is
expanded upon late in the literature review.

The underlying assumption of the paper is that languages keep changing due to
“innovation”, or the change of diction. The authors also assume that as a novel
feature enters a language, it becomes the norm after a period of time. Note that a
norm is said to be reached if 90% of the population uses the language variant. The
paper divided agents into two groups:

1. Loners: People who do not copy others, and are not connected to many people
2. Hubs: People who are connected to many people

The paper posits that loners, who are uninfluenced by other agents, are more
liable to coming up with language features which differ from the norm, and are
responsible for the introduction of new features in languages. The model used is
the Degree-Biased Voter Model (DBVM), which is a graph, where if each node A
has a directed edge to node B, then A can copy B. The directed edge is an ordered
pair of vertices, which in this case would be (A,B). The probability of a neighbour,
or a node which has incoming edge, say i, being chosen to copy from is described
in Equation 4.

P (i) =
kini∑
j k

in
j

∀i, j ∈ N (4)

where kini is the in-degree of neighbor i and N consists all neighbors of current
node.

The paper tests this model and compares it favorably with data available from
19th century French. The conclusions of the paper are that with an increase in words
being introduced to the language, a lesser number of loners introduce variants, and
that the time taken to reach a norm decreases. Another important note is that
agents need to be conservative if a norm is to exist, if agents are very susceptible
to change, then norm may not be formed.

This work serves as an influence for the second extension presented in this paper,
in Section 5.

3.4. Modelling and managing collective cognitive convergence. The paper
of Parunak et al. [12] was motivated by the perceived increasingly ingrown nature
of agent research [12]. The authors focus on a phenomena termed as Collective
Cognitive Convergence, or C3, which arises when the same set of people interact
frequently with each other, and consequently they grow to think more alike. While
convergence of opinion is good, too much can reduce the diversity of opinions and so,
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cognitive collapse arises. An examples of cognitive collapse is during the Cold War
between the Soviet Union and NATO, which left them both ill-prepared to face
asymmetric warfare. Another example is highly specialized academic disciplines
like agent research which may become increasingly irrelevant to people outside the
field. Some of the measures used by the paper to tackle cognitive collapse, like
curmudgeons and interacting subpopulations, are used in the proposed extension
in Section 5. The similarity of curmudgeons and Swarup et al.’s loners was also
expanded upon before.

The reasons for C3 were listed by the authors as:

1. Social pressure to conform
2. Limited information in delimited groups

Another pertinent phenomena is group polarization, where a group with a slight
tendency towards one position will become more extreme through interactions. On
running experiments, Parunak et al. detail the items below as some methods which
did not help in countering the collapse of the population.

1. Highly tolerant agents: when agents interact very easily with all agents dis-
regarding the extremeness of their opinion, extremists could influence agents
to convergence

2. Delimiting agent’s neighborhood: when agents are constrained to interact with
only other agents in their neighborhood, they are never exposed to agents who
have disparate opinions and therefore this leads to collapse

3. Neighborhood is delimited to random agents: when agents were picked by
random to interact with other agents, it was experimentally shown that there
was still a collapse of the population

The authors propose the following mechanisms as successful in countering col-
lapse of populations:

1. Random mutation: the opinion of agents change in each iteration with a small
probability

2. Curmudgeons: adding agents who constantly question the group’s norms and
assumptions

3. Interacting sub populations: having users who are part of different communi-
ties (Fig. 1)

Figure 1. In this caveman graph, the nodes of cliques which are
connected to other cliques correspond to users who are part of
different communities

This work will also be an inspiration for the extension outlined in Section 5.
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3.5. Trust and opinion dynamics. The DEGROOT model is one of the clas-
sical averaging models which studies, in a fixed network, how opinion consensus is
reached when individual opinions are updated to the average opinions of the neigh-
borhood [5]. In a social network with n agents, an undirected graph G = (V,E)
depicts the edges E between |V | agents. The edge (i, j) ∈ E has weight wij = wji,
which captures homophily between agents i and j. Let N(i) denote the neighbours
of agent i. At any particular time, let ~x ∈ <n denote the vector of the opinions of
the agents. The opinion will be updated in this model in the following way:

xi ←
wi,ixi +

∑
j∈N(i)

wi,jxj

wi,i +
∑

j∈N(i)

wi,j
(5)

The DEGROOT model of opinion dynamics figures prominently in the extension
outlined in Section 4. This model easily updates an agent’s opinion by averaging his
opinion with the mean of his nearby opinions. And all the opinions will be swayed
by each other through repeated iterations and finally converge to a consensus in
the fixed network. However, the DEGROOT model ignores the fact that there exist
some extremists in the social network and the problem of how to model those agents
who disagree with others even at equilibrium [4]. Tsang and Larson [17] proposed
a Skepticism model to investigate how skepticism affects opinion formation in
social network. Skepticism model explores the effects of skepticism between agents.
Agents are skeptical of other agents when their opinions diverge, but are more
receptive to persuasion when their opinions better align.

Equation 1 defines a kernel based trust function which measures the degree of
trust between agents according to the distance of their opinions |x− x′|. The trust
value wi,j between agents i and j is weighted and updated in each iteration according
to Equation 3. Tsang and Larson [17] found varying r didn’t change the qualitative
results. For the experiments in Section 4, we in fact fix r=1.5. And wi,i describes
the inertia of i’s trust and opinion. Combining all the above equations, each agent
i updates its opinion xi and trust wi,j with others via a weighted average in each
iteration.

The opinion would evolve to a two-pole model when there exist a lot of extremists
in the social network. Tsang and Larson [17] also found that higher empathy
increases the impact of the extremists on the population. And small-world networks
will quickly converge to an early, loose consensus before taking coordinated action to
migrate the collective opinion to the equilibrium. This equilibrium may be moderate
or polar, with agent empathy being the primary factor influencing the final outcome.

4. Distinguishing acquaintances and confidants. In this paper, we present
two distinct efforts to introduce extensions to the model of Tsang and Larson,
in order to produce experimental results that demonstrate the robustness of this
approach. The first is outlined in this section; the second extension is showcased
in Section 5. Our results serve to provide important insights to practitioners about
how the core model may be employed and interpreted, in a variety of settings. In
Section 6, we return to provide additional discussion about the conclusions to be
drawn.

The first extension we present concerns a confidant opinion dynamics model.
Based on the DEGROOT model [3] and the Skepticism model [17], our novel model
combines the variance of friendship with a traditional averaging model. Agents
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{1, 2, ..., n} are connected by a Erdös Rényi random graph G = (V,E). xj ∈ [0, 1]
represents the opinion held by agent j. In each graph, we select a particular reference
agent i. We partition i’s edges into EC and EA, which stand for the connections with
confidants (close friends) and acquaintances respectively. In other words, agent i has
two types of neighbors, confidants: C(i) = {v ∈ V |{i, v} ∈ EC}; and acquaintances:
A(i) = {v ∈ V |{i, v} ∈ EA} with different trust weights.

In this model, agent i is parameterized by two quantities: α is defined as the
Confidant Parameter to measure the probability to be persuaded by agent’s
confidants. We hypothesize that an agent’s opinion is more likely to be affected by
his family members and close friends which are confidants in our model. Other types
of neighbors of this agent cannot achieve the same level of influence. By adjusting
the confidant parameter α in Equation 6, we can assign different trust weights
to confidants and acquaintances respectively. We assume the opinion difference
between an agent and his different types of neighbours would be different after
opinion evolution within agents. In particular, the agent should hold an opinion
that is more similar with his confidants than with his acquaintances.

The opinion xi is also influenced by various types of neighbors with different
trust value weights: trust weight yi,j > 0 is weighted for confidants’ opinions and
wi,k > 0 is for acquaintances’ opinions. For each confidant j ∈ Ci for agent i, the
degree of j’s influence also vary with different trust value yi,j . In some case, some
of confidants might shape an agent’s opinion to a greater extent such as relatives
or most close friends. So the trust value yi,j should also be varied according to the
confidant’s friendship distribution. In order for an agent to put some weight on his
own opinion during opinion evolution, there also exists a weight wi,i contributes to
the agent’s new opinion. We assume wi,i > c×

∑
k∈Ai

wi,k.

xi ←
wi,ixi + α

∑
j∈C(i)

yi,jxj + (1− α)
∑

k∈A(i)

wi,kxk

wi,i + α
∑

j∈C(i)

yi,j + (1− α)
∑

k∈A(i)

wi,k
(6)

In this model, we assume min
j∈Ci

yi,j > max
k∈Oi

wi,k since the agent i remains more

receptive to his confidants Ci than other acquaintances Ai in our assumption. As
indicated in Equation 3, for wi,k in each iteration of opinion formation, it is updated
via a trust function T which is based on the distance between opinions x and x′ via
the Gaussian kernel shown in Equation 1.

We assume the distribution of confidant networks follows a power-law distribution
[11]. So only a small portion of neighbors can be regarded as confidants for a
specific agent in our defined social model. Due to the sparsity of confidants in our
simulated confidants network, we assume all trust weights for confidants agents as
{yi,j = 1|j ∈ Ci} to simplify the simulation process. So every confidant j would
be assigned the highest trust value yi,j = 1 from i. The variation of trust value
yi,j for different confidants is left as future work. We use the confidant parameter
α as the multiplicative weight of opinions given by i to each of his confidants, and
conversely, 1− α, for acquaintances.

4.1. Empirical simulations. Our proposed model can be verified by comparing
the opinions differences between agents and their neighborhoods after multiple iter-
ations of opinions formation. The degrees of opinion difference with acquaintances
or confidants can be different. Meanwhile, we also need to check whether our model
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would lead the agents’ opinions to convergence or divergence. Moreover, it is also
interesting to investigate the influence of varying parameters: Confidant Param-
eter α and the proportion of confidants in neighbours β.

Figure 2. 40 nodes Erdös Rényi random graph with homophily.
The color of node stands for initial opinion, with progression from
white (0) to orange (1)

4.1.1. Graph model. This paper applies a modified Erdös Rényi random model to
generate agents connection graph [18]. Recall that in the Erdös Rényi model, a
graph is constructed by connecting nodes randomly. Each edge is included in the
graph with probability p independent from every other edge. In our experimental
settings, the edges between every pair of vertices i and j are connected according to a
fixed probability p. By following the Skepticism model [17], we introduce homophily
by reweighting the connection probability between two agents with (1− d)p, where
d = |xi−xj |. The modification implies that the nodes with similar opinions are more
likely to be connected together than other pairs of nodes with opinion disagreement.
The reason for selecting the modified Erdös Rényi random model is that we can
decrease weights for some edges according to homophily and regenerate the graph
after each iteration.

An example of modified Erdös Rényi graph on 40 vertices and p = 0.2 is shown
in Figure 2. In our experiments, we set p = 0.2 means that each agent is connected
with other agents with 20% probability. This proportion of connectivity is consistent
with the experimental setting of Tsang and Larson [17]. The initial opinions for
these 40 agents are generated from a normal distribution (see below). The orange
nodes have the opinions near to 1 and the white ones represent opinions around 0.
It is clear that the nodes with similar opinions are grouped together and the nodes
are distributed according to their opinions.

4.1.2. Experimental design. For each experiment, we initialize the social network
G with 200 nodes using modified Erdös Rényi random model and p = 0.2, with
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Figure 3. Evolution of opinions in moderates, on a modified ER-
graph with homophily, with partially polarized initial opinions

varying parameters for graph construction and agent empathy. The initial opinions
X for 200 agents are generated from truncated normal distribution X ∼ N (µ, σ2)
with µ = 0.5, σ = 0.3. According to the Skeptical model [17], we find most of
opinions in the population would comprise the moderates. The initial trust value
T (x, x′) between any pair of agents is set according to the trust function defined in
the equations 1. For each agent in the graph model, the proportion of confidants
in neighbours β is varying to model how the density of confidants can affect the
dynamics of opinions. In our experiment, we increase β from 0 to 1 by a step size
equal to 0.1.

Once the network and opinions are initialized, the variables are updated accord-
ing to equations 6-3. We set r = 1.5 for all experiments, since [17] found that
varying r didn’t change the results [17]. The experiment terminates when no opin-
ions changed by more than a small value ε, or a maximum number of iterations
tmax has been reached. In our experiments, we set ε = 0.001 and tmax = 500; tmax

was rarely reached in practice. In order to avoid the variance as much as possible,
all the results are averaged over 25 replicated independent trials.

The empathy bandwidth parameter h defined in the equation 1 is fixed in our
experiment as h = 0.03. As discussed in the previous sections, higher empathy h
is correlated with increased influence from extremists. In our study, we are not
interested in understanding and capturing the polarization phenomenon in opinion
dynamics. So we set a lower h to avoid polarization. We assume the final averaged
opinions will converge to moderate opinions since the initial opinions follow normal
distribution where µ = 0.5.
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Figure 4. The gap between average opinion difference between
agents and confidants with average difference between agents and
acquaintances.

4.1.3. Opinion convergence. Figure 3 shows the evolution of opinions for around
500 iterations from all the trials. The opinions of all the trials are averaged at the
end of each experiment. To measure the process of opinions evolution, we record the
distribution of opinions in each iteration. Since the initial opinions X are generated
according to normal distribution, Figure 3 shows all the opinions from 200 agents
are equally distributed from the interval [0, 1] in the beginning stage of evolution.
We can also see the trend of opinions evolution (shown as the blocks with the
similar colors Figure 3) is gradually converging to moderate opinions as the number
of iteration increases. Most of the opinions fall into the interval between [0.4, 0.55].
It has a similar opinion formation process as the convergence of opinions described
in [17]. We can also find that the opinions converge rapidly to a common opinion
after around 140 iterations. Even the extremists finally converge to a consensus
status quickly. The reason for this phenomenon is that this effect is amplified by
the small world property of these graphs. In a small world, each agent is easily
influenced by its neighborhoods, and opinions are broadcast quickly through the
entire network.

4.1.4. Opinion difference evaluation. We calculate the difference between the opin-
ions of agent xi and the opinions of his confidants {xj |j ∈ Ci} as the degree of
opinion acceptability after running all the iterations. As shown in Equation 7, for
each i’s confidant j, we calculate their opinion difference between the final opinions
|xi − xj | and average all the opinion differences to get Dc. Dc means the average
opinion difference between agents and their confidants. The average of opinions
differences can measure the overall differences between agents and corresponding
neighbors and avoid the bias. In the same way shown in Equation 8, Da measures
the average opinion difference between agents and their acquaintances.
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Dc =

∑
i∈V

∑
j∈C(i)

|xi − xj |∑
i∈V
|C(i)|

(7)

Da =

∑
i∈V

∑
k∈A(i)

|xi − xk|∑
i∈V
|A(i)|

(8)

Figure 4 measures the difference between Dc and Da by calculating their gap
G = Da−Dc in Equation 9. If the opinion of agent i is more receptive to confidants
Ci than his acquaintances Ai, the average opinion difference between xi and {xj |j ∈
Ci} should be smaller than the difference between xi and {xk|k ∈ Ai}. So G
should be larger than 0. And if the gap G is higher, it means the agents hold
more similar opinions with their confidants and are therefore are more trustful to
confidants. If G ≤ 0, it means there is no difference between confidants’ opinions
and acquaintances’ opinions.

G = Do −Dc


> 0 Opinions are closer to confidants

= 0 No differences between neigbours’ opinions

< 0 Opinions are closer to acquaintances

(9)

Figure 4 shows the heatmap of G under varying parameter settings the confidant
parameter α and the proportion of confidant β. The deeper color block in Figure
4 means the G is higher and the agents’ opinions are closer to their confidants.
We found the colors of most blocks are deeper than white which means G ≥ 0.
With lower proportion of confidants: β, agents have more similar opinions with
their confidants than other acquaintances. If the proportion of confidants β is high,
the G would be low and the opinion difference is not that clear. We assume the
reason for this phenomenon is that more confidants will dilute agent opinions to a
higher extent. More confidants would bring more averaged opinions to the agent.
And there would be no distinct difference between opinions from confidants and
acquaintances. With a higher confidant parameter α, agents would listen more to
confidants than acquaintances. So it means the opinions from confidants matter
more for agents since higher trust weights are assigned to confidants.

The results show that the opinion difference between agents and their confidants
is smaller than that between agents and their acquaintances. This phenomenon
is more clear when agents are assigned higher Confidant Parameters (i.e. listen
more to confidants than to acquaintances) and the proportion of acquaintances in
their network is smaller (i.e. only a small portion of neighbours are acquaintances)
so agents are strongly influenced by limited neighbours and this differs more with
acquaintances.

We also find the pattern remains consistent no matter how much we vary the
empathy[0.2, 0.8] and regardless of the connection probability of agents in the Erdos
Renyi graph[0.15, 0.4]. We do not show the data from these experiments for brevity,
but no data point differs from those in Figure 4 by more than ±1.05e−05. Thus, we
conclude that the opinions of agents are mostly reliant on the Confidant Parameter
and the acquaintances proportion.

5. Considering distributions of empathy, curmudgeons and cavemen. We
now present a second effort to introduce important variations for the core model of
Tsang and Larson [17]: allowing empathy to be modeled as a distribution rather
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than as a constant, examining how opinion dynamics adjust in the presence of
curmudgeons, and considering the effects when clique-ish cavemen graphs persist
within the environment.

Our proposed model is based on the observation in Tsang’s model that empathy
and learning rate could vary among the population of a society. Research in the
literature shows that for Japanese medical students, empathy increases as they
progress in their study and that female medical students were more empathetic [8].
This pattern, however, was not observed in Korean medical students where empathy
difference was not observed between genders [14]. It seems reasonable to conclude
that empathy differs across a population based on educational and social factors. To
include this in Tsang’s model, we vary empathy across an uniform distribution. We
could represent this in our formula by modifying the trust function in Equation 1
to Equation 10.

T (xi, xj) = exp(− (xi − xj)2

hi
) (10)

5.1. Preliminary experiments. In the subsection that follows, we present our
experiments which initialized 200 nodes in an appropriate graph with varying pa-
rameters of empathy, curmudgeons, and extremists. To eliminate noise, we initialize
curmudgeons in all experiments with evenly spaced values between 0 and 0.5 (not
inclusive of 0), the number of which depends on the fraction of curmudgeons spec-
ified. Empathy is varied across an uniform distribution between 0 and a threshold.
The learning rate was fixed at 1.5, similar to Tsang and Larson [17]. For all our ex-
periments, we used the uniform trust model, where wi,j = 1,∀i, j ∈ E. We consider
two models in our experiment: the first being the 2-pole model where 10% of the
population is chosen uniformly at random as 1-extremists and another 10%, also
chosen uniformly at random, as 0-extremists; the second being the 1-pole model
where 10% of the population is chosen uniformly at random to be 1-extremists.

The figures for the 2-pole model show the average polarization for moderates,
moderates being agents who are not extremists or curmudgeons, which is the aver-
age distance of opinions from 0.5 for moderates. While for the 1-pole model, the
figures show the average final opinion, which is the average value of the opinion of
moderates. The results are as shown as Figures 5, 6, 7, and 8. All the figures are
heatmaps where the y-axis shows the average polarization/final opinion at different
values of connectivity parameter for Erdos-Reyni graphs and attachement factor for
Barabasi-Albert graphs. The x-axis shows the average polarization/final opinion at
different values of the mean of the empathy distribution. The intensity of the points
on the heatmap increases as the value of the average polarization or final opinion
get larger.

5.2. With curmudgeons. We now move on to examine the robustness of the
Tsang and Larson model to the presence of curmudgeons in the population. Recall
that these are agents that constantly question the group’s norms. These curmud-
geons do not change their opinions in all the iterations. We analyze for different
graph models when 20% of the population, chosen uniformly at random, to be cur-
mudgeons and when 10% of the population, also chosen uniformly at random, to
be curmudgeons. We note that increasing the percentage of curmudgeons increases
the polarization of agent opinion and that varying empathy disrupts the pattern
that was shown to exist in Tsang and Larson’s work [17]. The results are shown in
Figures 9, 10, 11, 12, 13, and 14.
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Figure 5. The average polarization of moderates when exposed
to 10% 1-extremists and 10% 0-extremists without curmudgeons.
The graph on the left is an Erdos Reyni graph without homophily
(95% C.I. within ±0.08) while the graph on the right is an Erdos
Reyni graph with homophily (95% C.I. within ±0.07). Both were
averaged by 75 trials.

Figure 6. The average polarization of moderates when exposed
to 10% 1-extremists and 10% 0-extremists without curmudgeons.
The graph is a Barabasi-Albert graph (95% C.I. within ±0.08),
averaged by 25 trials.

Figure 7. The average final opinion of moderates when exposed
to 10% 1-extremists without curmudgeons. The graph on the left
is a graph on the Erdos Reyni graph without homophily (95% C.I.
within ±0.11) while the right is an Erdos Reyni graph with ho-
mophily (95% C.I. within ±0.11). Both were averaged by 25 trials.

5.3. Caveman network. We also sought to test the Tsang and Larson model
[17] on different network structures like the caveman graph (Figure 1), where there
are tight knit separate communities that are connected to each other by only a
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Figure 8. The average final opinion of moderates when exposed to
10% 1-extremists without curmudgeons. The graph is a Barabasi-
Albert graph (95% C.I. within ±0.10), averaged by 25 trials.

Figure 9. The average polarization of moderates when exposed
to 10% 1-extremists and 10% 0-extremists with 10% curmudgeons.
The graph on the left is an Erdos-Reyni graph without homophily
(95% C.I. within ±0.08) while the right is with homophily (95%
C.I. within ±0.08). Both were averaged by 25 trials.

Figure 10. The average polarization of moderates when exposed
to 10% 1-extremists and 10% 0-extremists with 20% curmudgeons.
The graph on the left is an Erdos-Reyni graph without homophily
(95% C.I. within ±0.08) while the right is with homophily (95%
C.I. within ±0.08). Both were averaged by 25 trials.

few bridge agents. The caveman graph, while perhaps not representative of typical
modern societies, could be true of certain environments where peers tend to be more
isolated and are connected by only a few agents (for example, travelling salesmen).
When the experiment was run on a caveman graph with 200 nodes and 5 cliques of
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Figure 11. The average final opinion of moderates when exposed
to 10% 1-extremists with 10% curmudgeons. The graph on the
left is an Erdos-Reyni graph without homophily (95% C.I. within
±0.10) while the right is with homophily (95% C.I. within ±0.11).
Both were averaged by 25 trials.

Figure 12. The average final opinion of moderates when exposed
to 10% 1-extremists with 20% curmudgeons. The graph on the
left is an Erdos-Reyni graph without homophily (95% C.I. within
±0.10) while the right is with homophily (95% C.I. within ±0.11).
Both were averaged by 25 trials.

Figure 13. The average polarization of moderates when exposed
to 10% 1-extremists and 10% 0-extremists for Barabasi-Albert
graphs. The graph on the left has 10% curmudgeons (95% C.I.
within ±0.08) while the right has 20% curmudgeons (95% C.I.
within ±0.08). Both were averaged by 25 trials.

size 40 each, the agent’s opinions converged to a mean of 0.75 while the standard
deviation was 0.24. But, when the experiment was run on a caveman graph with
200 nodes and 20 cliques of size 10, the mean of the agents’ opinion was 0.75 and
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Figure 14. The average final opinion of moderates when exposed
to 10% 1-extremists for Barabasi-Albert graphs. The graph on
the left has 10% curmudgeons (95% C.I. within ±0.11) while the
right has 20% curmudgeons (95% C.I. within ±0.12). Both were
averaged by 25 trials.

the standard deviation was 0.10. We conclude that when the number of cliques
are lower opinion does not converge, and as the number of cliques become higher
it converges to a consensus. Note that we did not use curmudgeons while running
the experiment for caveman graphs.

6. Discussion. In order to reflect further on the results presented in this paper
we first of all reimplemented the algorithms of Tsang and Larson [17] using the
same parameters employed for the graphs in Section 5. We then selected three
representative graphs from that paper to display here: Figures 15, 16 and 17. These
graphs now admit a straightforward comparison with the ones that were generated
in Section 5. In particular, we observe that varying empathy disrupts the pattern
that existed in the work shown in Tsang and Larson’s work [17].

Introducing curmudgeons does not change this pattern, but we see a marginal
change in the polarization of agents when 10% curmudgeons are introduced and
we see that there is slightly more polarization when a higher percentage of the
population (20%) are curmudgeons. The reasoning behind this is might be that as
there are more agents with slightly polarized opinions, and who are not influenced
by other agents, the overall polarization of the population increases correspondingly.
To summarize, adding empathy distributions disrupts the original model but adding
curmudgeons does not have much effect.

We note that the results of Section 4 are not brought into a direct comparison
with the results of Tsang and Larson [17]. This is because these results focus on
analyzing local effects, i.e. for one agent in the graph (i.e. the reference agent), re-
porting on the influence of confidants and acquaintances within the social networks.
These are therefore independent conclusions.

7. Conclusion. In this paper, we showcased the model of Tsang and Larson [17],
used to examine opinion dynamics in social networking contexts. We explained
how a study of the patterns of behaviour of peers within these networks is a truly
vital challenge, one where the populations may be extremely large, and thus where
key insights into how opinions adjust, under varying parameter configurations, is
critical. As we explore two primary extensions to the skepticism model of Tsang
and Larson, we are able to examine the outcomes that emerge with regard to peer
opinion. We have learned that the model rests on a solid foundation that enables it
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Figure 15. The average polarization of moderates when exposed
to 10% 1-extremists and 10% 0-extremists for Barabasi-Albert
graph without its empathy being varied and without curmudgeons.
It has a 95% C.I. within ±0.08, averaged by 25 trials.

Figure 16. The average polarization of moderates when exposed
to 10% 1-extremists and 10% 0-extremists for an Erdos-Reyni
graph without its empathy being varied and without curmudgeons.
It has a 95% C.I. within ±0.09.

Figure 17. The average polarization of moderates when exposed
to 10% 1-extremists and 10% 0-extremists for an Erdos-Reyni
graph without its empathy being varied and without curmudgeons.
It has a 95% C.I. within ±0.09.

to be repurposed in a setting where peers may be distinguished as acquaintances or
confidants, and that a similar convergence of behaviours exhibited in the original
model continue to emerge, under this extension. We have also learned that the
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original model adapts well when empathy is viewed as a distribution of possible val-
ues, rather than being held constant, during experimentation. With the addition of
curmudgeons into the environment, we are able to additionally challenge the peers
as they converge on their opinions; allowing cavemen-like cliques to be formed also
enables us to draw conclusions about the value of the model in a rather specific
arrangement of peer relationships. In all, we see that the original model is adapt-
able to variations in parameter settings, and provides an extensible framework for
practitioners to learn the nature of opinion dynamics within their social networks.

8. Future work. For future work, we plan to conduct additional experiments and
to examine additional metrics with respect to experiments that have already been
conducted. To begin, the exploration of confidants and acquaintances presented
in this paper set the empathy value to be fixed, since we were not focusing on
the polarization of opinions. For future experiments, varying empathy is worth
exploring; the final opinion may be influenced by the presence of extremists, so we
can learn more about the effect of empathy in the presence of confidants. Ideally,
we would be able to supplement the theoretical models of acquaintance-confidant
relationships with real world data mined from social networks. Another possible
direction is to examine the trust distribution of confidants, trying to set this more
accurately, in comparison with how trust is modeled for acquaintances.

For the experiments presented in Section 5, which examine empathy in terms of
a distribution and consider the role of curmudgeons, we can gain further insights by
varying the empathy according to the degree (i.e., the number of neighbors that an
agent has) and seeing whether this affects the polarization of opinions. In addition,
the exploration of caveman graphs to date has been modest. For the future, we
aim to experiment with lesser empathy for agents who are in multiple cliques. The
reasoning behind this is that such agents would less likely to be influenced by other
agents as they have to content with many neighbors.

Other areas worth exploring, for the empathy and curmudgeons extension include
the following special cases: i) when there is only one group of extremists and how
this affects the convergence of opinions ii) allowing nodes in caveman graphs present
in more than one community to be modeled as curmudgeons (following suggestions
that in feudal societies it is tradesmen who are considered least gullible and most
likely to interact with more than one community). Broader explorations of value
for examining confidants and acquaintances includes: i) considering distinctions
among the set of confidants, with certain peers designated as having a higher status
than others ii) more generally, considering additional kinds of friendship relations
within the social network, allowing finer distinctions than the current arrangement
of confidants and acquaintances.

A final thread for future research is to implement our algorithms in specific
contexts where practitioners can help to set the parameters to be explored, as
they seek to gain insights into specific trends within social networks that they are
most interested in examining. As mentioned in our introduction, we can imagine
applications where pollsters seek to analyze the influence of voters in the population
or where businesses are making decisions about product offerings based on how they
perceive the dynamics of opinions amongst customers to unfold.
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