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Abstract. Coalition attack is nowadays one of the most common type of

attacks in the industry of online advertising. In this paper, we attempt to mit-

igate the problem of frauds by proposing a hybrid framework that detects the
coalition attacks based on multiple metrics. We also articulate the theoretical

basis for these metrics to be integrated into the hybrid framework. Further-

more, we instance the framework with two metrics and develop a detection
system that identifies the coalition attacks from two distinguish perspectives.

1. Introduction. As an opportunity for organizations and companies to reach
out millions of potential customers at a low cost, online advertising costs for nearly
one-quarter of the global ad spent [1]. Figure 1 illustrates the process of online
advertising. The advertiser manages the advertising campaigns for various brands,
while internet publisher provides the inventory for hosting the ads. Moreover, ad-
vertisers and publishers can communicate directly or indirectly. Exchangers such as
Google’s DoubleClick [2] and Yahoo!’s RightMedia [3] are involved as intermediaries
who pair the publishers’ ad request with the most profitable advertiser bid. During
the life-cycle of an advertisement, an impression (view) means the ad is displayed on
the publisher’s webpage when a visitor loading the page. Consequently, when the
visitor clicks on the ad a click event is fired and the visitor is taken to the brand’s
landing page. Finally, a conversion is recorded if the visitor performs certain actions
on the brand’s websites.

In the context of online advertising, a buyer/seller relationship is established
between the advertiser and publisher [26]. With accordance to the three basic
events during the advertising life-cycle, the three price models in the industry are
PPM (Pay-Per-Mille1), PPC (Pay-Per-Click), and PPA (Pay-Per-Action) [7, 22, 27],
respectively. Since publishers earn revenue based on the number of views, clicks,
or actions that are associated with the ads, publishers have strong incentives to
maximize those numbers [15, 16]. While publishers can apply legitimate meth-
ods to attract more traffic to their websites, malicious publishers attempt to make
more money by generating invalid (fraudulent) traffic. Such publisher frauds can
be further categorized as impression frauds, click frauds, and conversion (action)
frauds [7, 9, 22]. Various types of fraud attacks from both industry and academia
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Figure 1. The process of online advertising

have been identified in the literature (e.g. [20, 21, 24]). To generate traffic to
publishers’ websites, attacks can be launched either on publishers’ websites or on
machines that are controlled by malicious publishers, and attacks can be performed
either by real human or bots. More details of some existing online advertising frauds
are discussed in [26].

In online advertising industry, the number of views, clicks, and actions of ads
is critical to the revenue of advertisers. Advertisers use several metrics such as
CPM (Cost Perm Mille), CTR (Click Through Rate), and CR (Conversion Rate)
as the KPIs (Key Performance Indicators) to evaluate the performance of their
market campaigns. However, the inflated numbers of views, clicks, and actions that
are generated by fraudulent publishers hinder the reliability and effectiveness of
those performance metrics. Publisher fraud is a severe problem for advertisers and
worth the endeavour to detect and prevent.

Publisher frauds are mainly launched with two key entities: fraudulent sites
and machines. With respect to correlations between machines and sites, publisher
frauds can be classified as coalition attacks and non-coalition attacks. As illustrated
in Figure 2, the non-coalition attack corresponds to a one-to-one relationship, and
the coalition attack represents a many-to-many relationship. An elementary attack
can be easily detected and blocked by identifying repeated views, clicks, or actions
from one machine on one site. To avoid being detected, fraudulent publishers at-
tempt to blur the strong correlation between the fraudulent sites and machines.
A single fraudulent publisher needs to simulate fake visitors, or frequently change
the identification of users to blur the relationship, which significantly increases the
difficulty and cost for launching the attacks. On the other hand, several fraudu-
lent publishers can make a collusion and share their resources, which also blur the
correlation between a pair of fraudulent sites and machines. Since coalition attacks
can be launched without developing sophisticated techniques, they have become
more and more popular recently. While coalition attacks can be deployed easily
and effectively, the detection of such attacks is more challengeable as an open issue.

Both active and passive approaches can be used to detect the fraudulent problems
in general. To verify the validity of the traffic, active approaches usually require
the interaction with the web pages and/or visitors (e.g. [20]). Passive detection
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Figure 2. Different types of publisher frauds

approaches, on the other hand, apply data analysis/mining techniques to recognize
the behaviour pattern of traffics (e.g. [11, 19, 21, 23, 25, 27]). While active detec-
tion techniques typically adopt the signature based detection mechanism to mark
the fraudulent traffic, passive detection techniques can use both signature based
(e.g. [11]) and anomaly based (e.g. [23]) approaches to identify frauds. Moreover,
the active detection may change the model of advertising network and compromise
the privacy of visitors, which is sometimes impractical. On the other hand, the
premise for data mining approach to detect frauds is to identify correlations be-
tween publishers and visitors. Due to the flexibility and feasibility of the passive
detection measurement, we adopt the data mining approach in this paper. In par-
ticular, we propose an algorithm to detect correlations of publishers and visitors
that identify coalition attacks.

The paper is structured as follows. Section 2 introduces background and related
notations of coalition attacks and parallel computing. Section 3 presents the pro-
posed detection system for coalition attacks. Next, in Section 4 we demonstrate
the evaluation results of our new techniques. Finally, some conclusions and future
work are discussed in Section 5.

2. Background.

2.1. Identification for coalition attacks. A classical way to detect publisher
frauds is to block suspicious domains when their impressions and CTR exceed a hard
(static) threshold. However, fraudsters can easily comprise the classical detection
tools by mimicking legitimate criteria. To identify malicious intents of fraudsters,
the key is to identify the association between fraudulent websites and machines.
In the literature, two types of metrics have been explored. One set of metrics
is derived from the graphic topology (e.g. sets of neighbours and paths between
nodes). Those metrics are more generic and can be applied to any domain. In our
context, real network data indicates that two legitimate sites should have different
sets of visitors [17, 18]. Therefore, the degree of overlap among visitors of two sites
can be used to measure the collusion of two sites. Different similarity metrics having
been proposed for generic link prediction problems, such as Jaccard coefficient [8]
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and Adamic [6] can be used to estimate the similarity of visitors for two publishers.
For example, Jaccard coefficient is employed for the coalition attack problem in [17].
On the other hand, another set of metrics is associated with attributes of vertices
and links, which requires the domain knowledge. In the context of e-commerce, as
ROI (Return of Investor) is one of the key concerns, coalition groups incentively
have high ROI than normal publishers. Therefore, different variants of ROI can be
derived as the metrics for identifying frauds. For example, in [12], a metric called
GPR (Gain-Per-Resource) is proposed to detect the coalition attacks.

In this paper, we propose a hybrid approach that combines the metrics from dif-
ferent perspectives to detect the coalition attacks. In particular, the similarity and
GPR are selected as two representative metrics in our technique. To systematically
and automatically detect coalition attacks, we give formal definitions for identifying
coalition attacks based on similarity and GPR in the rest of this section.

The ratio of gain and cost is an estimator of ROI (Return of Investment), which
can be formally defined as:

GPR(g) =
W (g)

R(g)
, (1)

where W (g) denotes the gain of group g and R(g) denotes the amount of resources
for the group. Given the definition of the GPR metric, the GPR value of coalition
groups will exceed a threshold, denoted as θgpr. However, a group that consists of
coalitions and normal publishers may still have a high GPR. In order to exclude
such cases, a definition of GPR-GROUP is further introduced.

Definition 2.1. A group is called a GPR-GROUP iff

∀(g | g′ ⊂ g : GPR(g′) < GPR(g) ),

where g′ denotes any subgroup of g.

A coalition group can be defined in terms of GPR.

Definition 2.2 (gpr-based identification). (1) A group of publishers and visitors,
denoted as g, is called a coalition iff

GPR(g) ≥ θgpr and g is GPR-GROUP.

(2) A coalition g is a maximal coalition iff

¬ ∃(g′′ | g ⊂ g′′ : g′′ is a coalition ).

Let Sp1
and Sp2

denote two sets of visitors to publishers p1 and p2, respec-

tively. The Jaccard coefficient,
|Sp1∩Sp2 |
|Sp1
∪Sp2

| , captures the traffic similarity of p1 and

p2. However, since the number of repeated visitors is also a signal of frauds in online
advertising, the set model for publishers’ visitors will lose important information
for detecting frauds. Therefore, we use a variant of Jaccard coefficient w.r.t a bag
model2 to represent publishers’ visitors. Formally, let Bp1

and Bp2
denote two bags

of visitors to publishers p1 and p2, respectively. The similarity of a pair of sites p1
and p2 is modelled by the formula:

Similarity(p1, p1) =
|Bp1

uBp2
|

|Bp1 tBp2 |
, (2)

2The elements in bag models can be duplicated.



DETECTING COALITION ATTACKS IN ONLINE ADVERTISING 231

p1

p2

p3

v1

v2

v3

p1

p2

p3

v1

v2

v3

p1

p2

p3

v1

v2

v3

v4

(a) (b) (c)

Figure 3. Different Traffic Patterns with/without Coalition Attacks

where u and t denote the intersection and union of bags. We use a pair (n, e) to
represent an element in a bag, where n indicates how many times e repeats in the
bag. Then u and t can be defined as the following:

∀((n, e) | (n, e) ∈ A uB : ∃(m1,m2 | (m1, e) ∈ A ∧ (m2, e) ∈ B : n = min(m1,m2) ) )

∀((n, e) | (n, e) ∈ A tB : ((n, e) ∈ A ∧ ¬ ∃(k | k ∈ N : (k, e) ∈ B ))
∨((n, e) ∈ B ∧ ¬ ∃(k | k ∈ N : (k, e) ∈ A ))
∨( ∃(m1,m2 | (m1, e) ∈ A ∧ (m2, e) ∈ B : n = max(m1,m2) ) ).

With the definition of similarity metric, a pair-wise similar group means that the
similarity of each pair in the group is greater than a threshold, denoted by θsim.
Since two legitimate sites only have negligible similarity, it is unlikely that a random
group is pair-wise similar. On the other hand, coalition groups share the resources,
which would generate similar traffics inherently. Therefore, coalition groups can be
identified with regard to the traffic similarity.

Definition 2.3 (similarity-based identification). A group of publishers g is a coali-
tion group iff

∀p1, p2 : (p1 ∈ g) ∧ (p2 ∈ g) ∧ (p1 6= p2) =⇒ similarity (p1, p2) ≥ θsim.

2.2. Examples. To illustrate the effectiveness of the hybrid approach, we use sev-
eral trivial examples to show that the two metrics, similarity and GPR, are in-
sufficient and not consistent. Figure 3 illustrates click graphs of different traffic
patterns. Publishers and visitors are denoted as p{1,2,3}, and v{1,2,3,4}, respectively.
Only the case (a) is an example of coalition attacks that the three publishers share
the resources. However, the similarity of the group in case (b) is greater than or
equal to the value of case (a), and the GPR of the group in case (c) is same as the
value of case (a). In other terms, case (b) and case (c) can be respectively mis-
identified as coalitions according to similarity-based and gpr-based identifications
for coalition attacks given in Definitions 2.3 and 2.2.

2.3. MapReduce computing paradigm. A key challenge of detecting coalition
attacks is the complexity for calculating the metrics for all possible groups among
the whole set of publishers. The problem of detecting coalitions is NP-hard in
general, and usually involves with processing large set of data. Therefore, in order
to apply the proposed metric in practical, we adopt a parallel computing technique
called MapReduce.
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MapReduce is a prominent parallel, distributed data processing paradigm that
grows rapidly and has gained significant momentum from both industry and acad-
emia. Figure 4 illustrates an overview of the Hadoop architecture, which is an
open-source Java implementation of MapReduce [5]. In general, each processing
job is broken down to as many tasks as input data blocks on multiple clusters.
With the MapReduce model, details of parallel execution are hidden and handled
by the internal implementation. Users focus only on the task of data processing.
A single MapReduce (MR) job simply consists of two primitive stages: Map and
Reduce. The Map stage is to map the input data to a list of pairs (key, value), and
the Reduce stage calculates results by aggregating the value of keys.

3. Detection of coalition attacks.

3.1. The theoretical basis for the detection technique. In Definitions 2.2
and 2.3, we have formally defined metrics that can be used to identify the coalition
attacks. However, the detection technique to find all of them is not straightforward.
For a universal group with N publishers in total, all its possible sub-groups would
be 2N . It is impractical to calculate the proposed metric for all possible sub groups
and identify those that satisfy the given definitions. Such brute-force searching
scheme is especially impossible for a hybrid approach as the computational com-
plexity would increase exponentially when more metrics are integrated. On the
other hand, a priority-style detection scheme would search the space inductively
and prune impossible candidate as early as possible, which as a result may reduce
the complexity dramatically. Furthermore, the combination of several metrics helps
to further prune a significant number of candidates on the fly, and further reduce
the computation time.
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A well-known property derived from association rule mining is the following
definition of anti-monotone.

Definition 3.1 (anti-monotone property[13]). Let P : X → {true, false} be a
predicate over the domain X, P is said to be anti-monotone iff:

∀(g, g′ ∈ X | g′ ⊆ g : P (g) =⇒ P (g′) ).

We can consider the identification of coalition attacks as a predicate P . Let D
denote the set of all publishers and visitors. The domain X corresponds to the
powerset of D in our contex. However, not every metric that is abstracted from the
domain knowledge has the anti-monotone property. In other words, to fit the metrics
into the inductive detection style, we should derive anti-monotonic predicates based
on the original metrics.

To obtain the anti-monotone predicate w.r.t. the similarity-based identification
(see Definition 2.3), we use notations of similar graph, and clique. Let Gsim denote
a similarity graph associated with the underlying traffic. Each vertex in Gsim

corresponds to a publisher, and edges represent the similarity of visitors between
two publishers is greater than or equal to the threshold θsim. Moreover, a clique
is a subset of vertices of an undirected graph G such that its induced subgraph is
complete. With accordance to the similarity-based identification, the detection of
coalition attacks is abstracted as finding cliques in the associated similarity graph.
Formally, we can prove the following lemma according to Definition 2.3.

Lemma 3.2. Given the similarity graph Gsim, a group g is a coalition group iff g
is a clique associated with Gsim.

Consequently, we can derive a predicate using the notation of clique. Proposi-
tion 1 indicates that the predicate is anti-monotone.

Proposition 1 (similar clique property). ∀(g′ | g′ ⊆ g : g is a clique associated
with Gsim =⇒ g′ is a clique associated with Gsim )

With respect to the gpr-based identification given in Definition 2.2, the GPR
property cannot be transferred to an anti-monotone predicate directly. We instead
use the anti-monotone predicate according to an alternative concept called GPR-
CORE [12]. Let Gclick denote a click graph induced by the traffic data. The graph
in Figure 3 is an example of such click graphs. Each vertex in Gclick corresponds
to either a publisher or a visitor. An edge (p, v) in Gclick means that the visitor v
visits the publisher p. Given the definition of GPR-CORE below, we can also have
the anti-monotone property of GPR-CORE in Proposition 2.

Definition 3.3. A click graph g is called a GPR-CORE if g is a GPR-GROUP and
every connected subgraph of g is also a GPR-GROUP.

Proposition 2 (gpr core property). ∀(g′ | g′ ⊆ g : g is a gpr-core group =⇒
g′ is a gpr-core group )

Consequently, the following lemma articulates the gpr-based identification w.r.t.
the anti-monotone property GPR-CORE.

Lemma 3.4. a group g is a coalition group if g satisfies the following conditions:

• ∃(g′, g′′ | g′ ∪ g′′ = g : g′ is GPR-CORE and g′′ is GPR-CORE ),
• the GPR value of g is greater than or equal to θgpr,
• the graph Gclick induced by g is connected.
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   candidate<-candidate_generator(seed) 
   for each in metrics{ 
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Figure 5. Framework of the Hybrid Detection System

3.2. The framework of the hybrid detection system. Figure 5 illustrates the
framework of the hybrid detection system. There are three major stages of the
system: initialization phase, inductive phase, and finalization phase. With such a
framework, we adopt an aprior-style to identify the coalition attacks. Moreover,
we define generic modules that can be instanced with different metrics. Such a
framework enables the efficiency and extensibility of the hybrid approach. Follow-
ing Figure 5 and the discussions in Section 3.1, implementation of the system is
straightforward.

For the similarity-based identification, the initializing module responses to gen-
erate the similarity graph Gsim. In the property checking module, we check the
predicate P (g) ≡ 〈g is a clique associated with Gsim〉. As discussed previously, the
anti-monotone property (see Proposition 1) of the predicate ensures the soundness
of the inductive detection mechanism. Algorithms 1 and 2 articulate the pseudo
code for the similarity-based initializing and property checking modules. In Line 2
of Algorithm 1, we call a function PAIR INTERSECT UNION to calculate the bag union
and intersection of visitors for a pair of publishers according to the definitions. In
Line 2 of Algorithm 2, a function COUNT GROUP EDGES is used to count the number
of edges in Gsim for potential candidate subgroups. To improve the efficiency of
the algorithm, these two functions are implemented with the MapReduce paradigm,
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Algorithm 1 initializing: similarity-based

1: procedure pair similarity(Data)
2: pairs ← the list of all pairs of Publishers
3: pairs value ← pair intersect union(pairs, Data)
4: G sim← initialize the storage of the similar graph
5: for each in pairs do
6: (intersection, union) ← pairs value[each]
7: similarity ← intersection / union
8: if similarity ≥ θsim then
9: Adding each as an edge in G sim

10: end if
11: end for
12: return G sim
13: end procedure

which will be discussed in the next section. Moreover, the final identification mod-
ule for the similarity based metric is trivial. As given in Definition 3.2, identified
similar cliques are identical to coalition groups.

Algorithm 2 checking: similarity-based

1: procedure similar group(candidate,G sim)
2: group edges ← count group edges(candidate,Gsim)
3: clique groups ← initialize the storage of the clique groups
4: for each in candidate do
5: complete edge ← len(each) * (len(each)-1)
6: if complete edge ← group edges [each] then
7: Adding each to clique groups
8: end if
9: end for

10: end procedure

For the gpr-based identification, we calculate the gpr value for single publisher
and visitor in the initializing module, and check the gpr-core property in the checking
module. Moreover, Lemma 3.4 is used to identify tasks of the identification module
in the gpr-based case. The corresponding algorithm is given in Algorithms 3, 4,
and 5, respectively. The function CALCULATE RESOURCE that is called in Lines 5
and 14 of Algorithm 3, Line 6 of Algorithm 4, and Line 7 of Algorithm 5 calcu-
lates the resource cost of the corresponding group (i.e., R(g) in Definition 1). In
Algorithm 3, we initially obtain the boundary value for individual (i.e., either a
publish or a visitor) gain by calling the function INDIVIDUAL GAIN BOUNDARY. The
individual gbr value is always 0, and the induced click graph can be considered as
connected. Furthermore, the function GROUP GBC VALUES is called in Line 2 of Al-
gorithm 4, and Line 3 of Algorithm 5 to calculate the gain, gain boundary, and con-
nectivity for all candidate groups. Both functions INDIVIDUAL GAIN BOUNDARY and
GROUP GBC VALUES are implemented using the map-reduce paradigm. Moreover, we
implement another map reduce function MERGE GPR CORE to merge the GPR-CORE
groups to potential GPR groups according to the first item in Lemma 3.4.
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Algorithm 3 initializing: gpr-based

1: procedure individual GPR(Data)
2: (P gainb, V gainb) ← individual gain boundary(Data)
3: GPR1 ← initialize the storage for individual gpr values
4: for p in P gainb do
5: resource ← calculate resource([p],[])
6: gprb ← P gainb[p] / resource
7: gpr ← 0
8: connectivity ← true
9: if gprb ≥ θgpr then

10: Adding (p,gpr,gprb,connectivity) to the GPR1

11: end if
12: end for
13: for v in V gainb do
14: resource ← calculate resource([],[v])
15: gprb ← V gainb[v] / resource
16: gpr ← 0
17: connectivity ← true
18: if gprb ≥ θgpr then
19: Adding (v,gpr,gprb,connectivity) to the GPR1

20: end if
21: end for
22: return GPR1

23: end procedure

Algorithm 4 checking: gpr-based

1: procedure gpr-core(Data,candidate,GPR(n−1))
2: gbc values ← group gbc values(Data,candidate)
3: GPRn ← initial the storage for the group gain values of size n
4: for g in candidate do
5: (publishers,visitors) ← g
6: resource ← calculate resource(publishers,visitors)
7: (gpr,gprb) ← gbc values[g] / resource
8: Adding (g, gpr, gprb) to the GPRn

9: end for
10: subset ← count valid subset(candidate,GPR(n−1),GPRn)
11: gprcore ← initialize the storage of the GPR-CORE groups
12: for g in candidate do
13: if subset[g] == n & GPRn ≥ θgpr then
14: Adding g to the gprcore
15: end if
16: end for
17: end procedure

3.3. The map and reduce functions for the detection techniques. The
map reduce paradigm is discussed in Section 2. The input data is mapped into
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Algorithm 5 identification: gpr-based

1: procedure find gpr groups(gprcore, GPR1...n)
2: merged group ← merge gpr core(gprcore)
3: gbc values ← group gbc values(merged group)
4: gpr groups ← initialize the storage for the gpr groups
5: for g in merged group do
6: (publishers,visitors) ← g
7: resource ← calculate resource(publishers,visitors)
8: (gain,gain b,connectivity) ← gbc values[g]
9: gbr ← gain / resource

10: if gbr ≥ θgpr & connectivity is true then
11: Adding g to gpr group
12: end if
13: end for
14: end procedure

a collection of pairs (key,values), and then the result is calculated by aggregat-
ing the values w.r.t. each key. In order to allow the parallel computation on
different clusters, the reduce operation on the mapped dataset should be commu-
tative and associative. In our context, different metrics for a large collection of
groups have to be calculated. All groups form a lattice data structure, which al-
lows the inductive search strategy in the algorithm. With the map reduce par-
adigm, a set of groups is mapped to a set of partial ordered keys, while values
are emitted with respect to different metrics. All functions for key encoder, de-
coder and comparison are given in Appendix A. With the inductive style, we gen-
erate new sets of keys in each iteration based on the potential candidates from
the previous iteration. To reduce the computation time, we also implement the
inductive candidate generator with the map-reduce paradigm (see Appendix A for
the map and reduce functions). Furthermore, in Algorithm 6, we articulate the
pseudo code for function pair intersection union and count group edges. func-
tions individual gain boundary, group gbc values, count valid subset, and
merge gpr core are given in Algorithms 7 and 8. As mentioned in the last section,
map-reduce computation is adopted in Lines 3, 21 of Algorithm 6, Lines 3, 23 of
Algorithm 7, and Lines 10, 24 of Algorithm 8. In particular, we use Disco [4] to
conduct the computation and the implementation of those mapper functions are
also given in the Appendix.

4. Evaluation of the detection system. To evaluate the proposed detection
algorithm, we compare the performance of our algorithm with those that only use
single metric. The proposed hybrid framework provides a convenient way to extend
the system with different metrics. In other term, instead of re-implementing those
algorithms separately, we can simply modify the list of metrics in Figure 5 to obtain
and compare different algorithms.

We retrieve the motivative examples introduced in Section 2. Both values of θsim
and θgpr have critical effects on the detection rate and error rate of the algorithm.
The detection rate becomes low if the threshold is too high. On the other hand,
the precision rate can also decrease when the threshold is too low. In Figure 6, we
illustrate effects of θsim and θgpr on the traffic that corresponds to the examples
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Algorithm 6 functions associated with the similarity metric

1: function PAIR INTERSECTION Union(Data,pair)
2: pairs value ← {}
3: for (key,values) ∈ reduce(mapper similarity pairs(pairs,Data)) do
4: \\ “key” is the key for each pairs
5: \\ “values” are counts of clicks that are associated the pair, respectively
6: pairs ←key decoder(key)[0]
7: if values[0] > 0 & values[1]>0 then
8: intersection ← min(values[0] ,values[1] )
9: union ← max(values[0] ,values[1] )

10: else if values[0] > 0 & values[1]==0 then
11: intersection ← 0
12: union ← values[0]
13: else values[0]==0 & values[1]>0
14: intersection ← 0
15: union ← values[1]
16: end if
17: pairs value[key]← [intersection,union]
18: end for
19: return pairs value
20: end function
21: function count group edges(G sim,candidate)
22: group edges← {}
23: for (key,value) ∈ reducer(map similarity groups(candidate,G sim)) do
24: \\ “key” is the encoded key of each group in candidate
25: \\ “value” is the count of edges in G sim that are associated with all

elements in the group
26: group=key.decoder(key)
27: group edges[ group] ← value
28: end for
29: return group edges
30: end function

given in Figure 3. The detection rate is 1 when the θsim less than 0.33, while the
detection rate becomes 0 when the value greater than 0.33. The detection rate
is 0 with θgpr greater than 1. With a relative low threshold θgpr, we may also
increase the opportunity of positive false alarms. For example, the precision rate
could be as low as 0.3 when θgpr is less than 0.84. On the other hand, with the
hybrid approach, we can obtain a high detection rate while still keep a reasonable
precision rate. Figure 7 shows the effect of the two parameters θsim and θgpr on the
detection rate and the precision of the hybrid approach. In particular, we adjust
the value of one parameter with a fix value for the other. With accordance to the
dropping point of detection rate in Figure 6, we set θsim to be 0.32 and θsim to be 1,
respectively. We can see that the precision in Figure 7(b) is always much better
than the precision in Figure 6(b), and the average precision in Figure 7(a) is also
better than the case of 6(a).

We also applied the proposed technique to practical data. The raw data are daily
log including impressions, clicks, and conversions from real traffic. Each record in
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Algorithm 7 functions associated with the gpr metric

1: function individual gain boundary(Data)
2: P gainb ← {}
3: V gainb ← {}
4: for key,value) ∈ reduce(map vertices(Data) do
5: \\ “key” is the encoded key of each publisher or visitor
6: \\ “value” is the sum cost that is associated with the publisher or visitor
7: (p,v)=key.decoder(key)
8: if v==“” then
9: P gain[p] ← value[1]

10: elsep==“”
11: V gain[p] ← value[1]
12: end if
13: end for
14: return (P gainb, V gainb)
15: end function
16: function group gbc values(Data,candidate,size)
17: gbc values ← {}
18: for (key,values) ∈ reduce(map gbc values(Data,candidate)) do
19: \\ “key” is the encoded key for each group in candidate
20: \\ “values” correspond to the gain, gain boundary, and the number of

connected edges that are associated with the group
21: gain← values[0]
22: gain boundary ← values[1]
23: if values[2]>0 then
24: connectivity = true
25: else
26: connectivity = false
27: end if
28: gbc values[key] ←(gain,gain boundary, connectivity)
29: end for
30: return gbc values
31: end function
32: function count valid subset(candidate)
33: subset ← {}
34: for (key,value) ∈ reduce(map(Data,candidate)) do
35: \\ “key” is the encoded key for each group in candidate
36: \\ “value” count the number of valid subgroup of the group (i.e. satisfies

the properties of GRP-Core)
37: subset[key] ← value
38: end for
39: return subset
40: end function

the log is related to more than 50 features. To prepare the dataset of our algorithm,
we index the publisher and visitor, associate the impression and clicks, and then
extract the cost for each click. To further evaluate the effectiveness, we use third
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Algorithm 8 functions associated with the gpr metric (cont.)

1: function merge gpr core(Data,gprcore)
2: i← 0
3: mergedi ← gprcore
4: prev ← mergedi

5: new ← []
6: while prev!=new do
7: pairs ← combination(new,2)
8: i ← i+1
9: separated ← {}

10: for (key,value)∈ reduce(map merge gprcore(pairs)) do
11: \\ “key” is the encoded key for the merged group that associated

with each pair.
12: \\ “value” is the number of overlapped vertices for the pair
13: if value>0 then
14: Adding key to mergedi

15: else
16: (merged key, component key) ← key.split(“:”)
17: separated[merged key] ← component key
18: end if
19: end for
20: unknown keys ← separated.keys() - mergedi

21: for key in unknown keys do
22: candidate[key] ← separated[key]
23: end for
24: for (key,values) ∈ reduce(map gbc values(Data,Candidate)) do
25: if values[2] > 0 then
26: Adding key to mergedi

27: end if
28: end for
29: prev ← mergedi−1
30: new ← mergedi

31: end while
32:

33: end function

party service to label the click either as ‘normal’ or ‘coalition attack’. Table 1 shows
results for three different datasets.

We can see that the algorithm has an average detection rate of 97.67% and
precision 96.44%. In experiments, each dataset includes the traffic of 7 days with
300 ∼ 500 publishers. Since we adopt the map-reduce paradigm, our detection
technique allows parallel computing. Although the complexity of the algorithm
is determined by the number of publishers in the dataset, our detection system
inherently has no restriction on the size of the problem. Therefore, with increasing
number of clusters, we can further reduce the processing time and handle even larger
size of data.

5. Conclusion and future work. In this paper, we proposed a detection tech-
nique for coalition attacks in online advertising. A hybrid framework that can detect
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Figure 6. Independent Parameter Adjustment
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Figure 7. Dependent Parameter Adjustment

Table 1. Results obtained from practical data

#publishers detection rate precision

340 96.12% 95.03%
414 97.12% 99.35%
407 99.18% 94.94%

coalition attacks based on multiple metrics is developed. We articulate the theo-
retical properties that each metric should satisfy in the framework. In particular,
we adopt similarity and gpr as two metrics in the system. The performance of the
technique with different datasets is evaluated.

As future work, more datasets will be tested. Since there is no benchmark data
sets for coalition frauds in online advertising, obtaining the data for evaluation
is usually difficult and expensive. Besides real-world data sets and the third party
service, simulation technique can be used to generate synthetic date for both normal
and fraudulent traffic. Extensive empirical study on different traffic patterns can be
studied. On the other side, to improve the performance of the detection technique,
more metrics can be explored to identify coalition attacks [6, 10]. With the hybrid
framework, additional metrics can be integrated in the system efficiently. The
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ultimate goal of the work is to provide an reliable, extensible, and scalable on-line
detection system for the dramatically developing online advertising industry.
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Appendix A. Implementation. The following code are written with python.

A.1. Key handler. In this subsection, we list functions for encoding, decoding,
and comparing the keys.

def key_decoder(publishers,visitors):

sorted_p=sorted(publishers)

sorted_v=sorted(visitors)

key_p=‘‘_’’.join(each for each in sorted_p)

key_v=‘‘_’’.join(each for each in sorted_v)

key=key_p+‘‘!!’’+key_v

return key

def key_decoder(key):

(key_p,key_v)=key.split(‘‘!!’’)

publishers=key_p.split(‘‘_’’) if not key_p ==‘‘’’ else []

visitors=key_v.split(‘‘_’’) if not key_v ==‘‘’’ else []

return (publishers,visitors)

def key_cmp(key1,key2):

(p1,v1)=key_decoder(key1)

(p2,v2)=key_decoder(key2)

p_in=set(p1).issubset(set(p2))

v_in=set(v1).issubset(set(v2))

return p_in and v_in

A.2. General mapper reduce functions. We generalize two mapper and reducer
functions that can be reused by other functions.

def inductive_generator_mapper(line,params):

candidate=line.split(‘‘,’’)[0]

P=params[0]

V=params[1]

(publishers,visitors)=candidate.split(‘‘!!’’)

for p in P:

if not p in publishers:

key=key_encoder(publishers+[p],visitors)

yield (key+‘‘:’’+each,[1])

for v in V:

if not v in visitors:
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key=key_encoder(publishers,visitors+[V])

yield (key+‘‘:’’+each,[1])

def reducer(iter, params):

data = {}

first = True

prev = None

for key, value in sorted(iter):

if key not in data:

if not first:

yield prev, data[prev]

data = {}

data[key] = value

else:

for k, v in enumerate(value):

if type(v)==set:

data[key][k]=data[key][k].union(v)

else:

data[key][k]+= v

first = False

prev = key

for key, value in data.iteritems():

yield key, value

A.3. Other mapper reduce functions. All other mapper reduce functions are
given in the rest of this section.

def mapper_similarity_pairs(line,params):

groups=params

(head,tail,weight,label)=line.strip().split(‘‘,’’)

for each in groups:

(p1,p2)=each.split(‘‘_’’)

key=each+‘‘!!’’+tail

if head==p1:

yield (key,[1,0])

elif head==p2:

yield (key,[0,1])

else:

pass

def mapper_similarity_groups(line,params):

#tag2group=params[0]

group_keys=params[0]

V_key=params[1]

threshold=params[2]

(p1,p2,similarity)=line.split(‘‘,’’)

if float(similarity)<threshold:
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pass

else:

for key in group_keys:

(p_key,v_key)=key.split(‘‘!!’’)

new_key=p_key+‘‘!!’’+V_key

pubs=p_key.split(‘‘_’’)

if p1 in pubs and p2 in pubs:

yield (new_key,[1])

def mapper_vertices(line,param):

(head,tail,weight,label)=line.split(‘‘,’’)

p_key=head+‘‘!!’’

v_key=‘‘!!’’+tail

yield (p_key,[1,float(weight)])

yield (v_key,[1,float(weight)])

def mapper_gbc_values(line,params):

groups=params

(head,tail,weight,label)=line.split(‘‘,’’)

#print groups

for key in groups:

and_edge=0

or_edge=0

(key_p,key_v)=key.split(‘‘!!’’)

publishers=key_p.split(‘‘_’’) if not key_p==‘‘’’ else []

visitors=key_v.split(‘‘_’’) if not key_v==‘‘’’ else []

if head in publishers and tail in visitors:

and_edge=float(weight)

if head in publishers or tail in visitors:

or_edge=float(weight)

#yield (key,[and_edge,or_edge])

components=groups[key]

connectivity=0

for each in components:

(p_key,v_key)=each.split(‘‘!!’’)

heads=p_key.split(‘‘_’’)

tails=v_key.split(‘‘_’’)

if head in heads and tail in tails:

connectivity=1

break

yield (key,[and_edge,or_edge,connectivity])
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