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Abstract. Given a data set with one categorical response variable and mul-
tiple categorical or continuous explanatory variables, it is required in some

applications to discretize the continuous explanatory ones. A proper super-

vised discretization usually achieves a better result than the unsupervised ones.
Rather than individually doing so as recently proposed by Huang, Pan and Wu

in [12, 13], we suggest a forward supervised discretization algorithm to capture

a higher association from the multiple explanatory variables to the response
variable. Experiments with the GK-tau and the GK-lambda are presented to

support the statement.

1. Introduction. In data analysis and mining, discretization algorithms are to
turn continuous variables into certain levels. For instance, income, as a continuous
variable, needs to be leveled as low, median or high for executable user profiling
or for descriptive analysis. Many data mining technologies or methods also require
categorical explanatory variables. For example, Bayesian classification[21] assumes
that the explanatory variables are all categorical or discrete; decision trees[22] con-
sists of tree node describing the condition that leads to the next node. The variables
involved in each node have to be either categorical or described as a combination
of intervals. One may see many continuous variables in many real data sets such as
asset, income, debt, age, numerical measure of risk, etc.

A natural method of grouping distinct values in a continuous variable is to seek
data-based cutting points that cut the whole range of data into intervals. There are
two ways to identify the intervals: with or without a given response variable. An
algorithm of discretizing continuous variables with a response variable (with a given
criterion or objective function) is called supervised discretization; while the other
(with no link to the response variable) is called unsupervised discretization [5]. The
latter one usually is used in industrial data mining project to deal with multiple
response variables at the same time for convenience, unification or for the purpose
of saving production cost. One may use a normal distribution based unsupervised
discretization to process the macro numerical consuming data because of the central
limit theorem. Other unsupervised discretization methods include, but not limit to
equal frequency intervals, equal width intervals[5] or more sophisticated ones asso-
ciated with certain criterion measures (or objective functions), say, the information
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theoretic entropy[4, 6]. The idea is to minimize or maximize the measures in each
interval by adjusting the boundaries. Various clustering algorithms can also be used
to accomplish an unsupervised discretization[7] to multi-dimensional cases, which
compartmentalize a continuous multidimensional space into a given finite number
of parts.

In contrast to the unsupervised one, supervised discretization algorithms aim to
seek the boundaries by optimizing the intervals’ coherence[16] associated with a tar-
get variable with an optimization criterion. In other words, an evaluation function is
usually applied to measure the discretization algorithm’s quality. Typical measures
include conditional entropy, conditional Gini concentration or Chi-square. The Chi-
square based methods include ChiMerge [15], Chi2 [17], Khiops [1], etc. One can
refer to [2, 3, 10, 20] for the detailed discussion regarding the (conditional) entropy
based methods. The conditional Gini concentration based methods can be found in
[12, 13]. The choice of discretization method depends on the time computing com-
plexity, the greediness for the accuracy, the interpretability [16] and/or how easy
the result can be executed. Usually the unsupervised discretization methods are
faster than the supervised ones but result in less accuracy in predicting the target
variable. Dougherty et al.[5] prove that (conditional) entropy-based discretization
methods perform quite well overall regarding the proportional association. Holte
showed in [10] that even a one-dimensional supervised discretization system could
yield similar classification results to a multiple dimensional ones if the system is
carefully tuned.

Rather than using (conditional) entropy-based discretization method, Huang et
al. propose two alternates, proportional and modal, association based independently
(or individually) supervised discretization in [12, 13]. Beside the expected higher
association with the responses and with limited higher computational complexity
than an unsupervised one, they also argue that their measures are more interpretable
than the conditional entropy ones.

Suppose we work with a categorical response variable and a number of explana-
tory continuous variables. We propose a forward supervised discretization algorithm
to capture a better association with the response variable compared to the indepen-
dently supervised discretization algorithm proposed by Huang et al. Experiments
in the latter part of this article show remarkable improvements, with acceptable
increase of computationally complexity, regarding the same association proposed in
[12] and [13].

This article is organized as follows. Section 2 reassembles the concept of cate-
gorical variable association measures, especially, the GK-tau and GK-lambda. We
also briefly recall Huang et al.’s independently supervised discretization algorithm
in this section. The forward supervised discretization algorithm is presented in Sec-
tion 3. Although the algorithms are introduced by GK-tau, it can be replaced by
any other association measure including GK-lambda.

Section 4 show the supportive evidences by experiments with the GK-tau and
GK-lambda. The major issues are summarized and commented in the last section.

2. Categorical variable association measures and independently super-
vised discretization. Let X and Y be categorical variables with domains Dmn
(X) = {1, 2, . . . , nX} and Dmn(Y ) = {1, 2, . . . , nY }, respectively, where X is a
explanatory variable and Y is a response (target) variable.
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According to [18, p.70], an association measure (or degree) of Y on X is, in
general, of the form

δY |X =
V (Y )− EX{EY V (Y |X)]}

V (Y )
,

where V is a given variance and E is the corresponding expectation. The choosing
of a variance measure depends on the objective of the data analysis, the predictive
model to be used, or even on the analyst’s preference: the Gini, entropy and Chi-
square are typical preferences. In this article, we choose the proportional and the
modal prediction oriented variances, the GK-tau and GK-lambda, as in ([11, 12,
13, 8, 18], for their statistical interpretability.

The proportional association degree of Y on X, denoted by τY |X , referred also
to as the GK-tau, is given by

τY |X =

nY∑
j=1

nX∑
i=1

p(X=i,Y=j)2

p(X=i) −
nY∑
j=1

p(Y = j)2

1−
nY∑
j=1

p(Y = j)2
,

where p(·) is the probability of an event. To help the reader better understand
τY |X , we recall

(1) ωY |X =
nY∑
j=1

nX∑
i=1

p(X=i,Y=j)2

p(X=i) =
nY∑
j=1

nX∑
i=1

p(X = i, Y = j)p(Y = j|X = i),

(2) E(p(Y )) =
nY∑
j=1

p(Y = j)2, and

(3) Gini(Y ) = 1− E(p(Y )),

where ωY |X is the expected accuracy rate for predicting Y given X; E(p(Y )) is the
expected accuracy rate for predicting Y by its own distribution; τY |X is the error
reduction rate of predicting Y given X over predicting Y on its own. Please refer
to[12] and[8, 18] for more detailed discussions.

The optimal (or modal) association degree of Y on X, denoted by λY |X is given
by

λY |X =

nX∑
j=1

ρjm − ρ.m

1− ρ.m
.

where ρ(.) is probability of an event, and

ρjm = max
j∈{1,2,...,nY }

ρ(X = i;Y = j),

where ρ.m = max
j∈{1,2,...,nY }

ρ(Y = j) and ρ.m is the theoretical prediction accuracy

rate for modally predicting target variable Y without information of variable X; ρjm
is the accuracy rate for modally predicting target variable Y based on the informa-
tion of variable X. Obviously, λY |X is the error reduction rate using information of
X over using only the marginal information of Y by mode. [8, p.71] has detailed
discussion in λY |X .

Recall [12] again that for a continuous explanatory variable X and categorical
nominal variable Y with nY different values from a given data set, assume Bk =
{b1, b2, . . . , bk} is a set of different values, where b1 < b2 < . . . < bk, and Bk can
cut continue variable X into k + 1 intervals: (−∞, b1], (b1, b2], . . . , (bk,∞). The
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association measure τY |X for a given cutting point set Bk can be defined as:

τY |X(Bk) =

nY∑
j=1

k+1∑
i=1

p(bi−1<X≤bi,Y=j)2

p(bi−1<X≤bi) −
nY∑
j=1

p(Y = j)2

1−
nY∑
j=1

p(Y = j)2
,

where b0 = −∞ and bk+1 =∞.
Huang et al proposed an optimal splitting searching scheme in [12] to find these

cutting points. This scheme can be briefly described as follows:

Step1. The first cutting point, denoted r∗1(X), can be found by
r∗1(X) = argmaxmin(X)<r<max(X) τ

Y |((−∞,r],(r,∞));

Step2. The second cutting point, denoted r∗2(X), can be found by

r∗2(X) = argmax
min(X)<r<max(X)\r∗1 (X)

τY |((−∞,min(r∗1 ,r)],(min(r∗1 ,r),max(r∗1 ,r)],(max(r,r∗1 ),∞))

Step3. Continue the steps until a predefined number, say m , of intervals are found.

Please note that the number of values for a given variable in a given data set
is always finite even this variable is defined as continuous. Thus not only the
aforementioned min(X), max(X), but also the number of search steps are all finite.
Besides, one can also discretize the continuous variable in a unsupervised manner
to speed up the search.

Please also note that the previous searching schema can also applies to the case
of Gk − λ where the association is as follows.

λ(Y |X(BK)) =

k+1∑
i=1

max
j∈{1,2,...,nY }

p(bi−1 < X ≤ bi, Y = j)− max
j∈{1,2,...,nY }

{p(Y = j)}

1− max
j∈{1,2,...,nY }

{p(Y = j)}
,

where b0 = −∞ and bk+1 =∞.

3. Forward supervised discretization. For a data set with n continuous inde-
pendent variables, X1, X2, . . . , Xn, we first discretize them by independently super-
vised discretization approach introduced in the previous section. The discretized
independent variables are denoted as idXi, i = 1, 2, . . . , n. We then identify the
leading one , denoted as idXi0 , that brings in the maximum association to the

target, i.e., idXi0 = argmaxi=1,2,...,n τ
Y |idXi .

We assume without loss of generality that i0 = 1. Then idX1 is the base (categor-
ical) variable for our forward supervised discretization, which means the subsequent
discretization for any other Xi, i 6= 1 is based on idX1. The searching for cutting
points in Xi is similar to that in Section 2 as follows.

Step1. The first cutting point, denoted fd1r∗1(Xi), is determined by

fd1r∗1(Xi) = argmax
min(Xi)<r<max(Xi)

τY |(idX1,((−∞,r],(r,∞)));

Step2. the second cutting point, denoted fd1r∗2(Xi), is determined by

fd1r∗2(Xi) = argmax
min(Xi)<r<max(Xi)\fd

1
r∗1 (Xi)

τY |(idX1,fd
1
r2(Xi)),

where

fd1r2(Xi) = {(−∞,min(fd1r∗1 , r)], (min(fd1r∗1 , r),max(fd1r∗1 , r)], (max(fd1r∗1 , r),∞);
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Step3. continue the process in this fashion until a predefined number, say m , of
intervals are found.

When all variables are discretized by this procedure, denoted as fd1(Xi), i =
2, . . . , n, we have two results for each Xi: one from independently supervised dis-
cretization and one from forward supervised discretization. One might ask which
one brings in higher association when working together with idX1. We will show
by experiments in the next section that the latter wins.

We further assuming without loss of generality that fd1(X2) = argmaxi=1,2,...,n

τY |(idX1,fd
1
(Xi). We can then continue to discretize other variables following the

similar pattern above by idX1 and fd1(X2) .

Step1. The first cutting point, denoted fd2r∗1(Xi), is determined by

fd2r∗1(Xi) = argmax
min(Xi)<r<max(Xi)

τY |((idX1,fd
1
(X2)),((−∞,r],(r,∞));

Step2. The second cutting point, denoted fd2r∗2(Xi), is determined by

fd2r∗2(Xi) = argmax
min(Xi)<r<max(Xi)\fd

2
r∗1 (Xi)

τY |((idX1,fd
1
(X2)),fd

2
r2(Xi)),

where

fd2r2(Xi) = {(−∞,min(fd2r∗1 , r)], (min(fd2r∗1 , r),max(fd2r∗1 , r)], (max(fd2r∗1 , r),∞).

Step3. Continue the process until a predefined number, say m , of intervals are
found.

We admit that the forward discretizing scheme in this article is a variation of
stepwise feature selection procedure[9]. When to stop the discretizing loop depends
on the condition to stop searching the next variable. The conditions include, but
not limited to, reaching the maximum joint association, or reaching the predefined
maximum number of variables.

Naturally, the computational expense for the forward supervised discretization
is significantly higher than the individual ones. But the difference is still acceptable
since our forward one is based on individual one; and the individual one finally
chooses very few predictors. Given that this article is to recommend an alternative
discretization procedure that can increase the association from the independent
variables to the target, we believe it is worth the cost.

4. Empirical experiment and discussion.

Experiments. The purpose of this article’s experiments is to show how the for-
ward supervised discretization method improves the variable association in the mul-
tivariate case for both the GK-tau and the GK-lambda. Not only the associations
but also the independent variables’ domain size are evaluated under different cir-
cumstances to demonstrate the approximate reliability in statistical sense for each
chosen variable set. In general, a variable set with a smaller domain size has higher
confidence power. When two variable sets have the same association, the one with
smaller domain size is preferred in most feature selection methods.

The data set in our experiment is The Survey of Family Expenditure conducted
by Statistic Canada in 1996 (Famex96)[23]. It has 10, 417 rows with over 200 contin-
uous and categorical variables. We use four of them as the continuous independent
variables. They are Income Before Taxes(Inc-btax), Total Expenditure(Tot-expn),
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Income before Taxes(Hh-incbt), Paper, Plastic And Foil Household Supplies(Hh-
suply) and Age(age). Two target variables are manually picked from the data set
to exemplify our statement. The first target variable is Class Of Tenure (Tenure)
with four classes(1-4). The second target variable is the educational level(Edn) with
six cases(1-6). Both variables are ordinal in nature, but we treat them as nominal
for the purpose of simplicity. The maximal number of intervals for each continuous
independent variable is set as m = 3 for the purpose of simplicity again.

Since the approach in this article is inspired and based by the independently
supervised discretization algorithm, we are going to compare them in different sce-
narios in both experiments. Please note that ω, rather than τ , is chosen in the first
experiment to explain the reason to select various models because not only because
they are mathematically equivalent, but also because we believe ω has better in-
terpretability. The same reason goes with the selection of φ over λ in the second
experiment.

4.1. GK − τ case by Tenure. After the independent supervised discretization by
GK − τ , we get the independent variables’ associations as in Table 1.

Table 1. ω and τ : the first round of discretizations

variable Boundary1 Boundary2 ωY |X τY |X Dmn(Y,X)
Inc-btax 29875 44813 0.3456 0.0443 12
Tot-expn 21274 41948 0.3802 0.0946 12
Hh-incbt 19655 35337 0.3848 0.0694 12
Hh-suply 185 371 0.3376 0.0324 12

Age 34 54 0.3896 0.1084 12

Thus the best variable after the independent supervised discretization is Age
with ω = 0.3896. Denote each independently discretized variable as idInc-btax,
idTot-expn, idHh-incbt, idHh-suply and idAge respectively, ωs for the 2-variable
groups, (idAge, idInc-btax), (idAge, idTot-expn), (idAge, idHh-incbt) and (idAge,
idHh-suply) are 0.4134, 0.4523, 0.4527, 0.4082 respectively. The best group then
is (idAge, idHh-incbt) with ω = 0.4527. Going on with the same process gives us
the best 3-variable group as (idAge, idHh-incbt, idTotexpn) with ω = 0.4661. Cor-
respondingly, the domain size for the best 2-variable groups and 3-variable groups
are 36 and 108.

The difference between the independently supervised discretization and the for-
ward supervised discretization begins at the 2-variable groups. Using idAge as the
first one for the subsequent forward supervised discretization process since it has
the highest ω, we can discretize the other explanatory variables by the procedure
introduced in the previous section. The discretized variables are denoted as fd1Xi

where Xi are one of Inc-btax, Tot-expn, Hh-incbt and Hh-suply. Table 2 shows the
detailed discretization result.

Table 2. the ω and τ : the second round of discretization

X Bndry1 Bndry2 ωY |idX1,fd1X τY |idX1,fd1X |(Y, idX1, fd
1X)|

fd1Inc-btax 14938 29875 0.4135 0.1433 35

fd1Tot-expn 31611 52285 0.4506 0.1975 35

fd1Hh-incbt 19887 35649 0.4587 0.2093 33

fd1Hh-suply 93 185 0.4096 0.1377 35

Table 2 shows the best 2-variable group as (idAge, fd1Hh-incbt) with ω = 0.4587
and Dmn(Y, idX1, fd

1X2) = 35.Since ω(Y |(idX1, fd
1X2)) ≥ ω(Y |(idX1, id

1X2)) and
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Dmn(Y, idX1, fd
1X2) ≤ Domain(Y, idX1, id

1X2), the forward procedure is better
than the individual one by both indicators.

Keep going with the same process, we have the discretization result for the third
variable, denoted by fd2X as Table 3

Table 3. ω and τ : the third round of discretization

X Bndry1 Bndry2 ωY |idX1,fd1X2,fd2X τY |idX1,fd1X2,fd2X |(Y, idX1, fd
1X, fd2X)|

fd2Inc− btax 21249 42499 0.4818 0.2430 72

fd2Tot− expn 15305 44715 0.4776 0.2369 89

fd2Hh− suply 132 268 0.4721 0.2288 107

The best 3-variable group then is (Age,Hh-incbt,Inc-btax) with ω = 0.4818 and
its sample size is 72. Given that ω(Y |idX1, fd

1X2, fd
2X3) ≥ ω(Y |id(X1, X2, X3))

and Dmn(Y, idX1, fd
1X2, fd

2X3) ≤ Dmn(Y, id(X1, X2, X3)), the forward approach
is still better than the individual one at the 3-variable level.

4.2. GK − λ case by Edn. After individually discretized by GK − λ with respect
to Edn, we have the following initial result as follow Table 4.

Table 4. The φ and λ:: the first round of discretization

X Bndry1 Bndry2 φY |X λY |X |(Y,X)|
Inc− Btax 44813 59750 0.4331 0.0667 18
Tot-Expn 83297 93634 0.4213 0.0473 16
Hh− Incbt 82389 98073 0.4228 0.0497 17
Hh-Supply 2039 2966 0.4031 0.0272 17

The best variable regarding λ is then idInc-Btax. Calculation also shows that
the next 2-variable groups (idInc-Btax, idTot-Expn), (idInc-Btax, idHh-Incbt),
(idInc-Btax, idHh-Suply) have a list of φ as, respectively, 0.4346,0.4339,0.4335.
It gives us the best 2-variable group as (idInc-Btax ,idTot-Expn). The remain-
ing 3-variable groups, (idInc-Btax,idTot-Expn, idHh-Incbt) and (idInc-Btax,idTot-
Expn,idHh-Suply) show φ as 0.4369 and 0.4347 respectively which gives us the bet-
ter one as (idInc-Btax,idTot-Expn,idHh-Incbt). Let Inc-Btax,Tot-Expn,Hh-Incbt
be denoted asX1, X2 andX3, respectively. We also find out that ω(Y |idX1, idX2) =
0.4346, Dmn(Y, idX1, idX2) = 46; ω(Y |idX1, idX2, idX3) = 0.4369, and Dmn
(Y, idX1, idX2, idX3) = 132.

Using idInc-Btax as the leading variable in the subsequent forward supervised
discretization process, we have the second discretization to other independent vari-
ables, denoted as (fd1Inc-btax, fd1Tot-expn, fd1Hh-suply) or fd1Xi as Table 5:

Table 5. The φ and λ: the second round of discretization

Variable Bndry1 Bndry2 φY |idX1,fd1Xi λY |idX1,fd1Xi |(Y, idX1, fd
1Xi)|

fd1Tot-Expn 113774 144803 0.4353 0.0702 40

fd1Hh-Incbt 107890 184954 0.4358 0.0712 41

fd1Hh-Suply 834 927 0.4333 0.0670 43

From Table 5, we see that (Inc-Btax, fd1Hh-Incbt) has the highest φ as 0.4358
with domain size of 41. Hence

φY |(idX1,fd
1
X2) ≥ φY |(idX1,idX2)
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with the additional advantage that

|Dmn(Y, idX1, fd
1X2)| < |Dmn(Y, idX1, idX2)|.

Table 6 shows the result of discretizing the third variable based on (idInc-Btax,
fd1Hh-incbt) from the previous step.

Table 6. the φ and λ result for 2 forwardly supervisedly dis-
cretized variables

X Bndry1 Bndry2 φY |idX1,fd1X2,fd2X λY |idX1,fd1X2,fd2X |(Y, idX1, fd
2X1, fd

2X)|
fd2Tot-Expn 47349 114874 0.438 0.0747 112

fd2Hh-Supply 233 838 0.4375 0.0739 126

The 3-variable group with the highest accurate rate then goes to (idInc-Btax,
fd1Hh-Incbt, fd2Tot-Expn). The corresponding

φY |(idX1,fd
1
X2,fd

2
X3 = 0.438 ≥ φY |(idX1,idX2,idX3 = 0.4369

while

|Dmn(Y, idX1, fd
1X2, fd

2X3)| = 112 < |Dmn(Y, idX1, idX2, idX3)| = 132.

We may continue if the number of continuous independent variables is greater
than 3 and that the sample size is large enough to ensure the reliability of infor-
mation (or the confidence power of data). Till then both experiments show show
improved performance by the forward supervised discretization than the individual
one.

5. Discussion and future work. In this article, we propose a categorical vari-
able association, e.g., the GK-tau or the GK-lambda, based forward supervised
discretization method for multi-dimensional data set. This method is inspired and
based on an individually supervised discretization proposed in [12, 13]. We demon-
strate the new approach’s advantage by two experiments. One is based on GK-tau
or and another is based on GK-lambda. The experiments also have different tar-
get variables to show our approach’s robustness. Admittedly, the new approach
take more computational time. But we believe the cost is acceptable given the the
improved performance including association.

Although the individual and the forward are applied to one single variable while
the latter uses the information from the variable that are previously discretized by
the same approach, it is natural to extend the case to compartmentalizing a multi-
dimensional space using the same idea. A popular compartmentalization technology
is clustering. Another interesting research is to find out the exact computational
cost for the new approach.
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