
Big Data and Information Analytics doi:10.3934/bdia.2016004
c©American Institute of Mathematical Sciences
Volume 1, Number 2&3, April & July 2016 pp. 185–216

HOW DO I CHOOSE THE RIGHT NOSQL SOLUTION? A

COMPREHENSIVE THEORETICAL AND

EXPERIMENTAL SURVEY

Hamzeh Khazaei, Marios Fokaefs, Saeed Zareian
Nasim Beigi-Mohammadi, Brian Ramprasad, Mark Shtern

Purwa Gaikwad and Marin Litoiu

Center of Excellence for Research in Adaptive Systems

York University
Toronto, Ontario, Canada

(Communicated by Jianhong Wu)

Abstract. With the advent of the Internet of Things (IoT) and cloud comput-

ing, the need for data stores that would be able to store and process big data in
an efficient and cost-effective manner has increased dramatically. Traditional

data stores seem to have numerous limitations in addressing such requirements.

NoSQL data stores have been designed and implemented to address the short-
comings of relational databases by compromising on ACID and transactional

properties to achieve high scalability and availability. These systems are de-
signed to scale to thousands or millions of users performing updates, as well

as reads, in contrast to traditional RDBMSs and data warehouses. Although

there is a plethora of potential NoSQL implementations, there is no one-size-
fit-all solution to satisfy even main requirements. In this paper, we explore

popular and commonly used NoSQL technologies and elaborate on their doc-

umentation, existing literature and performance evaluation. More specifically,
we will describe the background, characteristics, classification, data model and

evaluation of NoSQL solutions that aim to provide the capabilities for big data

analytics. This work is intended to help users, individuals or organizations,
to obtain a clear view of the strengths and weaknesses of well-known NoSQL

data stores and select the right technology for their applications and use cases.

To do so, we first present a systematic approach to narrow down the proper
NoSQL candidates and then adopt an experimental methodology that can be

repeated by anyone to find the best among short listed candidates considering
their specific requirements.

1. Introduction. The term “NoSQL” was first coined in 1998 by Carlo Strozzi for
his RDBMS, Strozzi NoSQL [37]. However, Strozzi used the term simply to distin-
guish his solution from other relational database management systems (RDBMS),
which utilize SQL. He used the term NoSQL just for the reason that his database
did not expose a SQL interface. Recently, the term NoSQL (meaning ‘Not only
SQL’) has come to describe a larger class of databases, which do not have the same

2010 Mathematics Subject Classification. Primary: 68P20, 68P15; Secondary: 68M20, 68M14.
Key words and phrases. NoSQL datastores, key-value datastores, wide-column datastores,

graph databases, document datastores, future trends, systematical selection, YCSB, performance
evaluation, distributed datastores.

185

http://dx.doi.org/10.3934/bdia.2016004

186 HAMZEH KHAZAEI ET AL.

properties as traditional relational databases and are generally not queried with
SQL.

Recently the term “NoSQL” has revived in a different context, generally known
as the era of Big Data. Big Data is defined as a collection of data sets, which are
enormously large and complex that conventional database systems cannot process
within desired time [9]. For instance, storing and processing daily tweets at Twit-
ter demand significant data storage, processing, and data analytics capabilities.
Although conventional SQL-based databases have proven to be highly efficient, re-
liable, and consistent in terms of storing and processing structured (or relational)
data, they fall short of processing Big Data, which is characterized by large volume,
variety, velocity, openness, absence of structure, and high visualization demands
among others [9]. Internet-born Companies like Google, Amazon and Facebook
have invented their own data stores to cope with the big data that appear in their
applications and have inspired other vendors and open source communities to do
similarly for other use cases [16].

Figure 1 shows the the Big Data challenges and the corresponding features of
NoSQL systems that try to address them. On one hand, in the domain of Big
Data, we are obviously talking about very large data sets that should be available
to large number of users at the same time (volume). There is also the need for
fast data retrieval to enable real-time and critically efficient data analysis (velocity)
and the data comes in a much greater variety of formats beyond structured and
relational data. On the other hand, NoSQL data stores can accommodate the
large volume of data and users by partitioning the data in many storage nodes and
virtual structures, thus overcoming infrastructure constraints and ensuring basic
availability. Additionally, NoSQL data stores relax the transactional properties of
user queries by abandoning the ACID system for the BASE (Basic availability, Soft
state, Eventual consistency) [32] system. This way there is less blocking between
user queries in accessing particular data structures, a fact which is also supported
by data partitioning. Finally, NoSQL data stores come in many flavors, namely
data models, to accommodate the data variety that is present in real problems.

Figure 1. Big Data characteristics and NoSQL System features.

In this paper, we survey the domain of NoSQL in order to present an overview of
the relevant technologies to store and process big data. We present these technolo-
gies according to their features and characteristics. For each category, we present
a historical overview of how they came to be, we review their key features and

HOW DO I CHOOSE THE RIGHT NOSQL SOLUTION? 187

competitive characteristics, we discuss some of their most popular implementations
and, finally, we identify some future directions and trends for the evolution and
advancement of NoSQL systems. In the second part of the paper, we demonstrate
how to customize and leverage Yahoo! Cloud Serve Benchmark (YCSB) [12] for
performing performance evaluation.

Our work aims to provide a comprehensive overview of state-of-the-art solutions
for big data stores, but also to promote and motivate further research and ad-
vancement by concisely presenting, what both the academia and the industry have
identified as important issues to be addressed in the future. Additionally, through
the qualitative comparison and more importantly, providing the ability of quanti-
tative comparison, the goal is to guide developers to select a solution fit for their
needs. Finally, this paper contributes several extensions to YCSB, in terms of new
drivers for specific implementations, updates for existing drivers and a new write-
intensive workload. These extensions are made public with the goal to facilitate
and further advance the benchmark and evaluation capabilities of YCSB for the
rest of the research community.

The rest of the paper is organized as follows. In Section 2, we describe the
common concepts, data models and terminologies in the NoSQL word. In Section 3,
we first briefly introduce the classical classes of NoSQL solutions; then we elaborate
each class along with top-rated sample datastores. In section 5 we demonstrate
how to customize YCSB for new solutions or specific requirements for each user.
Finally, in Section 6 we conclude the paper with a summary of new findings and
observations of future trends in the area of NoSQL datastores.

2. NoSQL technologies. NoSQL systems range in functionality from the simplest
distributed hashing, as supported by the popular Memcached [22, 15], a distributed
and open-source memory caching system, to highly scalable partitioned tables, as
supported by Googles BigTable [11]. In fact, BigTable, Memcached, and Ama-
zons DynamoDB [36] provided a “proof of concept” that inspired many of the data
stores we describe here [12]. Memcached demonstrated that in-memory indexes
can be highly scalable, distributing and replicating objects over multiple nodes.
DynamoDB pioneered the idea of eventual consistency as a way to achieve higher
availability and scalability; data fetched are not guaranteed to be up-to-date, but
updates are guaranteed to be propagated to all nodes eventually. BigTable demon-
strated that persistent record storage could be scaled to thousands of nodes, a feat
that most of the other systems aspire to.

NoSQL systems generally have six key characteristics [10]:

1. the ability to horizontally scale CRUD operations throughput over many
servers,

2. the ability to replicate and to distribute (i.e.,partition or shard) data over
many servers,

3. a simple call level interface or protocol (in contrast to a SQL binding),
4. a weaker concurrency model than the ACID transactions of most relational

(SQL) database systems,
5. efficient use of distributed indexes and RAM for data storage, and
6. the ability to dynamically add new attributes to data records.

2.1. Transactional properties and performance. In order to guarantee the in-
tegrity of data, most of the classical database systems support transactions. This
ensures consistency of data in all levels of data management. These transactional

188 HAMZEH KHAZAEI ET AL.

characteristics are also known as ACID (Atomicity, Consistency, Isolation, and
Durability). However, scaling out of ACID-compliant systems has been shown to
be impossible. This is due to conflicts that can arise between the different aspects
of high availability in distributed systems, which are not fully solvable, known as
the CAP theorem [28]:

• Strong Consistency implies that a system is in a consistent state after the
execution of an operation. A Distributed system is typically considered to be
consistent, if, after an update operation of some writer, all readers see the
updates in some shared data source.

• Availability means that all clients can always find at least one copy of the
requested data, even if some of the machines in a cluster are down,

• Partition-tolerance is understood as the ability of the system to continue
operating normally in the presence of network partitions. These occur if two
or more “islands” of network nodes arise which (temporarily or permanently)
cannot connect to each other. Partition tolerance is also understood as the
ability of a system to cope with the dynamic addition and removal of nodes (e.
g. for maintenance purposes; removed and again added nodes are considered
a network partition on their own in this notion).

The CAP-Theorem postulates that only two of the three different aspects of
scaling out can be achieved fully at the same time (see Fig. 2).

Figure 2. Visualization of CAP theorem.

Many of the NOSQL databases have loosened up the requirements on Consistency
in order to achieve better Availability and Partitioning. This resulted in systems
known as BASE (Basically Available, Soft-state, Eventually consistent). These have
no transactions in the classical sense and introduce constraints on the data model to
enable better partition schemes. Cattell [10] classifies NoSQL databases according
to the CAP theorem.

HOW DO I CHOOSE THE RIGHT NOSQL SOLUTION? 189

While it is always the case that NoSQL stores claim to be faster in terms of
performance than RDBMS systems, especially when concerning big data, it should
be noted that not all NoSQL datastores are created alike where performance is
concerned. Users, e.g., system architects and IT managers, are wise to compare
NoSQL databases in their own environments using data and user interactions that
are representative of their expected production workloads before deciding which
NoSQL database to use for new application [1]. However, using performance eval-
uation tools designed specifically for NoSQL systems could help to narrow the list
dramatically.

In this paper, we aim to provide both theoretical and experimental comparison
among popular NoSQL solutions in order to assist users for choosing the right
technology that is appropriate for their specific needs. We will employ Yahoo Cloud
Serve Benchmarking (YCSB) [12] for the performance evaluation of selected NoSQL
stores.

3. Data store categories. There has been a number of approaches to classify
NoSQL databases according to various criteria. In the context of our work, we
adopt the classification based on the supported data model.

• Key-value stores. These are probably the simplest form of database man-
agement systems. They can only store pairs of keys and values, as well as
retrieve values when a key is known. These simple systems are normally
not adequate for complex applications. On the other hand, it is exactly this
simplicity, that makes such systems attractive in certain circumstances. For
example, resource-efficient key-value stores are often applied in embedded sys-
tems or as high performance in-process databases.

• Document stores. Document stores, also called document-oriented database
systems, are characterized by their schema-free organization of data. Records
(i.e., document) do not need to have a uniform structure, i.e. different records
may have different columns. The types of the values of individual columns
can be different for each record and columns can have more than one value
(arrays). Records can have a nested structure and document stores often use
internal notations, which can be processed directly in applications, mostly
JSON.

• Graph databases. Graph DBMS, also called graph-oriented DBMS or graph
databases, represent data in graph structures as nodes and edges, which rep-
resent relationships between nodes. They allow easy processing of data in that
form, and simple calculation of specific properties of the graph, such as the
number of steps needed to get from one node to another node.

• Wide Column Stores. Wide column stores, also called extensible record
stores, store data in records with an ability to hold very large numbers of
dynamic columns. Since the column names as well as the record keys are not
fixed, and since a record can have billions of columns, wide column stores
can be seen as two-dimensional key-value stores. Wide column stores share
the characteristic of being schema-free with document stores, however the
implementation is significantly different.

3.1. Key-value data stores. Key-value stores are the most common and simplest
NoSQL data stores that store pairs of keys and values, where values are retrieved
when keys are known. Key-value stores are mainly used when there is a need
for higher performance than SQL databases, but not for the accompanying rigid

190 HAMZEH KHAZAEI ET AL.

relational data models and the complex query functionalities of SQL and other
NoSQL databases. Fig 3 represents a typical object in such datastores; this object
is for loop detector sensors embedded in Ontario highways that measure the speed,
volume and length of cars periodically[42].

Figure 3. A Key value data model for traffic data.

Key-value stores can be categorized into three types in terms of storage option
including temporary, permanent, and hybrid stores. In temporary stores, all the
data are stored into memory, hence the access to data is fast. However, data will
be lost if the system is down. Permanent key-value stores ensure high availability
of data by storing the data on the hard disk but with the price of lower speed
of I/O operations on the hard disk. Hybrid approaches combine the best of both
temporary and permanent types by storing the data into memory and then writing
the input to the hard disk when a set of specified conditions are met.

Berkeley DB [29] is one of the simplest examples of NoSQL key-value stores that
provides fundamental functionalities of a key-value store and serves as a base for
developing other advanced key-value stores such as Project Voldemort [14], used by
LinkedIn and Amazon DynamoDB [36]. Berkeley DB provides ACID guarantees of-
fered by SQL databases, while it provides a simple database with good performance
and lightweight footprint.

Key-value stores are generally good solutions if you have a simple application
with only one kind of object, and you only need to look up objects up based on
one attribute. Table 1 shows system properties comparison among key-value stores
that we cover in this section. It has been compiled form [20, 44] and each of the
candidates’ website.

HOW DO I CHOOSE THE RIGHT NOSQL SOLUTION? 191

T
a
b
l
e
1
.

S
y
st

em
p

ro
p

er
ti

es
co

m
p

a
ri

so
n

a
m

o
n

g
M

em
ca

ch
ed

,
R

ed
is

a
n

d
P

ro
je

ct
V

o
ld

em
o
rt

.

N
a
m

e
M

e
m

c
a
ch

e
d

R
e
d

is
V

o
ld

e
m

o
rt

D
es

cr
ip

ti
o
n

ke
y
-v

al
u
e

ca
ch

e
a

k
ey

-v
a
lu

e
d
a
ta

st
ru

ct
u
re

se
rv

er
A

k
ey

-v
al

u
e

D
at

ab
as

e

D
a
ta

st
o
ra

ge
vo

la
ti

le
m

em
or

y
vo

la
ti

le
m

em
or

y
an

d
p

er
si

st
en

t
D

a
ta

b
a
se

D
a
ta

ty
p

e
st

ri
n
g

d
a
ta

st
ru

ct
u
re

s
J
S
O

N
an

d
J
av

a
ob

je
ct

s

Q
u
er

y
la

n
gu

ag
e

M
em

ca
ch

ed
-p

ro
to

co
l

R
E

S
T

fu
l

A
P

I
ca

ll
s,

m
em

ca
ch

ed
-

p
ro

to
co

l
an

d
lu

a
A

P
I

ca
ll
s

In
it

ia
l

R
el

ea
se

20
03

20
09

?

L
ic

en
se

B
S
D

L
ic

en
se

B
S
D

L
ic

en
se

A
p
a
ch

e
L

ic
en

se

Im
p
le

m
en

ta
ti

on
la

n
g
u
a
ge

C
,

J
av

a
C

J
av

a

S
ec

o
n
d
a
ry

in
d
ex

n
o

n
o

n
o

C
o
m

p
os

it
e

ke
y

n
o

n
o

n
o

M
a
p
R

ed
u
ce

n
o

n
o

n
o

R
ep

li
ca

ti
on

m
o
d
e

n
o
n
e

m
a
st

er
-s

la
v
e

re
p
li
ca

ti
o
n

sy
m

m
et

ri
c

re
p
li
ca

ti
on

S
h
ar

d
in

g
ye

s
ye

s
ye

s

C
o
n
si

st
en

cy
ye

s
ye

s
ye

s

A
to

m
ic

it
y

ye
s

n
o

ye
s

F
u
ll

te
x
t

se
a
rc

h
n
o

n
o

n
o

T
ra

n
sa

ct
io

n
co

n
ce

p
t

ye
s

(A
C

ID
)

ye
s

co
n
d
it

io
n
al

C
o
n
cu

rr
en

cy
ye

s
ye

s
ye

s

D
u
ra

b
il
it

y
ye

s
ye

s
ye

s

V
al

u
e

si
ze

m
a
x

1
M

B
51

2
M

B
?

192 HAMZEH KHAZAEI ET AL.

As opposed to classical classification that only considers data model for grouping
NoSQL data stores, we incorporate other criteria to have more well-defined classes.
We categorize a NoSQL solution as a key-value stores if it has all the following
features:

• support only for simple data types (no notion of documents);
• search only based on keys (no composite keys);
• no support for full text search;
• no support for secondary index.

Due to mentioned characteristics, some data stores that used to be considered key-
value stores, such as Riak or Oracle NoSQL, no longer fall into our key-value class;
for example, the latest version of Riak is almost a document store with providing
secondary indexes, composite keys, full text search and complex values [7].

3.1.1. Memcached. Memcached [15, 22] is a high-performance, distributed memory
object caching system, generic in nature, but originally intended for use in speeding
up dynamic web applications by alleviating database load. Memcached has been
improved to include features analogous to the other key-value stores: persistence,
replication, high availability, dynamic growth, backup, and so on. Memcached
clients can store and retrieve items from servers using keys. These keys can be any
character strings. Typically, keys are MD5 sums or hashes of the objects being
stored/fetched. The identification of the destination server is done at the client side
using a hash function on the key. Therefore, the architecture is inherently scalable
as there is no central server to consult while trying to locate values from keys [22].
Basically, Memcached consists of the following components:

• client software, which is given a list of available memcached servers,
• a client-based hashing algorithm, which chooses a server based on the “key”

input,
• server software, which stores the values with their keys into an internal hash

table, and
• server algorithms, which determine when to throw out old data (if out of

memory), or reuse memory.

3.1.2. Redis. REmote DIctionary Server (Redis) is an in-memory database where
data are stored on the memory for faster performance. In Redis, complex objects
such as lists and sets can be associated with a key. In Redis, data have time-to-live
(TTL) values that can be set, after which keys are removed from memory. Redis
uses locking for atomic updates and performs asynchronous replications.

Persistence in Redis is achieved in two ways: one is called snapshotting which is
a semi-persistent durability mode where the dataset is asynchronously transferred
from memory to disk from time to time, written in RDB dump format. Since version
1.1 the safer alternative is an append-only file (AOF) that is written as operations
modifying the dataset in memory are processed. Redis is able to rewrite the AOF
in the background in order to avoid an indefinite growth of the AOF file.

By default, Redis syncs data to the disk at least every 2 seconds, with more or
less robust options available if needed. In the case of a complete system failure on
default settings, only a few seconds of data would be lost. In applications that do
not need durability of data, Redis performs very well compared to writing the data
into the disk for any changes in the data. Since version 2.8, lexicographically range
queries are possible, assuming elements in a sorted set are all inserted with the same
identical score. As the primary storage of Redis is memory, Redis might not be the

HOW DO I CHOOSE THE RIGHT NOSQL SOLUTION? 193

right option for data-intensive applications with dominant read operations because
the maximum Redis data set cant be bigger than memory [34].

Redis implements the Publish/Subscribe messaging paradigm where senders
(publishers) are not programmed to send their messages to specific receivers (sub-
scribers). Rather, published messages are characterized into channels, without
knowledge of what (if any) subscribers there may be. Subscribers express inter-
est in one or more channels, and only receive messages that are of interest, with-
out knowledge of what (if any) publishers there are. This decoupling of publish-
ers and subscribers can allow for greater scalability and a more dynamic network
topology[34].

Redis supports consistent hashing, however only Redis Cluster, which has been
available since April 2015, can fully leverage such partitioning. Consistent hashing
implementation in Redis provides the ability to switch to other Redis instance if
the preferred instance for a given key is not available. Similarly if we add a new
instance, part of the new keys will start to be stored on the new instance[34].

3.1.3. Project voldemort. Voldemort is a distributed database, where tasks are only
achieved through traditional CRUD requests such as GET, PUT and DELETE. Volde-
mort provides multi-version concurrency control (MVCC) for updates. It updates
replicas asynchronously and, as a result, it does not guarantee consistent data. How-
ever, it can guarantee an up-to-date view, if you read a majority of replicas. Keys
and values can be more complex objects such as JSON objects, maps and lists in
addition to simple scalar values [25]. In terms of consistency, there is no guarantee
that at given read time data is consistent among different node stores. However, it
applies versioning using vector clocks and read-repair options. Voldemort is used by
LinkedIn Inc. and it provides simple key-value store concentrating on industry-level
performance and efficiently [10].

Voldemorts partitioning scheme relies on consistent hashing to distribute the load
across multiple nodes. In consistent hashing, the output range of a hash function
is treated as a fixed circular space or “ring” (i.e. the largest hash value wraps
around to the smallest hash value). Instead of mapping a node to a single point
in the ring, each node gets assigned to multiple points in the ring. To this end,
Voldemort uses the concept of “virtual nodes”. A virtual node looks like a single
node in the system, but each node can be responsible for more than one virtual node.
Project Voldemort allows namespaces for key-value pairs called “stores”, in which
keys are unique. Keys are associated with exactly one value and values are allowed
to contain complex structures. Basic operations in Voldemort are atomic to exactly
one key-value pair [16]. Serialization in Voldemort is pluggable so any format can be
supported by implementing a Serializer class that handles the translation between
bytes and objects.

3.1.4. Summary and future trend. Key-value stores support basic operations over
relatively simple keys and values. They are only able to search based on key and
do not support advanced searching capabilities such as compound keys, secondary
indexes, or full text search. The main use case for key-value stores is providing a
distributed cashing system with backup capabilities. They all provide scalability by
distributing keys on different nodes using various hashing techniques. Voldemort
uses MVCC and the others use locks for concurrency control.

Key-value stores tend to support complex data as their value and provide more
searching capabilities. Riak and Oracle NoSQL are examples that have paved such

194 HAMZEH KHAZAEI ET AL.

a direction. They now support composite keys, secondary indexes, full-text search
and handling complex values, similar to what document stores do. More specifically,
three distinctive paths can be imagined for the near future of key-value stores: first,
to become document stores that not only support simple key-values but also handle
documents; second, adding graph data model to introduce themselves as multi-
model NoSQL datastores (OrinetDB is an example in this regard); third to be more
focused on in-memory capabilities to serve as a fully distributed pure key-value
caches (e.g., Redis and Memcached).

3.2. Document stores. Inspired by Lotus Notes, document databases were, as
their name implies, designed to manage and store documents. These documents are
encoded in a standard data exchange format such as XML, JSON (Java Script Op-
tion Notation), YAML (YAML Ain’t Markup Language), or BSON (Binary JSON).
Unlike the simple key-value stores described above, the value column in document
databases contains semi-structured data specifically attribute name/value pairs. A
single column can house hundreds of such attributes, and the number and type of
attributes recorded can vary from row to row (schema free). Also, unlike key-value
stores, both keys and values are fully searchable in document databases. The also
usually support complex keys and secondary indexes.

Also referred to as document-oriented database, a document store allows the
inserting, retrieving, and manipulating of semi-structured data. The term “docu-
ment store” may be confusing; while these systems could store documents in the
traditional sense (articles, Microsoft Word files, etc.), a document in these systems
can be any kind of “pointerless object”. They store documents which allow values
to be nested documents or lists as well as scalar values, and the attribute names
are dynamically defined for each document at runtime. Unlike the key-value stores,
these systems generally support secondary indexes and multiple types of documents
(objects) per database. Most of the databases available under this category pro-
vide data access typically over HTTP protocol using RESTful API or over Apache
Thrift protocol for cross-language interoperability. Like other NoSQL systems, the
document stores do not provide ACID transactional properties [10, 16, 43].

Table 2 shows system properties comparison among document stores that we
cover in this section. It has been generated form the materials in their official
documentations and [20, 44].

3.2.1. CouchDB. Apache CouchDB is a flexible, fault-tolerant database, which sup-
ports data formats such as JSON and AtomPub. CouchDB stores documents in
“collections” that form a richer data model compared to its counterparts. Col-
lections comprise the only schema in CouchDB, and secondary indexes must be
explicitly created on fields in collections. A document has field values that can be
scalar (text, numeric, or boolean) or compound (a document or list). Queries are
done with what CouchDB calls “views”, which are defined with Javascript to spec-
ify field constraints. View model is a method of aggregating and reporting on the
documents in a database, and are built on-demand to aggregate, join and report
on database documents. The indexes are B-trees, so the results of queries can be
ordered or value ranges. Queries can be distributed in parallel over multiple nodes
using a map-reduce mechanism. However, CouchDBs view mechanism puts more
burden on programmers than a declarative query language [4].

HOW DO I CHOOSE THE RIGHT NOSQL SOLUTION? 195

T
a
b
l
e
2
.

S
y
st

em
p

ro
p

er
ti

es
co

m
p

ar
is

o
n

a
m

o
n

g
C

o
u

ch
D

B
,

M
a
n

g
o
D

B
,

D
y
n

a
m

o
D

B
a
n

d
R

av
en

D
B

.

N
a
m

e
C
o
u
c
h
D
B

M
o
n
g
o
D
B

R
a
v
e
n
D
B

D
es

cr
ip

ti
o
n

A
d

o
cu

m
en

t
st

o
re

in
sp

ir
ed

b
y

L
o
tu

s
N

o
te

s
O

n
e

o
f

th
e

m
o
st

p
o
p

u
la

r
d

o
cu

-
m

en
t

st
o
re

s
.N

E
T

-b
a
se

d
D

o
cu

m
en

t
S

to
re

D
a
ta

st
o
ra

g
e

fi
le

sy
st

em
v
o
la

ti
le

m
em

o
ry

fi
le

sy
st

em
E

se
n
t

Q
u

er
y

la
n

g
u

a
g
e

J
a
v
a
S

cr
ip

t,
R

E
S

T
,

E
rl

a
n

g
A

P
I

ca
ll
s,

J
a
v
a

S
cr

ip
ts

,
R

E
S

T
A

P
I

ca
ll
s,

D
ir

ec
t

o
b

je
ct

a
cc

es
s,

H
T

T
P

,
J
S

O
N

,
J
a
v
a
S

cr
ip

t,
R

E
S

T

In
it

ia
l

R
el

ea
se

2
0
0
5

2
0
0
9

2
0
1
0

L
ic

en
se

A
p

a
ch

e
V

2
A

G
P

L
V

3
A

G
P

L
V

3

D
a
ta

b
a
se

a
s

se
rv

ic
e

n
o

n
o

n
o

L
a
n

g
u

a
g
e

E
rl

a
n

g
C

+
+

C
#

S
er

v
er

O
S

A
n

d
ro

id
,

B
S

D
,

L
in

u
x
,

O
S

X
,

S
o
la

ri
s,

W
in

d
o
w

s
L

in
u

x
,

O
S

X
,

S
o
la

ri
s,

W
in

d
o
w

s
W

in
d

o
w

s

D
a
ta

ty
p

e
J
S

O
N

J
S

O
N

J
S

O
N

,
B

S
O

N
,

B
L

O
B

S
ec

o
n

d
a
ry

in
d

ex
y
es

(v
ia

v
ie

w
s)

y
es

y
es

A
P

Is
R

E
S

T
fu

l
H

T
T

P
/
J
S

O
N

A
P

I
p

ro
p

ri
et

a
ry

p
ro

to
co

l
u

si
n

g
J
S

O
N

.N
E

T
C

li
en

t
A

P
I,

R
E

S
T

fu
l

H
T

T
P

A
P

I

P
a
rt

it
io

n
in

g
m

et
h

o
d

sh
a
rd

in
g

sh
a
rd

in
g

sh
a
rd

in
g

R
ep

li
ca

ti
o
n

m
et

h
o
d

s
m

a
st

er
-m

a
st

er
a
n

d
m

a
st

er
-

sl
a
v
e

re
p

li
ca

ti
o
n

m
a
st

er
-s

la
v
e

re
p

li
ca

ti
o
n

m
a
st

er
-m

a
st

er
,

m
a
st

er
-s

la
v
e,

a
sy

n
c

a
n

d

m
u

lt
i-

so
u

rc
e

re
p

li
ca

ti
o
n

M
a
p

R
ed

u
ce

y
es

y
es

y
es

In
te

g
ri

ty
m

o
d

el
M

V
C

C
,

B
A

S
E

,
A

C
ID

B
A

S
E

A
C

ID
,

B
A

S
E

,
ev

en
tu

a
ll
y

co
n

si
st

en
t

C
o
n

si
st

en
cy

co
n

ce
p

t
ev

en
tu

a
l

co
n

si
st

en
cy

ev
en

tu
a
l

a
n

d
im

m
ed

ia
te

co
n

si
s-

te
n

cy

ev
en

tu
a
l

co
n

si
st

en
cy

T
ra

n
sa

ct
io

n
co

n
ce

p
t

n
o

(a
to

m
ic

o
p

er
a
ti

o
n

s
w

it
h

in
a

si
n

g
le

d
o
c)

n
o

(a
to

m
ic

o
p

er
a
ti

o
n

s
w

it
h

in
a

si
n

g
le

d
o
c)

y
es

C
o
n

cu
rr

en
cy

y
es

(o
p

ti
m

is
ti

c
lo

ck
in

g
)

y
es

y
es

D
u

ra
b

il
it

y
y
es

y
es

(o
p

ti
o
n

a
l)

y
es

V
a
lu

e
si

ze
m

a
x

4
G

B
1
6

M
B

2
G

B

196 HAMZEH KHAZAEI ET AL.

The map function gets a document as a parameter, performs some calculation,
and produces data based on the views criteria. The data structure produced by the
map function is a triplet consisting of the document id, a key and a value result.
After the map function has been executed, the results are passed to an optional
reduce function to be aggregated on the view. As all documents of the database are
processed by a views functions this can be time consuming and resource intensive for
large databases. Therefore a view is not created and indexed when write operations
occur but on demand and updated incrementally when it is requested again [16, 4].

CouchDB provides asynchronous replication to achieve scalability and does not
use sharding. The replication process operates incrementally where only modified
data since the last replication gets transmitted to the next one. To provide durabil-
ity, all updates on documents and indexes are flushed to disk on commit, by writing
to the end of a file. Therefore, together with the MVCC mechanism, it is claimed
that CouchDB provides ACID semantics at the document level. The single update
operations are either executed to completion or fail/rollback so that the database
never contains partly saved or updated documents. CouchDb does not guarantee
consistency, since each client sees a self-consistent view of the database. All replicas
are always writable and they do not replicate with each other by themselves[10, 43].

3.2.2. MongoDB. MongoDB is a database between relational databases and non-
relational database. MongoDB is a GPL open source document store written in
C++. Like CouchDB, it provides indexes on collections, it is lockless, and it
provides a document query mechanism. However, there are key differences be-
tween the two: CouchDB provides MVCC on documents, while MongoDB provides
atomic operations on fields; MongoDB supports dynamic queries with automatic
use of indices, like RDBMSs; MongoDB supports automatic sharding, distributing
load/data across “thousands of nodes” with automatic failover and load balanc-
ing, a feature inspired by Googles BigTable; while CouchDB achieves scalability
through asynchronous replication, MongoDB achieves it through sharding (however
an extension of CouchDB called CouchDB Lounge supports sharding). To shard a
collection, MongoDB uses a shard key. A shard key is either an indexed field or an
indexed compound field that exists in every document in the collection. MongoDB
divides the shard key values into chunks and distributes the chunks evenly across
the shards. To divide the shard key values into chunks, MongoDB uses either range
based partitioning or hash based partitioning [27].

MongoDB stores data in a binary JSON-like format called BSON. BSON sup-
ports boolean, integer, float, date, string and binary types. Client drivers encode
the local languages document data structure (usually a dictionary or associative
array) into BSON and send it over a socket connection to the MongoDB server (in
contrast to CouchDB, which sends JSON as text over an HTTP REST interface).
MongoDB also supports a GridFS specification for large binary objects, e.g. images
and videos. These are stored in chunks that can be streamed back to the client for ef-
ficient delivery.MongoDB supports master-slave replication with automatic failover
and recovery.

A replica set is a group of mongod1 instances that host the same data set. One
mongod, the primary one, receives all write operations. All other mongod instances,
secondary ones, apply operations from the primary so that they have the same data

1mongod is the primary daemon process for the MongoDB system. It handles data requests,
manages data access, and performs background management operations.

HOW DO I CHOOSE THE RIGHT NOSQL SOLUTION? 197

set. The primary accepts all write operations from clients. A replica set can have
only one primary. In other words, replication (and recovery) is done at the shard
level. Replication is asynchronous for higher performance, so some updates may be
lost on a crash [27].

The key decision in designing data models for MongoDB applications revolves
around the structure of documents and how the application represents relation-
ships between data. There are two tools that allow applications to represent these
relationships: references and embedded documents. References store the relation-
ships between data by including links or references from one document to another.
Broadly speaking, these are normalized data models (Figure 4).

Figure 4. Normalized data model design in MongoDB [27].

Embedded documents capture relationships between data by storing related data
in a single document structure. MongoDB documents make it possible to embed
document structures in a field or array within a document. These denormalized
data models allow applications to retrieve and manipulate related data in a single
database operation (Figure 5).

3.2.3. RavenDB. RavenDB is a transactional, open-source Document Database
written in .NET. Data in RavenDB is stored in a schemaless manner as JSON
documents, and can be queried efficiently using Linq queries from the .NET code
or by REST requests using other tools. Internally, RavenDB makes use of indexes,
which are automatically created based on the usage, or created explicitly by the
consumer. RavenDB offers replication and sharding support. It is a database tech-
nology based on a client-server architecture; data is stored on a server instance and
data requests from one or more clients are made to that instance.

In RavenDB every document has metadata attached to it. By default, this
metadata only contains data that is used internally by RavenDB. With RavenDB,
each document has its own unique global ID, in the sense that if one attempted to
store two different entities under the same ID, the second write would overwrite the
first one without any warning. The convention in RavenDB is to have a document
ID that is a combination of the collection name and the entity’s unique ID within the
collection. This convention is enforced by default within RavenDB by pluralizing

198 HAMZEH KHAZAEI ET AL.

Figure 5. Denormalized data model design in MongoDB [27].

the name of the object class being saved, and adding an auto-incremented number
to it. However, this document ID convention is not mandatory: document IDs are
independent of the entity type, and therefore don’t have to contain the name of the
collection they are assigned to.

One of the design principles that RavenDB adheres to is the idea that documents
are independent, meaning all data required to process a document is stored within
the document itself. However, this doesn’t mean that RavenDB does not support
related documents. RavenDB offers three approaches to solve the relation prob-
lem namely, “denormalization”, “includes” and hybrid approaches. Each scenario
will need to use one or more of them. When applied correctly, they can drasti-
cally improve performance, reduce network bandwidth and speedup development.
“Denormalization” and “includes” are corresponding to denormalized and reference
approaches in MongoDB. The hybrid approach is the combination of the two by
having a short version of the related document inside the master document and
providing a reference to the long version of related document. There are no strict
rules as to when to use which approach, but the general idea is to give it a lot of
thought, and consider the implications each approach has [18].

RavenDB supports replication and to enable it, a built-in replication bundle
should be activated, when creating a new database. On every transaction commit,
RavenDB will look up the list of replication destinations. For each of the destina-
tions, the replication bundle will query the remote instance for the last document
that was replicated to that instance. Next, it starts sending batches of updates
that occurred since the last replication. Replication happens in the background
and in parallel. RavenDB contains built-in support for sharding. It will handle all
aspects of sharding for users, and they only need to define the shard function (how
to actually split the documents among multiple shards) [18].

3.2.4. Summary and future trend. To enhance the performance of common queries
and updates, document stores usually have full support for secondary indexes.
These indexes allow applications to store a view of a portion of the collection in an
efficient data structure. Most indexes store an ordered representation of all values

HOW DO I CHOOSE THE RIGHT NOSQL SOLUTION? 199

of a field or a group of fields. Indexes may also enforce uniqueness, store objects in
a geospatial representation, and facilitate text search. Full text search is another
capability that most of document stores support and adopt various technique to
make the searching efficient and low cost.

Document stores already implemented some notion of reference documents in
their data model. Recently some document stores such as OrientDB [30] and
ArangoDB [5] matured this feature to support graph data model as well so that
introduce themselves as multi-model stores. This trend is not specific to document
stores and can be seen in other classes to mitigate a problem known as “polyglot
persistence” in which different types of NoSQL solutions are leveraged to satisfy all
business requirements in the data layer [24, 9].

3.3. Graph databases. Graph databases are designed to fill the gap between
graph data modeling requirements and the tabular abstraction in traditional data-
bases. Graph databases employ Graph theory concepts like nodes and edges. Nodes
are entities in the data domain and edges are the relationship between two entities.
Nodes can have properties or attributes to describe them. Graph databases help us
to implement graph processing requirements in the same query language level as we
use for fetching graph data without the extra layer of abstraction for graph nodes
and edges. This means less overhead for graph-related processing and more flexibil-
ity and performance. Performance and flexibility in such databases are becoming
more important nowadays, especially with the emergence of new widely used appli-
cations such as social media or e-commerce software. Big companies can store and
model users’ interests and recommend more related advertisement to them. Addi-
tionally, graph databases make it easier to implement complex traversals in graph
datasets. Figure 6 depicts a data example in a graph database.

Figure 6. A Graph data model.

200 HAMZEH KHAZAEI ET AL.

Graph databases are growing fast in industry. Examples of relevant use cases
include social networks analysis, authentication and authorization systems, e-com-
merce recommender systems and fraud detection in financial services. Such de-
manding use cases can be implemented easier using graph databases. Based on
online reports [2], the popularity of graph databases has increased six times since
2013. This report implies that by 2017, 25% of the enterprise solutions will use
graph database solutions.

McColl et al. [26] have conducted a performance evaluation on multiple database
systems but focused more on graph datasets with different characteristics or injected
a graph-related experiment (i.e., PageRank) in each evaluation. Also, Jouili et al.
[23] introduced their own bench-marking system (instead of using YSCB) and imple-
mented popular workloads for graph datasets such as shortest path between nodes
and neighborhood exploration experiment. In both of them, we observed a lack of
implementation of enough general scenarios to let us compare implementations of
graph data systems.

Table 3 shows the features comparison among graph databases that we cover in
this section [21, 44].

3.3.1. Neo4j. Neo4j is a well-known project of a graph storage since 2007. It has
various native APIs in most of programming languages such as Java, Go, PHP, and
others. Neo4j has its own database file structure for storing files, which is flexible
enough to be embedded inside Java applications. Neo4j is fully ACID compatible
and schema-free.

Neo4j uses its own query language called Cypher [38] that is inspired by SQL,
but it supports syntax related to graph nodes and edges. Cypher designed to be
declarative language, which is more focused on the data to be retrieved rather than
commands needed to be used for retrieval. This makes Cypher queries richer for
graph and node model definitions.

Neo4j supports data replication in a master-slave fashion which ensures fault-
tolerance against server failures. owever, it does not allow for data partitioning in
multiple servers. This means the data size should be less than the capacity of the
server. Nevertheless, Neo4J supports replication by which it replicates the whole
data on another cluster node.

3.3.2. Titan. Titan is an open-source project with focus on serializing and compact-
ing graph data structure, rich graph data modeling, and execution of graph queries
in a more efficient way [6]. This database system implements modular interfaces for
data persistence, data indexing, and client access. Titan can perform its storage over
various NoSQL databases such as HBase, Cassandra and Oracle Berkeley database
while Neo4j stores its data on its proprietary file structures. Titan’s main feature
against Neo4j is its scalability and real-time processing of data. Titan supports
various secondary indexing systems from Lucence2, Solr3 and ElasticSearch4.

2https://lucene.apache.org/core
3http://lucene.apache.org/solr
4https://www.elastic.co

https://lucene.apache.org/core
http://lucene.apache.org/solr
https://www.elastic.co

HOW DO I CHOOSE THE RIGHT NOSQL SOLUTION? 201

T
a
b
l
e
3
.

S
y
st

em
p

ro
p

er
ti

es
co

m
p

a
ri

so
n

a
m

o
n

g
N

eo
4
j,

T
it

a
n

a
n

d
,

O
ri

en
tD

B
.

N
a
m

e
N
e
o
4
j

O
r
ie
n
tD

B
T
it
a
n

D
es

cr
ip

ti
o
n

o
p

en
so

u
rc

e
g
ra

p
h

d
a
ta

b
a
se

m
u

lt
i-

m
o
d

el
D

B
M

S
(D

o
cu

m
en

t,
G

ra
p

h
,

K
ey

/
V

a
lu

e)
a

G
ra

p
h

D
B

M
S

o
p

ti
m

iz
ed

fo
r

d
is

-
tr

ib
u

te
d

cl
u

st
er

s.

D
a
ta

S
to

ra
g
e

d
is

k
P

er
si

st
en

ce
,

v
o
la

ti
le

m
em

o
ry

d
is

k
P

er
si

st
en

ce
,

v
o
la

ti
le

m
em

-

o
ry

,
re

m
o
te

d
is

k
P

er
si

st
en

ce
,

v
o
la

ti
le

m
em

-

o
ry

,
re

m
o
te

D
a
ta

m
o
d

el
g
ra

p
h

D
B

M
S

d
o
cu

m
en

t
st

o
re

,
G

ra
p

h
D

B
M

S

a
n

d
,

K
ey

-v
a
lu

e
st

o
re

g
ra

p
h

D
B

M
S

Q
u

er
y

L
a
n

g
u

a
g
e

C
y
p

h
er

q
u

er
y

la
n

g
u

a
g
e,

J
a
v
a

A
P

I,
R

E
S

T
fu

l
H

T
T

P
A

P
I

J
a
v
a

A
P

I,
R

E
S

T
fu

l

H
T

T
P

/
J
S

O
N

A
P

I,
T

in
k
er

-
p

o
p

J
a
v
a

A
P

I,
T

in
k
er

P
o
p

In
it

ia
l

R
el

ea
se

2
0
0
7

2
0
1
0

2
0
1
2

L
ic

en
se

A
G

P
L

V
3

(C
o
m

m
er

ci
a
l)

/
B

S
D

(C
o
m

m
u

n
it

y
)

A
p

a
ch

e
V

2
A

p
a
ch

e
V

2

L
a
n

g
u

a
g
e

J
a
v
a

J
a
v
a

J
a
v
a

S
ec

o
n

d
a
ry

in
d

ex
y
es

(v
ia

A
p

a
ch

e
L

u
ce

n
e)

y
es

y
es

C
o
m

p
o
si

te
k
ey

n
o

y
es

y
es

M
a
p

R
ed

u
ce

n
o

n
o

(b
u

t
a
ch

ie
v
a
b

le
w

it
h

d
is

-
tr

ib
u

te
d

q
u

er
ie

s)
y
es

(v
ia

F
a
u

n
u

s)

R
ep

li
ca

ti
o
n

m
et

h
o
d

s
m

a
st

er
-s

la
v
e

re
p

li
ca

ti
o
n

(c
o
m

-

m
er

ci
a
l)

m
a
st

er
-s

la
v
e

re
p

li
ca

ti
o
n

sy
m

m
et

ri
c

re
p

li
ca

ti
o
n

S
h

a
rd

in
g

n
o

y
es

y
es

D
a
ta

sc
h

em
a

sc
h

em
a

fr
ee

sc
h

em
a

fr
ee

y
es

S
Q

L
n

o
n

o
y
es

C
o
n

si
st

en
cy

ev
en

tu
a
l

C
o
n

si
st

en
cy

,
im

m
ed

ia
te

co
n

si
st

en
cy

u
n

k
n

o
w

n
ev

en
tu

a
l

C
o
n

si
st

en
cy

,
im

m
ed

ia
te

C
o
n

si
st

en
cy

A
to

m
ic

it
y

y
es

y
es

y
es

T
ra

n
sa

ct
io

n
co

n
ce

p
t

A
C

ID
A

C
ID

A
C

ID

C
o
n

cu
rr

en
cy

y
es

y
es

y
es

V
a
lu

e
si

ze
m

a
x

1
T

B
2

G
B

2
G

B

202 HAMZEH KHAZAEI ET AL.

Titan presents its abstraction layer on top of commonly used NoSQL database
systems. Thus, Titan can inherit back-end storage systems capabilities by inte-
grating with them. One good example can be data partitioning which is not im-
plemented in Neo4j but it is ready to use in Titan, simply by using Cassandra or
HBase. This project provides abstractions to work easily with a large volume of
edges and vertices in big datasets.

Titan can be used in two ways: embedded or remote. In the first case, Titan
is embedded inside the Java application as a library and can negotiate with the
storage back-end form application. In the second case, Titan can be accessible with
Tinkerpop stack API [3].

3.3.3. OrientDB. OrientDB is another open-source solution for storing various mod-
els of data structure. One of the supported models in this database system is Graph.
This database system supports relationships and that is the key feature to enter
to the domain of Graph database systems. This feature is implemented by docu-
ment pointers. Document pointers are values inside JSON documents that point to
other documents. In this way, pointers can operate like edges in graph data struc-
tures. Instead of providing JOIN functionality, OrientDB uses document pointers
to connect documents with a linear cost for big data [30].

There are two special features in OrientDB: “dataset profiling”, which is im-
plemented using roles for database users, and an “indexing algorithm”, which is
inspired from B+ tree and Red-Black tree.

Like Neo4j, OrientDB supports RESTful access to data. In addition to REST,
OrientDB supports SQL in the same manner that SQL is used in a relational data-
base, while Neo4j uses the Cypher query language. OrientDB supports TinkerPop
Blueprints API [3] to access graph data. This feature is also implemented in Titan.
OrientDB also can be embedded inside Java application like Neo4j.

OrientDB uses horizontal partitioning for bigger databases stored on multiple
servers (i.e., sharding). Each chunk of data, i.e. shard, contains smaller subsets of
data, i.e. some rows. Besides sharding, OrientDB supports multi-master feature.
Other solutions, like HBase, have one master server and some secondary nodes,
which may create throughput bottlenecks on the master side. In multi-master
configurations, the client can connect to any of the database cluster servers and
synchronization is handled by OrientDB. Thus, the total throughput of the cluster
is equal to the throughput of all database cluster servers instead of the single master
server. Multi-master feature is unique in OrientDB among all graph solutions.

3.3.4. Summary and future trend. In summary, graph databases are trending up-
wards and are becoming more popular in the industry. One of the reasons for
their popularity is that they can model some industrial problems in a more con-
venient way. We investigated three graph storage and processing solutions. Titan
only provides abstraction layer for graph storage on top other key-value solutions
like Cassandra. OrientDB and Neo4j have their backend storage. While OrientDB
supports SQL, Neo4j has an exclusive query declaration language called Cypher.
OrientDB was the only solution that supports the concept of a multi-master topol-
ogy for maximizing storage throughput. All of the solutions support durability and
ACID features and secondary indexes. Titan does not support any data partitioning
feature, but Giraph and OreintDB support sharding.

One future trend for graph datastores is the provision of more graph-related
functionality in their query languages. Such functionalities can be added in their

HOW DO I CHOOSE THE RIGHT NOSQL SOLUTION? 203

query language like Cypher in Neo4j or by adding more functions to SQL language.
Also another concern in graph databases to be addressed in future is their elasticity
tolerance. Graph databases support more complex and resource-intensive queries
than the other types of databases, so their scaling can cause more issues in queries.

3.4. Wide column stores. Although column-oriented data stores are defined as
being non-relational, it can be argued that they are the equivalent of Big Data for
relational databases, since they exhibit similarities on a conceptual level. In this
sense, they have retained the notions of tables, rows and columns. This creates the
notion of a schema, explicit from the client’s perspective, but rather flexible from
the data store’s point of view, which enables the execution of queries on the data.
Nevertheless, the underlying philosophy, architecture and implementation are quite
different from traditional RDBMS. The basic difference is that the notion of tables
is primarily for interacting with clients, while the storage, indexing and distribution
of data is taken care by a file and a management system.

Almost all of the popular wide-column data store systems have inherited the
data model proposed by Google for the BigTable system [11]. In BigTable, a table
is defined as a “sparse, distributed, persistent multidimensional sorted map”. A
cell, a unit of data, is uniquely identified by its row key, its column key and its
timestamp. The row keys are lexicographically sorted and consecutive keys are
grouped into tablets, which dictates how data is stored in the distributed underlying
file system, thus implementing and exploiting the locality property of the data to
improve performance of reads and writes. Given this, the design of the row key is
essential to enable efficient reads of short ranges of row keys (i.e., scan) without
having to “wake up” a large number of machines. This way the row key defines the
load balancing of the data. Transactional consistency in BigTable is guaranteed on
a row level; every read and write on a single row is serializable and timestamped,
thus allowing concurrent updates to the same row.

The data in each row is organized in column families. Each family is of the same
data type, to allow for data compression, and may have an arbitrary number of
columns. The number of column families is usually small to minimize the amount
of shared metadata. Columns define the properties of access control and resource
accounting. Columns may be added or deleted from column families without affect-
ing the data. However, the removal of a column family will change the schema of
the data. Since the model does not guarantee transactions across multiple rows, if
a column family is to be deleted and there is corresponding data in multiple rows,
then this data cannot be deleted automatically. Figure 7 represents a sample table
in a wide-column datastore.

Under the hood, most wide-column datastores are based on a distributed file sys-
tem. More specifically, BigTable is built on top of the GFS (Google File system).
The data is persistently (and immutably) stored in files called SSTables. Updates
are handled in an intermediate, cache-like structure called the MEMTABLE. Peri-
odically the updates are pushed to the SSTables. When a read request is received,
both the MEMTABLE and the sequence of SSTables are checked.

The infrastructure of a BigTable cluster contains a Chubby [8] server acting
as master and Tablet servers acting as data nodes. Chubby is responsible among
others for access control, maintain tablets and assign data to tablets. Tablet servers
maintain a collection of tablets and a tablet maintains a sequence of SSTables.
All servers (master and data) also contain metadata to address locality issues and
update the topology (with the addition or removal of servers) and logs about the

204 HAMZEH KHAZAEI ET AL.

Figure 7. A Wide-Column data model for drivers/ticket information.

operations on the data. The user tables, the ones used by clients to access the data,
correspond to a schema representation of the underlying tablets.

Wide-column stores are designed for data that spans billions of rows and millions
of columns. Additionally, they support cells of arbitrarily large size. They are
more efficient than traditional relational databases for applications that scan a few
columns of many rows, because this needs to load significantly less data than reading
the whole row. Moreover, rows can be of large size and their keys of high complexity,
which makes storing to and retrieving data from a single machine possible. Finally,
wide-column stores allow different access level for different columns.

In this paper, we review four independent implementations of BigTable, namely
Apache HBase [41], Apache Cassandra [40], Apache Accumulo [39] and Hyper-
table [19], ranked as the most popular ones by DB-engines [20]. Table 4 compares
the presented implementations based on some of their basic properties. It has been
generated with information from DB-engines [20] and vsChart [44].

HOW DO I CHOOSE THE RIGHT NOSQL SOLUTION? 205

T
a
b
l
e
4
.

S
y
st

em
p

ro
p

er
ti

es
co

m
p

a
ri

so
n

a
m

o
n

g
H

B
a
se

,
C

a
ss

a
n

d
ra

,
A

cc
u

m
u

lo
a
n
d

H
y
p

er
ta

b
le

.

N
a
m

e
H
B
a
se

C
a
ss
a
n
d
r
a

A
c
c
u
m
u
lo

H
y
p
e
r
ta

b
le

D
es

cr
ip

ti
o
n

b
a
se

d
o
n

A
p

a
ch

e
H

a
d

o
o
p

a
n

d
o
n

co
n

ce
p

ts
o
f
B

ig
T

a
b

le

b
a
se

d
o
n

id
ea

s
o
f

B
ig

T
a
b

le

a
n

d
D

y
n

a
m

o
D

B

fe
a
tu

ri
n

g
ce

ll
le

v
el

se
cu

-

ri
ty

a
n

d
se

rv
er

-s
id

e
co

m
p

u
-

ta
ti

o
n

A
n

o
p

en
so

u
rc

e
B

ig
T

a
b

le

im
p

le
m

en
ta

ti
o
n

b
a
se

d
o
n

H
a
d

o
o
p

D
a
ta

m
o
d

el
C

o
lu

m
n

-o
ri

en
te

d
K

ey
-v

a
lu

e
C

o
lu

m
n

-o
ri

en
te

d
K

ey
-v

a
lu

e
C

o
lu

m
n

-o
ri

en
te

d
K

ey
-v

a
lu

e

S
ch

em
a
-l

es
s

C
o
lu

m
n

-o
ri

en
te

d

In
it

ia
l

R
el

ea
se

2
0
0
8

2
0
0
8

2
0
1
1

2
0
0
9

L
ic

en
se

A
p

a
ch

e
V

2
A

p
a
ch

e
V

2
A

p
a
ch

e
V

2
B

S
D

L
a
n

g
u

a
g
e

J
a
v
a

J
a
v
a

S
ca

la
C

+
+

S
er

v
er

O
S

L
in

u
x
,

U
n

ix
,

W
in

d
o
w

s
(t

h
ro

u
g
h

a
n

em
u

la
to

r)
B

S
D

,
L

in
u

x
,

O
S

X
,

W
in

-
d

o
w

s
U

n
ix

L
in

u
x
,
O

S
X

,
W

in
d

o
w

s
(u

n
-

o
ffi

ci
a
ll
y
)

D
a
ta

sc
h

em
a

sc
h

em
a

fr
ee

sc
h

em
a

fr
ee

sc
h
em

a
fr

ee
sc

h
em

a
fr

ee

S
Q

L
n

o
n

o
n

o
n

o

S
ec

o
n

d
a
ry

in
d

ex
n

o
y
es

(f
o
r

so
m

e
q
u

er
ie

s)
y
es

y
es

(f
o
r

so
m

e
q
u

er
ie

s)

A
P

Is
a
n

d
o
th

er
a
cc

es
s

m
et

h
o
d

s

J
a
v
a
,

R
E

S
T

,
T

h
ri

ft
,

X
M

L
C

Q
L

(p
ro

p
ri

et
a
ry

),
T

h
ri

ft
J
a
v
a
,

R
E

S
T

,
T

h
ri

ft
C

+
+

,
R

E
S

T
,

T
h

ri
ft

P
a
rt

it
io

n
in

g
m

et
h

o
d

sh
a
rd

in
g

sh
a
rd

in
g

sh
a
rd

in
g

sh
a
rd

in
g

R
ep

li
ca

ti
o
n

m
et

h
o
d

s
M

a
st

er
-s

la
v
e

P
ee

r
to

P
ee

r,
A

sy
n

ch
ro

-
n

o
u

s,
M

u
lt

i-
so

u
rc

e
M

u
lt

i-
m

a
st

er
M

a
st

er
-s

la
v
e

M
a
p

R
ed

u
ce

y
es

y
es

y
es

y
es

In
te

g
ri

ty
m

o
d

el
L

o
g

re
p

li
ca

ti
o
n

B
A

S
E

M
V

C
C

M
V

C
C

C
o
n

si
st

en
cy

co
n

ce
p

t
im

m
ed

ia
te

co
n

si
st

en
cy

ev
en

t/
im

m
co

n
si

st
en

cy
im

m
ed

ia
te

co
n

si
st

en
cy

im
m

ed
ia

te
co

n
si

st
en

cy

T
ra

n
sa

ct
io

n
co

n
ce

p
t

n
o

(a
to

m
ic

fo
r

si
n

g
le

ro
w

)
n

o
(a

to
m

ic
fo

r
si

n
g
le

ro
w

)
n

o
(a

to
m

ic
fo

r
si

n
g
le

ro
w

)
n

o
(a

to
m

ic
fo

r
si

n
g
le

ro
w

)

C
o
n

cu
rr

en
cy

y
es

y
es

y
es

y
es

D
u

ra
b

il
it

y
y
es

y
es

y
es

y
es

V
a
lu

e
si

ze
2

T
B

2
G

B
1

E
B

u
n

k
n

o
w

n

206 HAMZEH KHAZAEI ET AL.

3.4.1. Apache HBase. Apache HBase is the NoSQL wide-column store for Hadoop,
the open-source implementation of MapReduce for Big Data analytics. The pur-
pose of HBase is to support random, real-time read and write access to very large
tables with billions of rows and millions of columns. Just like BigTable, HBase runs
on top of HDFS (Hadoop Distributed File System) and is deployed on commodity
hardware serving as the Master server, responsible for cataloging and load balanc-
ing, and RegionServers, acting as the data nodes. HBase provides the same level
of transactional support as BigTable; consistency is guaranteed on the row level.
Finally, just like BigTable is tailored to support MapReduce, HBase is built in a
way to conveniently support Hadoop jobs.

3.4.2. Apache cassandra. Cassandra is designed to be a fault-tolerant, highly re-
liable and available data store. The premise is that failures may happen both in
software and hardware and they are practically inevitable. For this reason, Cas-
sandra’s architecture allows for fast recovery to ensure high data availability. To
achieve this, two entities are central; data centers and clusters. A data center is a
collection of homogeneous nodes that hold a number of redundant replicas of the
data for high availability. Nodes in data centers are always local, i.e. do not span
multiple physical locations. Clusters, on the other hand, are collections of data cen-
ters and can span across multiple locations. The nodes in a cluster are connected
in a peer-to-peer network and communication information among each other every
second using a gossip protocol to mediate failures. Cassandra also employs the
concepts of commit log and SSTables, in a similar manner as BigTable, to ensure
ACID actions.

3.4.3. Apache accumulo. Accumulo shares the notion of the Master server, Tablet-
Servers and Tablets with BigTable and is also built on top of HDFS like HBase.
Accumulo offers a number of improved features over the native BigTable implemen-
tation. It offers server-side programming capabilities to define functions that can
happen at any stage of the data management process, including when reading or
writing in the disk. Furthermore, unlike BigTable, Accumulo allows for access con-
trol on the level of individual cells and it shreds the requirement that a single row
should fit in memory as it allows for very large cell values, practically of unlimited
size. Additionally, using Zookeeper, Accumulo allows for the definition of multiple
Master servers, so that it is tolerant against Master failures.

3.4.4. Hypertable. Hypertable inherits from BigTable the notions of Master and
Range servers (equivalent to the RegionServers of HBase and data nodes of BigTable)
and also the Hyperspace, which plays the role of the BigTable’s Chubby server.
However, unlike the other three aforementioned implementations, Hypertable pos-
sesses a unique feature; instead of being tied to a specific underlying file system,
Hypertable abstracts its interface by directing all the requests for actions on the
file system level through a broker process. By developing and contributing different
brokers, Hypertable can be connected to any file system. Another unique feature is
the ability of the RangeServers to allocate their memory depending on whether the
workload is write- or read-heavy.

3.4.5. Summary and future trend. Wide column stores are tightly coupled with
analytical frameworks, like MapReduce and Hadoop. Their design aims for high
availability and high velocity in retrieving data to enable fast analytics. In addition,
the flexible design of the data schema with the column families of variable length

HOW DO I CHOOSE THE RIGHT NOSQL SOLUTION? 207

(i.e. different records may have different number of columns per column family)
enables targeted retrieval of data for more efficient queries and analysis.

In their latest versions, the presented stores have worked towards implementing
or improving the following key aspects of their features:

1. fast reads and high availability,
2. faster writes, and
3. improved security.

All three Apache-supported solutions (HBase5, Accumulo6 and Cassandra) have
implemented methods to improve data retrieval. More specifically, HBase is of-
fering increased availability by replicating regions across different RegionServers7.
In practice, a RegionServer holds the data of a region for reading and writing
along with read-only replicas of other regions. This way if a RegionServer is busy,
down or unusually slow, a client request may be served by another server holding a
replica. The reads in this paradigm are timeline-consistent, implying that requests
for newly added data are served by the primary RegionServers and replicas are
updated periodically. Similarly, Accumulo offers data center replication with even-
tual consistency8. Cassandra offers rapid read protection9 through data replication
across nodes and the concept of eager retries. In Cassandra, the nodes exchange
states within the cluster through the gossip protocol, so the cluster knows if a node
is down. When a node is being slow, the system would resend the user request to
replica nodes, before the query times out.

With respect to faster writes, HBase has implemented a multithreaded method
for writing multiple WALs (write-ahead logs) on a given RegionServer, to increase
write throughput 10. In addition, HBase has adopted Accumulo’s cell level access
control to increase security11. Finally, HBase12 and Cassandra13 have proposed
novel, hybrid compaction methods to reduce compaction time and improve read
efficiency.

4. How to select the right one. Out of the 3Vs of Big Data (i.e., Volume,
Velocity and Variety), velocity and variety are the most requested ones for NoSQL
solutions rather than volume. It is known that 90% of web based companies will
likely never rise to the volume levels implied by NOSQL (please see Figure 8). When
coming to the selection of a NoSQL solution, the good thing is that there are several
types of Big Data databases to pick from. The bad news, however, is that there is
no one type that does everything the best.

Stefan Edlich [13] compiled six groups of aspects/questions for those who are
about to leverage or migrate to a NoSQL solution. However, we describe the main
elements in choosing the proper NoSQL datastore in three classes as follows:

• Data Model and access pattern. First of all, the data model is required to
be identified. This cuts the target domain down to one of the classes that we
described earlier in this paper. If the data is strongly relational and has some

5https://blogs.apache.org/hbase/entry/start_of_a_new_era
6http://hortonworks.com/blog/apache-accumulo-1-7-0-released/
7https://issues.apache.org/jira/browse/HBASE-10070
8https://issues.apache.org/jira/browse/ACCUMULO-378
9http://digbigdata.com/apache-cassandra-2-features/
10https://issues.apache.org/jira/browse/HBASE-8755
11https://issues.apache.org/jira/browse/HBASE-6222
12https://issues.apache.org/jira/browse/HBASE-7667
13http://www.datastax.com/wp-content/uploads/2013/09/WP-DataStax-WhatsNewC2.0.pdf

https://blogs.apache.org/hbase/entry/start_of_a_new_era
http://hortonworks.com/blog/apache-accumulo-1-7-0-released/
https://issues.apache.org/jira/browse/HBASE-10070
https://issues.apache.org/jira/browse/ACCUMULO-378
http://digbigdata.com/apache-cassandra-2-features/
https://issues.apache.org/jira/browse/HBASE-8755
https://issues.apache.org/jira/browse/HBASE-6222
https://issues.apache.org/jira/browse/HBASE-7667
http://www.datastax.com/wp-content/uploads/2013/09/WP-DataStax-WhatsNewC2.0.pdf

208 HAMZEH KHAZAEI ET AL.

characteristics of big data then NewSQL solutions14 with horizontal scalability
are the right solutions to choose which is out of the scope of this paper. Col-
umn oriented, document-like, graph, object, multi-values, JSON and BLOBS
are among data types that can be handled with one of the four groups of
NoSQL solutions that we investigated in this paper. Then some data-related
features such as volume, complexity, schema flexibility, durability and data
access pattern are taken into account to further narrow the candidates. The
access pattern including distribution of read/write and random vs sequential
access needs a careful consideration. Figure 8 shows the comparison between
NoSQL solutions in terms of data complexity and size.

Figure 8. NoSQL solutions; complexity vs size.

• Query Requirements. Next, the required query capabilities should be iden-
tified; is SQL preferred or is LINQ15 a better fit? Is MapReduce appropriate
or do we need higher level query or script languages? What is the signif-
icance of Ad-Hoc queries, secondary indexes, full text search, aggregations,
views or column oriented functions in our business? For instance, get, put
and delete functions are best supported by key-value systems. Aggregation
becomes much easier while using column-oriented systems rather than the
conventional row oriented databases. The former use tables but do not have
joins. Mapping data from object-oriented software becomes easy using a Doc-
ument oriented NoSQL database such as XML or JSON as they use structured
document formats.

• Non-functional properties. Large number of concerns and features fall
into this category, chief among them is performance. Usually performance
translates into latency (read, write, modify or insert) and throughput. Per-
formance is a non-functional property that depends on other non-functional

14MySQL, Postgres, Percona provides distributed solutions for relational data.
15LINQ (Language Integrated Query) is a uniform query syntax in C# and VB.NET used to

save and retrieve data from different sources. It is integrated in C# and VB.

HOW DO I CHOOSE THE RIGHT NOSQL SOLUTION? 209

properties including, partitioning, replication (synchronous vs asynchronous),
horizontal scalability, load balancing, auto-scalability, consistency technique
(e.g., ACID, BASE or adjustable consistency), CAP trade-off (i.e., the ability
to tune CA, CP and AP) and concurrency mechanisms (e.g., locks, MVCC,
ACID or None). The way all these properties are designed and implemented
in a solution has direct impact on the overall performance. Other impor-
tant non-functional factors include elasticity, DB simplicity (i.e., installation,
configuration, upgrade, maintenance and development), security (i.e., authen-
tication, authorization, validity), license model, vendor reliability, community
support and total cost of ownership (e.g., license cost, scaling cost, sysadmin
cost, operational cost, safety, backup and restore costs, disaster management
and monitoring cost). Implementation language helps to determine how fast
a database will process. Typically NoSQL databases written in low level lan-
guages such as C/C++ and Erlang will be the fastest. On the other hand,
those written in higher level languages such as Java make customization easier.
We have compiled such non-functional capabilities for the selected solutions
in this paper in Tables 1, 2, 3 and 4.

After all this systematic comparison and contrast, a real and independent per-
formance evaluation is required to make sure the final candidate(s) fits our needs.
Database vendors usually measure productivity of their solutions with custom hard-
ware and software settings designed to demonstrate the advantages of their solu-
tions. Experiments done by others might also not fulfill one’s particular require-
ments; everyone has their own specific workload and access patterns. Therefore,
any potential user is advised to conduct an independent and unbiased experiment
to determine whether the final candidate is the real fit. We suggest users to lever-
age YCSB [12] that is the de facto standard for performance evaluation of NoSQL
solutions. YCSB has the built-in implementation of a large number of solutions
and can generate various types of workloads. In section 5, we demonstrate how to
implement new interfaces for new or unimplemented solutions and also show how
to modify the existing ones to work with new version of a solution. Moreover, we
show how to customize workloads to imitate the real workload in the user business.

5. Performance evaluation. Benchmarking is widely used for evaluating com-
puter systems, and benchmarks exist for a variety of levels of abstraction, from the
CPU, to the database software, to complete enterprise systems. A few efforts in the
area of big data benchmarks emerged, such as YCSB [12], PigMix [45], CALDA [31]
and GraySort [17]. While some are focused on one or a subset of components and
tasks typical for big data systems, others are based on specific map-reduce-style sys-
tems. Rabl et al. [33] presented “BigBench” an end-to-end big data benchmark that
includes a data model, synthetic data generator and workload description. Among
all, we choose YCSB to deal with performance evaluation of selected NoSQL data-
stores. YCSB has a plugin-based architecture and can be extended or customized
easily.

As we mentioned in section 4, the approach in this paper is not to compare a
subset of solutions under a pre-defined set of conditions; rather we describe how
to leverage, customize and extend YCSB to do the performance analysis in your
environment and under your specific workload. Figure 9 shows the high level archi-
tecture of YCSB.

210 HAMZEH KHAZAEI ET AL.

Figure 9. YCSB Client Architecture [12].

Our own experience with selecting a NoSQL solution was in the context of our
Connected Vehicles and Smart Transportation16 project [42]. For this project, we
needed a NoSQL solution to act as a warehouse and host various types of traffic
data. We were also in need of very efficient write operations under heavy load.
Using a systematic approach, similar to what presented in this paper, HBase was
selected as the first candidate. Then, we needed to examine the performance of
HBase in our environment. So, we set up a cluster and tuned it according to our
needs on SAVI cloud [35]. Next, we tried YCSB to examine the datastore, but
the driver was not working properly. We modified the HBase driver to work with
the specific version that we were interested, and then we introduced a heavy write
workload17 based on the YCSB core workload to imitate our data ingestion and
access pattern. Thanks to acceptable performance by HBase for our project, we
selected it as the final solution for the warehouse.

This experiment motivated us to do the research presented in this work and make
it available for other users. Our edition of YCSB (i.e., ASRL-YCSB) contains all
our development, fully commented, and is publicly available18.

We have examined other NoSQL datastores discussed in this paper including
Redis, Voldemort, Memcached, MongoDB, CouchDB, RavenDB, OrientDB, Titan,
Cassandra and Accumulo to verify the YCSB compatibility against the latest version
of these datastores. These experiments have been done with minimum configura-
tion and under the default deployment that makes the results disqualified for any
comparison. Due to the popularity of Neo4J and the lack of its support in YCSB,
we developed a new driver for Neo4J. ASRL-YCSB repository19 contains the tested
drivers for latest versions20 of the above-mentioned datastores.

5.1. Benchmark configuration. We leverage SAVI cloud [35], which is an Open-
Stack-based academic and experimental testbed in Canada, for conducting the per-
formance evaluation. Table 5 shows the specification of machines that we used for
the experiment.

16http://cvst.ca
17We refer to this workload as workloadg.
18ASRL-YCSB can be obtained from here: https://github.com/ceraslabs/ASRL-YCSB.
19https://github.com/ceraslabs/ASRL-YCSB
20The versions are the latest as of July 2015.

http://cvst.ca
https://github.com/ceraslabs/ASRL-YCSB
https://github.com/ceraslabs/ASRL-YCSB

HOW DO I CHOOSE THE RIGHT NOSQL SOLUTION? 211

Table 5. Virtual Machines (VM) specifications.

Name Extra Large (Xlarge) Large Medium Small

vCPU 8 4 2 1

Disk (GB) 160 80 40 20

RAM (GB) 16 8 4 2

Table 6 shows the specifications of our environment.

Table 6. Configuration parameters in performance evaluation.

Description YCSB Client HBase Neo4J

VM flavor xlarge xlarge All flavors

No. of VMs 1 4 1

Version Yahoo YCSB 2010 1.0.0 2.2.3

OS Ubuntu 14.04 64B Ubuntu 14.04 64B Ubuntu 14.04 64B

5.2. Results. In this section, we present the results that we obtained under our
conditions for HBase. We also present the result of Neo4J to test the new developed
driver under a highly stressed environment. Table 7 describes the workloads that we
used for the performance evaluation. We added workload G (i.e., “workloadg”) to
examine HBase cluster under extensive insert and seldom reads. We used synthetic
data provided by YCSB. The data size (i.e., each record) is 1 KB comprising of 10
fields, each of which 100 bytes and 24 bytes for the key. For each “read” operation,
one record will be retrieved using a random key. The “insert” command is hashed
and not ordered. The way the YCSB client does the “scan” is that it will pick a
start key, and then request a number of records; this works fine even for hashed
insertion. By default, the scan length size for each call is a uniformly random
number between 1 and 100 records. Requests (i.e. operations) are distributed
based on Zipfian distributions. By default, the YCSB client inserts 1000 records
into datastore during the “load” phase and then will do 1000 operations against
the datastore during the “run” phase. All these values can be adjusted according
to the target environment. We set load and run size to one million records and
operations respectively. The full specifications of our experiment can be found in
“script” directory as shell scripts21.

Figure 10 and 11 show the read and update latency (or response time) for work-
loads A, B and F under different target throughput.

Figure 12 shows the comparison of read-modify-write delay on small, medium,
large and extra large machines. As it can be seen, after upgrading to the next
larger machine, the delay decreases almost linearly with the factor of two, which
is also the factor with which the individual resources of a VM (CPU, memory and
disk) are multiplied by. For other operations, such as read, update and insert the
improvement was almost equivalent.

Figures 13, 14, 15 and 16 show the results for HBase cluster. We ran the exper-
iment using one YCSB client with 40 active threads and the client buffering was

21https://github.com/ceraslabs/ASRL-YCSB/tree/master/scripts

https://github.com/ceraslabs/ASRL-YCSB/tree/master/scripts

212 HAMZEH KHAZAEI ET AL.

Table 7. Workload specifications.

Workloads

Operations A B E F G

Read 0.5 0.95 0 0.5 0.05

Update 0.5 0.05 0 0 0

Scan 0 0 0.95 0 0

Insert 0 0 0.05 0 0.95

Read-Modify-Write 0 0 0 0.5 0

Figure 10. Read latency vs target throughput for Neo4J.

Figure 11. Update latency vs target throughput for Neo4J.

disabled. Figure 16 shows the actual throughput versus target throughput and as
can be seen, the maximum throughput was obtained for workload A.

HOW DO I CHOOSE THE RIGHT NOSQL SOLUTION? 213

Figure 12. Read-Modify-Write delays for four configurations;
running Neo4J on small, medium, large and extra large machine.

Figure 13. Read delay for HBase.

6. Conclusion. Big data has been forcing businesses to leverage new types of
datastores that are more performant, economical, reliable and scalable compared to
traditional RDBMS solutions. Selecting the right datastore is not a trivial task due
to diversity and lack of standard benchmarks in this domain. There exist research
works and experiments to compare and contrast various solutions but none of them
are truly generalizable and applicable for other interested parties. Most of those
works have been done for pre-selected solutions under controlled conditions.

In this paper however, we provided a comprehensive comparison for major classes
in NoSQL world in a systematic manner. For each class, we elaborated on the main
functionalities and characteristics and then introduced 3 to 4 dominant solutions
in that class. We introduced new criteria to redefine traditional classifications of
NoSQLs in a more distinctive manner. Then, as the final step, we demonstrated the
methodology for customizing and configuring YCSB to be repeatable for a different
target environment; new drivers and one new workload have been implemented

214 HAMZEH KHAZAEI ET AL.

Figure 14. Update and Insert delays for HBase.

Figure 15. Scan and Read-Modify-Write delays for HBase.

to materialize the tailoring process. This will help businesses to choose the right
solution(s) for their specific data and environment with high confidence.

Acknowledgments. This research was supported by Fuseforward Solutions Group
Ltd., the Natural Sciences and Engineering Council of Canada (NSERC), and the
Ontario Research Fund for Research Excellence under the Connected Vehicles and
Smart Transportation (CVST) project.

REFERENCES

[1] Y. Abubakar, T. S. Adeyi and I. G. Auta, Performance evaluation of nosql systems using ycsb
in a resource austere environment, Performance Evaluation, 7 (2014), 23–27.

[2] P. Andlinger, 2015, URLhttp://db-engines.com/en/blog_post/43.
[3] Apache Software Foundation, Apache tinkerpop, 2015, URLhttp://tinkerpop.incubator.

apache.org.
[4] Apache Software Foundation, Technical overview of apache couchdb, 2015, URLhttp://wiki.

apache.org/couchdb/TechnicalOverview.

http://dx.doi.org/10.5120/ijais14-451229
http://dx.doi.org/10.5120/ijais14-451229
http://db-engines.com/en/blog_post/43
http://tinkerpop.incubator.apache.org
http://tinkerpop.incubator.apache.org
http://wiki.apache.org/couchdb/Technical Overview
http://wiki.apache.org/couchdb/Technical Overview

HOW DO I CHOOSE THE RIGHT NOSQL SOLUTION? 215

Figure 16. Target throughput versus actual throughput for HBase.

[5] ArangoDB GmbH, Arangodb documentation, 2015, URLhttps://www.arangodb.com/

documentation.
[6] Aurelius LLC, Titan architecture overview, 2015, URLhttp://s3.thinkaurelius.com/docs/

titan/0.9.0-M2/arch-overview.html.

[7] Basho Technologies, Inc, Riak docs, 2015, URLhttp://docs.basho.com/riak/latest/
intro-v20.

[8] M. Burrows, The chubby lock service for loosely-coupled distributed systems, in Proceedings of

the 7th symposium on Operating systems design and implementation, USENIX Association,
2006, 335–350.

[9] R. Casado and M. Younas, Emerging trends and technologies in big data processing, Con-
currency and Computation: Practice and Experience, 27 (2015), 2078–2091.

[10] R. Cattell, Scalable sql and nosql data stores, ACM SIGMOD Record , 39 (2010), 12–27.

[11] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,
A. Fikes and R. E. Gruber, Bigtable: A distributed storage system for structured data, ACM

Transactions on Computer Systems (TOCS), 26 (2008), p4.

[12] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan and R. Sears, Benchmarking cloud
serving systems with ycsb, in Proceedings of the 1st ACM symposium on Cloud computing,

ACM, 2010, 143–154.

[13] S. Edlich, A. Friedland, J. Hampe, B. Brauer, M. Brückner, S. Edlich, A. Friedland, J. Hampe,
B. Brauer and M. Brückner, Nosql.

[14] A. Feinberg, Project voldemort: Reliable distributed storage, in Proceedings of the 10th IEEE

International Conference on Data Engineering, 2011.
[15] B. Fitzpatrick, Distributed caching with memcached, Linux journal, 2004 (2004), p5.
[16] S. K. Gajendran, A survey on nosql databases, University of Illinois.

[17] J. Gray, Graysort benchmark, 2015, URLhttp://sortbenchmark.org.
[18] Hibernating Rhinos., Ravendb - the open source nosql database for .NET, 2015, URLhttp:

//ravendb.net/docs/article-page/3.0/csharp/start/getting-started.
[19] Hypertable Inc, Hypertable, 2014, URLhttp://hypertable.org/.

[20] S. IT, Knowledge base of relational and nosql database management systems, 2015, URLhttp:
//db-engines.com.

[21] S. IT, System properties comparison neo4j vs. orientdb vs. titan, 2015, URLhttp://
db-engines.com/en/system/Neo4j.

[22] J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang, M. Wasi-ur Rahman, N. S. Islam,
X. Ouyang, H. Wang, S. Sur et al., Memcached design on high performance rdma capable
interconnects, in Parallel Processing (ICPP), 2011 International Conference on, IEEE, 2011,

743–752.
[23] S. Jouili and V. Vansteenberghe, An empirical comparison of graph databases, in Social

Computing (SocialCom), 2013 International Conference on, 2013, 708–715.

https://www.arangodb.com/documentation
https://www.arangodb.com/documentation
http://s3.thinkaurelius.com/docs/titan/0.9.0-M2/arch-overview.html
http://s3.thinkaurelius.com/docs/titan/0.9.0-M2/arch-overview.html
http://docs.basho.com/riak/latest/intro-v20
http://docs.basho.com/riak/latest/intro-v20
http://dx.doi.org/10.1002/cpe.3398
http://dx.doi.org/10.1145/1978915.1978919
http://dx.doi.org/10.1145/1365815.1365816
http://dx.doi.org/10.1145/1807128.1807152
http://dx.doi.org/10.1145/1807128.1807152
http://sortbenchmark.org
http://ravendb.net/docs/article-page/3.0/csharp/start/getting-started
http://ravendb.net/docs/article-page/3.0/csharp/start/getting-started
http://hypertable.org/
http://db-engines.com
http://db-engines.com
http://db-engines.com/en/system/Neo4j
http://db-engines.com/en/system/Neo4j
http://dx.doi.org/10.1109/ICPP.2011.37
http://dx.doi.org/10.1109/ICPP.2011.37
http://dx.doi.org/10.1109/SocialCom.2013.106

216 HAMZEH KHAZAEI ET AL.

[24] J. Klein, I. Gorton, N. Ernst, P. Donohoe, K. Pham and C. Matser, Performance evaluation of
nosql databases: A case study, in Proceedings of the 1st Workshop on Performance Analysis

of Big Data Systems, PABS ’15, ACM, New York, NY, USA, 2015, 5–10.

[25] LinkedIn, Project voldemort, 2015, URLhttp://www.project-voldemort.com.
[26] R. C. McColl, D. Ediger, J. Poovey, D. Campbell and D. A. Bader, A performance evaluation

of open source graph databases, in Proceedings of the First Workshop on Parallel Program-
ming for Analytics Applications, PPAA ’14, ACM, New York, NY, USA, 2014, 11–18.

[27] MongoDB Inc., Mongodb 3.0 manual, 2015, URLhttp://docs.mongodb.org/manual.

[28] A. Moniruzzaman and S. A. Hossain, Nosql database: New era of databases for big data
analytics-classification, characteristics and comparison, arXiv preprint arXiv:1307.0191.

[29] M. A. Olson, K. Bostic and M. I. Seltzer, Berkeley db., in USENIX Annual Technical Con-

ference, FREENIX Track, 1999, 183–191.
[30] Orient Technologies, Top 10 key advantages for going with orientdb, 2015, URLhttp:

//orientdb.com/why-orientdb/.

[31] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden and M. Stonebraker,
A comparison of approaches to large-scale data analysis, in Proceedings of the 2009 ACM

SIGMOD International Conference on Management of data, ACM, 2009, 165–178.

[32] D. Pritchett, Base: An acid alternative, Queue, 6 (2008), 48–55.
[33] T. Rabl, A. Ghazal, M. Hu, A. Crolotte, F. Raab, M. Poess and H.-A. Jacobsen, Bigbench

specification v0. 1, in Specifying Big Data Benchmarks, Springer, 2014, 164–201.
[34] RedisLabs, Redis, 2015, URLhttp://redis.io/documentation.

[35] SAVI, Smart Applications on Virtual Infrastructure, Cloud platform, 2015, URLhttp://www.

savinetwork.ca.
[36] S. Sivasubramanian, Amazon dynamodb: A seamlessly scalable non-relational database ser-

vice, in Proceedings of the 2012 ACM SIGMOD International Conference on Management

of Data, ACM, 2012, 729–730.
[37] C. Strozzi, Nosql–a relational database management system, 2015, URLhttp://www.strozzi.

it/cgi-bin/CSA/tw7/I/en_US/nosql/HomePage.

[38] Technology, Cypher query language, 2015, URLhttp://neo4j.com/docs/stable/
cypher-query-lang.html.

[39] The Apache Foundation, Apache accumulo, 2015, URLhttp://accumulo.apache.org/.

[40] The Apache Foundation, Welcome to apache cassandra, 2015, URLhttp://cassandra.
apache.org/.

[41] The Apache Foundation, Welcome to apache hbase, 2015, URLhttp://hbase.apache.org/.
[42] A. Tizghadam and A. Leon-Garcia, Connected Vehicles and Smart Transportation - CVST

Platform, 2015, URLhttp://cvst.ca/wp/wp-content/uploads/2015/06/CVST.pdf.

[43] G. Vaish, Getting started with NoSQL, Packt Publishing Ltd, 2013.
[44] vsChart.com, The comparison wiki: Database list, 2015, URLhttp://vschart.com/list/

database/.
[45] P. Wiki, Pig mix benchmark, 2015, URLhttps://cwiki.apache.org/confluence/display/

PIG/PigMix.

Received October 2015; revised December 2015.

E-mail address: hkh@yorku.ca

E-mail address: fokaefs@yorku.ca

E-mail address: zareian@yorku.ca

E-mail address: nbm@yorku.ca

E-mail address: brian.ramprasad@gmail.com

E-mail address: mark@cse.yorku.ca

E-mail address: gaikwadpurwa@gmail.com

E-mail address: mlitoiu@yorku.ca

http://dx.doi.org/10.1145/2694730.2694731
http://dx.doi.org/10.1145/2694730.2694731
http://www.project-voldemort.com
http://dx.doi.org/10.1145/2567634.2567638
http://dx.doi.org/10.1145/2567634.2567638
http://docs.mongodb.org/manual
http://orientdb.com/why-orientdb/
http://orientdb.com/why-orientdb/
http://dx.doi.org/10.1145/1559845.1559865
http://dx.doi.org/10.1145/1394127.1394128
http://redis.io/documentation
http://www.savinetwork.ca
http://www.savinetwork.ca
http://dx.doi.org/10.1145/2213836.2213945
http://dx.doi.org/10.1145/2213836.2213945
http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/HomePage
http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/HomePage
http://neo4j.com/docs/stable/cypher-query-lang.html
http://neo4j.com/docs/stable/cypher-query-lang.html
http://accumulo.apache.org/
http://cassandra.apache.org/
http://cassandra.apache.org/
http://hbase.apache.org/
http://cvst.ca/wp/wp-content/uploads/2015/06/CVST.pdf
http://vschart.com/list/database/
http://vschart.com/list/database/
https://cwiki.apache.org/confluence/display/PIG/PigMix
https://cwiki.apache.org/confluence/display/PIG/PigMix
mailto:hkh@yorku.ca
mailto:fokaefs@yorku.ca
mailto:zareian@yorku.ca
mailto:nbm@yorku.ca
mailto:brian.ramprasad@gmail.com
mailto:mark@cse.yorku.ca
mailto:gaikwadpurwa@gmail.com
mailto:mlitoiu@yorku.ca

	1. Introduction
	2. NoSQL technologies
	2.1. Transactional properties and performance

	3. Data store categories
	3.1. Key-value data stores
	3.2. Document stores
	3.3. Graph databases
	3.4. Wide column stores

	4. How to select the right one
	5. Performance evaluation
	5.1. Benchmark configuration
	5.2. Results

	6. Conclusion
	Acknowledgments
	REFERENCES

