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Abstract: Atopic dermatitis (AD) is a prevalent inflammatory skin condition, primarily 

characterized by intense pruritus and chronic inflammation. Current therapeutic options targeting the 

histamine H4 receptor (H4R) have shown limited efficacy in addressing both pruritus and 

inflammation comprehensively. This study investigates pyridopyrazine derivatives as potential H4R 

antagonists with a focus on their suitability for AD treatment. To evaluate these compounds, we 

applied quantitative structure–activity relationship (QSAR) models and molecular docking 

techniques. A set of 33 pyridopyrazine derivatives was analyzed using principal component 

regression (PCR), multiple linear regression (MLR), and partial least squares (PLS) methodologies. 

Molecular descriptors were computed, and collinearity among descriptors was assessed through 

principal component analysis (PCA). Model performance was evaluated using the root mean square 

error (RMSE) and coefficient of determination (R2) values, providing insight into predictive 

accuracy. The PCR model emerged with strong predictive capabilities, showing an RMSE of 1.017 
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and an R2 of 0.897. Furthermore, molecular docking results indicated potent binding interactions 

with H4R, primarily through hydrophobic and hydrogen-bonding interactions. Notably, compound 

C11 demonstrated the highest binding affinity, underscoring its potential as a valuable candidate for 

anti-inflammatory development. In conclusion, pyridopyrazine derivatives, particularly compound 

C11, exhibit promising anti-inflammatory properties with specific binding efficacy to H4R, 

suggesting potential for advancing AD treatment options. 

Keywords: atopic dermatitis; histamine H4 receptor; QSAR; pyridopyrazine derivatives; 

anaphylactic shock; hypersensitivity; molecular docking 

 

Abbreviations: AD: atopic dermatitis; ASA+: accessible surface area (positive charge); ASA−: 

accessible surface area (negative charge); ASA_P: accessible surface area (polar); ast_violation: 

atom site violation descriptor; H4R: histamine H4 receptor; IC50: inhibitory concentration 50%; IgE: 

immunoglobulin E; MLR: multiple linear regression; pIC50: negative logarithm of IC50; PCA: 

principal component analysis; PCR: principal component regression; PLS: partial least squares; 

QSAR: quantitative structure–activity relationship; R2: coefficient of determination; RMSE: root 

mean square error; rsynth: resonance synthetic descriptor; TH: T-helper (e.g., TH1, TH17, TH22 

cytokines); VAdjEq: Vertex Adjacency Equality Index; vsurf: molecular surface properties 

descriptor; vsurf_CP: VSURF coefficient of polarizability; vsurf_CW4: VSURF hydrophobic 

constant (Cavity 4); vsurf_HL1: VSURF Hydrophilic–Lipophilic Index 1; vsurf_HL2: VSURF 

Hydrophilic–Lipophilic Index 2; weinerPol: Wiener Polarity Index (descriptor of molecular 

branching); XLSTAT: software for statistical analysis; Zagreb: Zagreb Index Descriptor (topological 

descriptor) 

1. Introduction 

Atopic dermatitis (AD) is a common, long-term allergic skin condition affecting individuals of 

all ages. Characterized by pruritic and inflamed skin, AD develops through complex interactions 

between genetic predispositions, immune dysregulation, and environmental factors. The primary 

causes include abnormalities in skin cell development and an overactive immune response, which 

activate specific cytokine pathways [1], such as TH22, TH17/IL-23, and TH1, varying across AD 

subtypes [2–4]. Recent advancements in understanding AD’s pathogenesis have shifted the focus 

from identifying causes to developing effective treatments [3]. Biological therapies targeting specific 

immune pathways have shown promise by addressing mechanisms such as skin barrier defects, skin 

dysbiosis [5], and abnormal immune responses [6,7]. Due to AD’s complex nature and its potential 

impact on overall health [8], accurate diagnosis and targeted therapeutic interventions are essential [9]. 

Pyridopyrazine derivatives display a diverse range of pharmacological activities. Studies have 

shown these compounds exhibit anti-inflammatory effects by modulating specific pathways [10], 

although the mechanisms are complex and can involve both anti-inflammatory and pro-inflammatory 

processes depending on the context [11–13]. Additionally, their antioxidant properties protect cells 

from oxidative stress, showcasing their therapeutic potential. Pyridopyrazines also have 

antimicrobial activity, neurological implications through neurotransmitter system modulation, and 

even anti-cancer effects, suggesting applications in oncology [14–16]. However, the exact pathways 
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through which they influence cancer cells remain under investigation. With cardiovascular effects 

noted in several studies, pyridopyrazine compounds represent a pharmacologically versatile class 

with broad therapeutic implications [17–21]. 

This study investigates pyridopyrazine derivatives as potential antagonists of the histamine H4 

receptor (H4R) for AD treatment. We applied quantitative structure–activity relationship (QSAR) 

analysis and molecular docking to assess their suitability [22–24]. In QSAR analysis, IC50 values 

measure the inhibitory activity of each compound, with values converted to pIC50 to facilitate correlation 

with molecular descriptors. Through statistical models—principal component regression (PCR), multiple 

linear regression (MLR), and partial least squares (PLS)—we analyzed descriptors to understand 

how structural factors influence activity. QSAR aims to streamline structural data analysis and 

pinpoint molecular features critical to activity, though accurately predicting the behavior of new 

compounds remains a significant challenge [25–28]. 

Molecular docking complements QSAR by modeling compound–receptor interactions, 

specifically examining binding modes and affinities with H4R at the active site of protein 7YFD [29–31]. 

Through this dual approach, combining QSAR’s predictive capabilities with docking’s structural 

insights, we aim to identify derivatives with enhanced efficacy as potential AD treatments [32,33]. 

Compound C11 demonstrated a particularly high binding affinity to H4R, highlighting it as a promising 

candidate for anti-inflammatory drug development and advancing targeted AD therapies [34]. 

2. Materials and methods 

2.1. Experimental data 

Ko et al. [35] designed a series of pyridopyrazine compounds to illustrate their potential as a 

treatment for atopic dermatitis (H4R) (Figure 1). The compounds were also evaluated for their 

effectiveness as a histamine H4 receptor antagonist. 

2.2. Molecular descriptors 

Achieving a statistically robust model depends on the efficacy of the descriptors, which are 

based on a systematic and mathematical methodology [36] to describe the variation of activity with 

respect to the molecular structure. The kind of chemical representation and the technique designed to 

compute and predict the correlation within the 33 chemical derivatives and their inhibiting activity 

usually determine the information contained in the descriptors. 

In order to establish a correlation between the inhibitory activity and the chemical structures of 

the investigated compounds, we utilized Python to compute additional molecular descriptors, the 

detailed results of which are presented in Table S1. In order to provide an accurate representation of 

the QSAR models, statistical techniques including PCR, MLR, and PLS were applied in the 

development of the QSAR relationship. 
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Figure 1. 2D molecular representations of the investigated pyridopyrazine derivatives. 
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2.3. Statistical analysis 

In the pursuit of constructing a QSAR model, a subset of 33 chemicals renowned for their 

potent inhibitory activity, as reported in previous studies, was chosen. The XLSTAT program was 

employed to randomly partition the entire set into a test set (7 compounds) for model validation and 

a training set (26 compounds) for model construction. The proposed methodology incorporates PCA 

to assess redundancy and collinearity among the studied descriptors [37–40]. To find a relationship 

between activity and molecular structure, three statistical models (PLS, PCR, and MLR) were 

compared statistically. Once the computations were completed using the 2014 version of the 

XLSTAT program, the selected descriptors were used to create statistical models that relate the 

activity of the chemicals to their chemical structures. The dataset was split into two subsets: a test set 

that was used to evaluate the performance of the derived models and a training set that was used to 

establish the three models. 

2.4. External validation 

The core step in a QSAR investigation is model computation; however, this alone cannot 

guarantee the model’s validity. An external validation procedure is needed to ascertain the model’s 

capacity to predict new compounds. Confirming that the model was not created at random is also 

crucial. For this test, we used the QSAR models that were created to estimate the activities of the 

chemicals in the test set. Although it was not involved in the creation of the QSAR models, the latter 

incorporates compounds from the series of molecules examined in this study. The external ability of 

the QSAR models to forecast the activity of the test set molecules was assessed by computing the R2 

coefficient between the predicted and observed pIC50 values after the test set was included. 

Globarikh and Tropsha [41] stated that determining the result of the R2 test is useful for external 

validation of QSAR models. This explanation states that when the R2 test result is higher than 0.5, 

the model is statistically adequate for prediction and may be applied to additional external data [42]. 

2.5. Molecular docking methodology 

The scoring results from the molecular docking procedure were easier to calculate and publish 

due to the modeling software. ChemDraw (18.2) was used to create molecular structures. The Protein 

Data Bank provided pertinent crystal structures for atopic dermatitis, including the Cryo-EM 

structure of the histamine H4 receptor and the Gq complex that is attached to it (PDB code: 7YFD) 

(https://www.rcsb.org/structure/7YFD). Water-binding ligands and cofactors were eliminated from 

the protein structure in order to improve the structure, and hydrogen atoms were subsequently 

introduced to stabilize it. Active sites were selectively excluded to create fictitious atoms. The 

MMFF94x force field was then used to assign the parameters and charges. The docking module 

made it easier to connect molecular models to the protein surface, and the alpha site search module 

was used to create alpha site spheres. Dock scoring within the program used the London dG scoring 

function, followed by refinement using two independent techniques. Self-turning docks were applied 

to the dock poses, which were selected based on high scores. Using the database browser, the 

docking postures were aligned with the co-crystallized structure’s ligand, and the docking pose’s root 

mean square deviation (RMSD) was calculated. 
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To assess the binding affinity, binding free energy, and formation of hydrogen bonds, 

calculations were performed for the synthesized molecules and the amino acid residues of the 

receptor. The default-docking model identified several forms of interactions, similar to the receptor 

structure’s (native) ligand’s RMSD [43]. 

3. Results and discussion 

3.1. Principal component analysis  

PCA, a qualitative statistical technique, is utilized to reduce dimensionality and de-correlate 

extensive datasets. The resulting variables, referred to as principal components, enable the reduction 

of variables and reduce information redundancy. In this study, PCA was utilized on the 13 

descriptors that characterize the molecular composition of 33 compounds. The resulting 13 principal 

components are shown in Figure 2. 

 

Figure 2. Principal components with their variations. 

Table 1 summarizes each descriptor’s contribution to the principal components F1, F2, and F3. 

Consequently, the descriptors that contribute most to F1 are weinerPol, vsurf_CW4, vsurf_HL1, and 

vsurf_HL2. On the other hand, descriptors like vsurf_CP, VAdjEq, zagreb, and weinerPol contribute 

the most to F2. The three descriptors that contribute most to F3 are rsynth, ASA_P, and ast_violation. 

When the variables are projected onto the plane defined by the first three principal components (F1, 

F2, and F3) and their percentage contributions are analyzed in the two correlation circles depicted in 

Figure 3, these axes collectively explain 73.96% of the variance. This percentage is considered 

sufficient to capture the information conveyed by the dataset. 
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Table 1. Descriptors’ contributions to the primary three principal components F1, F2, and F3. 

 F1 F2 F3 

correlation contribution correlation contribution correlation contribution 

PEOE_VSA_FPNEG 0.692 8.298 −0.037 0.052 0.270 5.836 

weinerPol −0.780 10.556 0.537 11.074 0.127 1.294 

zagreb −0.643 7.176 0.671 17.329 0.100 0.811 

VAdjEq 0.740 9.485 −0.595 13.631 −0.191 2.928 

vsurf_CP −0.633 6.936 −0.585 13.156 −0.075 0.447 

vsurf_CW4 0.812 11.429 0.471 8.537 0.177 2.508 

vsurf_HL1 0.856 12.708 0.477 8.746 0.041 0.133 

vsurf_HL2 0.773 10.349 0.452 7.846 0.042 0.143 

rsynth −0.651 7.346 −0.178 1.223 0.498 19.958 

ASA_P 0.060 0.063 −0.337 4.359 0.684 37.583 

ast_violation −0.604 6.315 0.360 4.973 −0.521 21.789 

ASA+ −0.642 7.137 −0.145 0.813 0.123 1.212 

ASA− −0.356 2.202 0.464 8.262 0.258 5.358 

 

Figure 3. Correlation circles between F1–F2 and F1–F3, the principal compounds. 

After the PCA process, we identified two descriptors, including vsurf_CP, and ASA_P, for 

developing QSAR models. These descriptors were selected from a pool of 13 based on their 

correlation coefficients. Additionally, descriptors with the lowest correlation coefficients, as shown 

in Table 2 correlation matrix, were included. The database was then randomly divided into training 

and test sets using the XLSTAT program. 
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Table 2. Matrix depicting the correlation among various descriptors acquired. 

Variables PEOE_VSA_FPNEG weinerPol zagreb VAdjEq vsurf_CP vsurf_CW4 vsurf_HL1 vsurf_HL2 rsynth ASA_P ast_violation ASA+ ASA− 

PEOE_VSA_FPNEG 1 

weinerPol −0.559 1 

zagreb −0.390 0.866 1 

VAdjEq 0.517 −0.958 −0.896 1 

vsurf_CP −0.356 0.199 0.071 −0.121 1 

vsurf_CW4 0.534 −0.328 −0.191 0.264 −0.766 1 

vsurf_HL1 0.529 −0.401 −0.223 0.320 −0.802 0.940 1 

vsurf_HL2 0.410 −0.354 −0.189 0.278 −0.663 0.851 0.942 1 

rsynth −0.300 0.504 0.276 −0.474 0.497 −0.476 −0.614 −0.518 1 

ASA_P 0.061 −0.127 −0.161 0.094 0.107 0.021 −0.056 −0.039 0.149 1 

ast_violation −0.528 0.579 0.560 −0.544 0.237 −0.403 −0.364 −0.313 0.037 −0.311 1 

ASA+ −0.447 0.345 0.343 −0.408 0.359 −0.589 −0.546 −0.462 0.398 0.055 0.204 1 

ASA− 0.011 0.428 0.493 −0.451 -0.090 −0.137 −0.163 −0.167 0.221 −0.132 0.261 0.142 1 

3.2. Partial least squares 

The quantitative evaluation of the chemicals to enhance the structure–activity relationship was conducted through partial least squares analysis. The 

correlation coefficient (R²), MSE, and RMSE were employed for the assessment and validation of the established model. 

pIC50 = −11.12 + 0.27*weinerPol + 0.10*Zagreb − 7.91*VAdjEq + 20.01*vsurf_HL1 − 8.74*rsynth − 3.38*ast_violationn. 

N = 26; R² = 0.744; MSE = 2.318; RMSE = 1.523. 
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The significance of the chosen descriptors in the developed model is crucial, and their 

representation is visually depicted in Figure 4. 

 

Figure 4. Standardized coefficients in relation to variables within the proposed PLS model. 

The statistical metrics obtained for PLS affirm the reliability and predictive capability of the 

developed model, as delineated in Table 3. Furthermore, the symmetrical distribution of residuals 

around zero, illustrated in Figure 5, indicates the absence of systematic errors in the model. The 

calculated R2 for PLS signifies a close alignment between predicted and observed pIC50 values, 

validating the robustness of the developed model (Figure 6), Table 4. 

3.3. Principal components regression 

The selected descriptors were used in a PCR to enhance the accuracy of forecasting the 

relationship between activity and molecular structure. The resulting equation, along with the 

statistical parameters obtained from the ANOVA table, is presented as follows: 

pIC50 = 11.97 − 705.61*PEOE_VSA_FPNEG − 0.65*weinerPol − 0.27*Zagreb + 

88.48*vsurf_CP − 15.93*vsurf_CW4 − 21.85*vsurf_HL2 − 12.87*rsynth + 4.89*ast_violation. 

N = 26; R² = 0.897; R²adj = 0.826; MSE = 1.033; RMSE = 1.017. 

The results of the analysis of variance are concisely presented in Table 3 of the ANOVA.  

The statistical outcomes derived from the PCR demonstrate high quality and enhanced predictive 

capabilities comparable to PLS. This is substantiated by significantly high values of the R2 (=0.897) and 

R2adj (=0.826), coupled with a minimal MSE of 1.033. The expected pIC50 values correlate well 

with the experimental pIC50, as illustrated in Figure 7. 
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Table 3. ANOVA for PCR model. 

Source DF Sum of squares Mean squares F Pr > F 

Model 9 117.657 13.073 12.650 0.0001 

Error 13 13.435 1.033 
 

Total 22 131.092 
 

 

Figure 5. Residuals vs. observed pIC50. 

 

Figure 6. Experimental against computed pIC50 obtained by the PLS model. 
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Table 4. Observed and expected pIC50 values from PLS, PCR, and MLR models. 

Compounds pIC50 PLS model PCR model MLR model 

Pred (pIC50) Residual Pred (pIC50) Residual Pred (pIC50) Residual 

1 3 3.725 −0.725 1.836 1.164 3.084 −0.084 

2 3 −0.491 0.568 3.047 −0.047 −21.382 24.382 

3 0.077 0.581 −0.514 0.419 −0.342 1.457 −1.380 

4 0.067 2.234 −1.724 1.062 −0.995 2.827 −2.760 

5 0.034 −2.420 2.700 0.628 −0.594 −0.282 0.316 

6 0.51 −0.639 0.879 0.000 3.800 1.446 −0.936 

7 0.28 −0.513 0.693 −0.549 0.829 −2.001 2.281 

8 0.24 2.656 −2.136 1.364 −1.124 0.744 −0.504 

9 0.18 1.863 −1.623 0.000 0.445 1.341 −1.161 

10 0.52 −0.425 0.725 −0.522 1.042 1.416 −0.896 

11 0.24 −0.457 0.587 0.378 −0.138 1.321 −1.081 

12 0.27 8.698 1.302 0.781 −0.511 −0.636 0.906 

13 0.3 1.013 −0.633 −0.155 0.455 −0.533 0.833 

14 0.13 3.480 −0.580 0.000 −1.055 0.203 −0.073 

15 10 1.579 3.221 0.000 3.549 8.270 1.730 

16 0.38 5.957 0.343 1.035 −0.655 1.756 −1.376 

17 0.76 −0.174 0.239 0.000 −4.264 2.560 −1.800 

18 2.9 1.663 −1.233 3.797 −0.897 1.557 1.343 

19 10 1.218 −0.728 9.008 0.992 9.588 0.412 

20 4.8 2.919 −2.867 3.925 0.875 2.593 2.207 

21 4.1 7.113 2.887 0.000 2.597 3.372 0.728 

22 6.3 0.967 −0.905 0.000 8.742 2.410 3.890 

23 1.2 0.530 −0.477 1.517 −0.317 −0.511 1.711 

24 0.065 −40.557 43.557 −0.087 0.152 0.989 −0.924 

25 5.2 −1.733 1.767 5.438 −0.238 4.228 0.972 

26 0.43 −0.584 0.854 0.427 0.003 −0.059 0.489 

27 0.49 −1.420 2.180 0.000 −10.243 0.608 −0.118 

28 0.052 −11.404 21.404 −0.612 0.664 4.535 −4.483 

29 10 1.796 2.304 0.000 14.530 2.228 7.772 

30 0.062 −0.935 2.135 0.000 1.448 1.526 −1.464 

31 0.028 2.740 2.460 0.781 −0.753 1.895 −1.867 

32 0.053 0.325 −0.297 −1.352 1.405 0.606 −0.553 

33 0.027 −6.308 6.335 1.000 −0.973 −0.204 0.231 
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Figure 7. Comparison of experimental and computed pIC50 values acquired through the PCR model. 

A novel QSAR model was created utilizing the MLR technique in order to improve the 

correlation between the set of 8 molecular descriptors and the anticipated activities generated through 

QSAR models created through PLS and PCR techniques. 

3.4. Multiple linear regression  

 

Figure 8. Modeling characterization by the normalized coefficients. 
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Figure 9. Correlation between the observed and the predicted activities. 

Four criteria are considered when applying the MLR method: the Fisher ratio value (F), the root 

RMSE, the R², and the R²adj. The MLR results, including the correlation between observed and 

predicted activities and the standardized coefficients of the descriptors, are shown in Figures 8 and 9. 

Furthermore, the following equation represents the formulated model and the values of the statistical 

parameters: 

pIC50 = 9.33 − 38.48*vsurf_CW4 + 167.69*vsurf_HL1 − 153.98*vsurf_HL2 + 9.40*rsynth − 

1.79E − 7*ASA+ + 1.368E − 7*ASA− − 2.48E − 7*ASA_P. 

N = 26; R² = 0.816; R²adj = 0.735; RMSE = 1.493; F = 10.124. 

When analyzing the coefficient normalization diagram, it becomes clear that the constructed 

model highlights three outstanding descriptors (vsurf_CW4, vsurf_HL1, and vsurf_HL2) that 

correlate strongly with pIC50. The high R² (0.816), the reduced MSE (0.100), and the high statistical 

confidence (F = 10.124) confirm the statistical acceptability of the QSAR model. In addition, the 

achieved p-value of less than 0.05 (Pr < 0.0001) emphasizes the statistical significance of the QSAR 

model equation at a confidence level of over 95%. Figure 9 shows a significant correlation between 

observed and predicted pIC50 values, a consequence of the low MSE value achieved. This 

emphasizes the clear correlation that exists between the values found through experimentation and 

the values that the QSAR model predicts. 

3.5. External validation 

An external validation is performed to verify the validity of the prediction power of the obtained 

QSAR models. The purpose of the external validation test is to evaluate the QSAR models’ ability to 

predict the pIC50 activity levels of the molecules in the test set. A critical criterion for assessing how 

well externally verified models perform in forecasting the activities of molecules unrelated to the 

model’s creation is the R2 test coefficient calculation, which is part of this evaluation. The R2 test 

values achieved for the PLS, PCR, and MLR models are 0.636, 0.802, and 0.722 respectively, all 
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above 0.5. These results verify the robust predictive ability of the QSAR models in estimating pIC50 

values during external validation. 

3.6. Molecular docking 

This study utilized molecular docking to predict interaction types, binding sites, and binding 

affinities of pyridopyrazine derivatives, particularly compound C11, against the histamine H4 

receptor (H4R), which is implicated in inflammatory responses. Molecular docking provided 

valuable insights into binding affinities, with compound C11 showing the lowest binding energy      

at −5.80 kcal/mol, indicating a strong interaction with the H4R protein (7YFD). This binding affinity, 

among the highest in the compound library, supports the potential of C11 as a selective H4R 

antagonist for anti-inflammatory applications in conditions such as atopic dermatitis. 

The results in Table 5 and Figure 10 detail these interactions, showing C11’s significant hydrogen 

bonding with key residues (e.g., Thr 251 and Lys 27) and π-stacking interactions with Thr 219. These 

bonds are particularly relevant as they contribute to stabilizing the receptor–ligand complex. 

However, while the binding energy and interaction specifics suggest a strong affinity, it is essential 

to interpret these findings with caution. Docking studies are predictive, and factors like solubility, 

bioavailability, and off-target interactions in a physiological context need further validation through 

experimental assays. 

Table 5. Interaction table between the compounds and 7YFD protein of H4R inflammatory. 

compounds Binding energy (Kcal/mol) Ligand receptor interaction distance E (kcal/mol) 

1 −5.38 6-ring THR 219 pi-H 4.4 −0.7 

2 −5.21 5-ring THR 219 pi-H 3.31 −0.7 

6-ring THR 219 pi-H 4.38 −0.7 

3 −5.38 5-ring THR 219 pi-H 3.29 −0.8 

6-ring THR 219 pi-H 4.31 −0.8 

4 −5.59 N 24 THR 251 H-acceptor 3.36 −0.6 

5 −5.61 I 35 ARG 31 H-donor 4.19 −0.5 

N 24 THR 251 H-acceptor 3.27 −0.9 

6 −5.42 5-ring THR 219 pi-H 3.29 −0.8 

6-ring THR 219 pi-H 4.37 −0.9 

7 −5.74 F 38 ARG 35 H-acceptor 3.23 −0.7 

8 −5.53 N 36 LYS 27 H-acceptor 2.97 −1.3 

6-ring THR 219 pi-H 4.62 −1.2 

5-ring THR 219 pi-H 3.34 −1.3 

9 −5.45 5-ring THR 219 pi-H 3.29 −0.8 

6-ring THR 219 pi-H 4.3 −0.8 

10 −5.76 5-ring THR 219 pi-H 3.28 −0.8 

Continued on next page 
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compounds Binding energy (Kcal/mol) Ligand receptor interaction distance E (kcal/mol) 

  6-ring THR 219 pi-H 4.29 −0.9 

11 −5.80 CL 34 THR 251 H-donor 3.2 −0.6 

N 23 LYS 27 H-acceptor 3.39 −0.7 

5-ring THR 219 pi-H 4.15 −0.8 

6-ring THR 219 pi-H 4.82 −0.8 

12 −5.75 N 36 SER 253 H-acceptor 3.81 −0.8 

13 −5.64 6-ring THR 219 pi-H 3.98 −0.9 

14 −5.44 6-ring THR 219 pi-H 3.98 −0.9 

15 −5.55 6-ring THR 219 pi-H 4.19 −0.6 

16 −5.67 N 24 THR 251 H-acceptor 3.33 −0.6 

17 −5.56 N 24 ARG 35 H-acceptor 3.26 −4.4 

5-ring THR 219 pi-H 3.8 −1 

18 −5.46 5-ring THR 219 pi-H 3.3 −1 

6-ring THR 219 pi-H 4.43 −1 

19 −5.59 N 28 ARG 35 H-acceptor 3.09 −5.2 

20 −5.6 N 30 ARG 35 H-acceptor 2.97 −5.4 

21 −5.28 5-ring THR 219 pi-H 3.77 −0.6 

22 −5.26 6-ring THR 219 pi-H 4.43 −1.2 

5-ring THR 219 pi-H 3.29 −1.1 

23 −5.59 5-ring THR 219 pi-H 3.3 −0.6 

6-ring THR 219 pi-H 4.3 −0.7 

24 −5.23 N 27 ARG 35 H-acceptor 3.08 −4.8 

5-ring THR 219 pi-H 3.77 −1 

25 −5.48 N 27 THR 33 H-donor 2.94 −1.2 

26 −5.66 6-ring THR 219 pi-H 4.47 −1 

5-ring THR 219 pi-H 3.31 −1 

27 −5.53 6-ring THR 219 pi-H 4.27 −0.7 

28 −5.46 N 17 THR 219 H-acceptor 2.93 24.3 

29 −5.79 N 29 ARG 35 H-acceptor 2.98 −3.9 

30 −5.38 N 24 THR 219 H-acceptor 2.9 −2.7 

31 −5.3 BR 17 THR 251 H-donor 3.55 −0.6 

N 24 LYS 27 H-acceptor 3.34 −1 

5-ring THR 219 pi-H 3.4 −0.6 

6-ring THR 219 pi-H 4.45 −0.6 

32 −5.4 N 26 THR 219 H-acceptor 3.02 −0.7 

33 −5.42 N 26 ARG 35 H-acceptor 3.21 −1 
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Figure 10. 3D docking and 2D of compound C11 and 7YFD protein of H4R inflammatory. 

In terms of structural interaction, the hydrogen bond distances (3.20–4.82 Å) and stabilizing 

energies (−0.6 to −0.8 kcal/mol) reveal that these interactions are consistent with moderate affinity, 

but further in vitro and in vivo testing is needed to confirm the stability and efficacy of C11 in a 

biological system. Additionally, the alignment of docking data with experimental LD10 values 

supports the model’s reliability, though this correlation should be expanded by testing other 

promising compounds in the pyridopyrazine series to ensure broader applicability. 

Simultaneously, QSAR modeling served as a predictive tool to understand structural 

determinants of activity. By identifying molecular descriptors with significant predictive power, such 

as vsurf_CW4 and weinerPol, the QSAR model allowed for efficient virtual screening of potential 

H4R antagonists, accelerating the identification of compounds with optimal pharmacological 

properties. However, one limitation observed is that QSAR models rely on known chemical libraries, 

and their predictions are limited when applied to novel structural frameworks. Future work should 

aim to refine QSAR models to include diverse compound libraries, allowing for a more robust 

selection process. 

Overall, while molecular docking and QSAR provided strong preliminary data on compound 

C11 and other pyridopyrazine derivatives, these computational methods should be complemented 

with experimental validation. The observed binding affinities and structural insights are promising 

for advancing AD treatments, yet translating these findings into clinical applications will require 

further studies to confirm efficacy, selectivity, and safety profiles in biological systems. 

4. Conclusion 

In this study, we evaluated the inhibitory activity of pyridopyrazine derivatives against the 

histamine H4 receptor (H4R) as a potential treatment for atopic dermatitis. Through QSAR modeling 

and molecular docking, compound C11 emerged as a promising candidate, demonstrating strong 

binding affinity and favorable interactions with H4R. These findings highlight the potential of 

pyridopyrazine derivatives in anti-inflammatory therapy development for AD, with future studies 

needed to confirm their therapeutic viability. 
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