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Abstract: In epidemic prevention efforts, the emergence of new virus strains due to mutations greatly
complicates the prediction and management of epidemics. Most of the current mathematical models
of infectious diseases assume that the mutant strain and the original strain have the same outbreak
time, which is obviously an ideal situation. In order to make the study more practical, we consider
the general situation of outbreaks of mutated strains. At the same time, the optimal control strategy
under different emergence time of mutant strains was proposed by using the optimal control theory and
numerical simulation. This study provides a new theoretical framework for the dual strain competition
model with different outbreak times. The final theoretical results and numerical simulation showed
that although the emergence time of the mutant did not affect the final trend of the epidemic, it would
affect the cost of prevention and control during the control period.
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1. Introduction

Infectious diseases are widespread globally, posing significant challenges to human health and
socioeconomic development [1]. In recent years, severe outbreaks of certain infectious diseases have
garnered global attention. For instance, the severe acute coronavirus disease 2019 (COVID-19) [2]
has transmitted worldwide since its initial detection in December 2019, resulting in a large number of
infections and deaths. As of March 2024, there have been over 774 million people infected with
COVID-19, with above 7 million deaths reported by the World Health Organization (WHO). Apart
from COVID-19, other infectious diseases including malaria, tuberculosis, and HIV/AIDS also pose
significant threats to human health, leading to millions of deaths annually [3]. Additionally, outbreaks
of vaccine-preventable diseases like measles, pertussis, and influenza can result in large-scale
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epidemics, casualties, and economic losses [4].
In recent years, infectious disease models have flourished [5, 6], and the emergence of various

infectious disease vaccines has alleviated the burden of epidemic control. The history of mathematical
epidemiology models can be traced back to Bernoulli [7]. Sean T. McQuade et al. considered social
distancing, testing, contact tracing, and isolation to establish an SEIR model [8], forecasting and
controlling the epidemic in New Jersey and offering constructive suggestions for epidemic prevention.
Zhen Wang and colleagues revealed the extensive impact of SIR and related models on vaccination
and epidemic control [9], Jiaxing Chen et al.
proposed a susceptible-infectious-quarantined-recovered-susceptible (SIQRS) model with quarantine
and studied its evolution on simple complexes [10], Raul Nistal et al. introduced the concept of
custom next-generation matrices for an innovative extended SEIR model (SI(n)R model) and explored
the model’s stability [11], Qun Liu and his team established a stochastic multi-group SIQR epidemic
model with standard incidence, providing sufficient conditions for the disease’s eradication [12].
Besides, there are an abundance of mathematical models for dual-strain diseases in the
literature [13, 14]. Most research on the dynamics of two-virus infections considers cross-immunity
and coinfection, while others describe the roles of competition between two competing strains with
the characteristics such as cross-immunity and incorporate control parameters.

Research on complex networks has significantly propelled the advancement of epidemiology, with
the effectiveness of complex networks in controlling the spread of infectious diseases lying in their
provision of a more detailed and comprehensive perspective for understanding and addressing public
health challenges. In recent years, the study of complex networks in epidemiology has yielded a
wealth of research findings. J. Chen et al. proposed a composite effective degree Markov chain
approach (CEDMA) to describe discrete-time epidemic dynamics on higher-order networks [15].
This study effectively predicts the critical points of continuous phase transitions and confirms the
existence of discontinuous phase transitions in the susceptible-infected-susceptible (SIS) process. Y.
Wu et al. proposed a complex network two-strain epidemic model with imperfect vaccination and
immune decline, verified the global stability of each strain dominance equilibrium point, and further
derived the critical value [16]. Their study is helpful to understand the dynamic behavior of
multi-strain epidemics from the perspective of complex networks. Contrary to most papers, the
evolution of a highly pathogenic and genetically unstable virus through mutations is considered,
representing a less explored but highly relevant direction. For instance, since the outbreak of
COVID-19, various mutant strains including Alpha, Beta, Gamma, and Omicron [17] have emerged,
each with different epidemiological characteristics. How will these mutant strains compete and evolve
compared to the original strain, affecting the trajectory of the epidemic? What impact does the
uncertainty in the timing of mutant strain emergence have on epidemic control? Under the
background of the COVID-19 pandemic, studying the mutation models of the virus is of great
practical significance for epidemic control and prediction.

Current research typically assumes that the variant strain or competing strain and the original strain
emerge simultaneously, and recommendations for epidemic prevention and control are based on this
assumption. This is clearly an idealized scenario, with limited applicability in practice. To make the
research more relevant to real-world situations and address this gap, we considered a more general
scenario in which the variant strain and the original strain do not emerge at the same time. Through
theoretical derivation and numerical simulation, we found that the timing of the emergence of the
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two strains does not affect the final outcome of the epidemic. After discussing the epidemic trends
under different emergence times of the variant strain, we further explored the control measures for the
epidemic based on different emergence times of the variant strain. By establishing an optimal control
system and conducting numerical simulations, we demonstrated the nonlinear relationship between the
emergence time of the variant strain and the cost of control.

The main contributions of this work can be summarized as follows:

• This paper presents a novel research approach for predicting and controlling variant strains. A dual-
strain mutation competition model was established based on the SIR model, and rigorous theoretical
proof of the model was provided.

• Through numerical simulations, the evolutionary process of the two strains under different outbreak
times was illustrated, and the relationship between the outbreak interval and the evolution of the
epidemic was derived. The outbreak interval does not affect the final trend of the epidemic, but it
does influence the speed at which the system reaches a steady state.

• An optimal control system aimed at minimizing epidemic prevention costs was established, and the
relationship between the outbreak interval and control costs was discussed. Through mathematical
derivation and numerical simulation, we found that the relationship between the outbreak interval
and control costs during the control period is not simply linear. The earlier or later the variant strain
appears, the significantly lower the control costs will be.

The structure of the paper is shown below: Section 1 offers an introduction, highlighting the
hazards of infectious diseases and the current research status of infectious disease dynamics.
Section 2 establishes a mathematical model for unpredictable virus mutations, describing the dynamic
process of disease transmission. Section 3 proposes optimal control strategies for COVID-19 and its
mutant strains, constructing a control system. Section 4 validates and evaluates the control strategies
under different outbreak times for mutant strains using numerical simulation methods, considering
control costs. Finally, the last section summarizes the research findings, offers suggestions for
infectious disease prevention, and outlines future research directions.

2. The inter-strain model and basic reproduction number R0

2.1. The co-infection model of inter-strain

The COVID-19 virus undoubtedly represents the most prominent class of infectious diseases
currently. The ongoing COVID-19 pandemic is still a main public health critical situation
significantly disrupting healthcare systems and society as a whole. Since its initial detection at the end
of 2019, the incidence of this lethal disease has continuously increased, with a persistently high global
mortality rate [18]. Although the dynamics and administration of this disease are researched
extensively, healthcare systems still meet multiple barriers to decreasing its threat to human health.

The variation of various viruses has increased the difficulty of controlling disease cases, which is
one of the major challenges. Recently discovered variants serve as typical examples, as they exhibit
high transmissibility in both vaccinated and unvaccinated populations, despite presenting milder
symptoms [19]. Furthermore, other infectious diseases with analogous symptoms pose greater
challenges to the diagnosis of infected individuals, further complicating the task of decreasing the risk
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of COVID-19 for healthcare mechanisms. Influenza, malaria, and tuberculosis are a few instances of
such infectious diseases [20].

It is noteworthy that COVID-19 is also impacting other diseases that threaten human life despite
the current attention to the ongoing pandemic. Based on a study in [21], the prevalence of COVID-
19 has increased the risk of developing drug-resistant strains and has also led to delays in diagnosing
and treating patients. Additionally, it has increased the risk of intra-household transmission during
lockdown periods, thereby impeding the control of infectious diseases. Furthermore, some studies
have indicated that patients concurrently infected with COVID-19 and other infectious diseases have a
higher mortality rate [20].

To investigate the internal competition and evolutionary relationship between two strains of the
same virus, this paper establishes a model for dual-strain cross-infection. The population in the
environment is divided into seven compartments based on epidemiological characteristics: susceptible
individuals (S ), individuals infected with Strain 1 (I1), individuals infected with Strain 2 (I2),
individuals co-infected with Strain 1 and Strain 2 (I12), individuals who have recovered from
Strain 1 (R1), individuals who have recovered from Strain 2 (R2), and individuals who have recovered
from cross-infection (R12), with temporary immunity for the recovered individuals. The total
population at time t can be represented as:

N(t) = S (t) + I1(t) + I2(t) + I12(t) + R1(t) + R2(t) + R12(t), (1)

where N(t) represents the total population at time t, and S (t), I1(t), I2(t), I12(t), R1(t), R2(t), and R12(t)
represent the population in every compartment at time t.

To make the study more realistic, the following assumptions are made:

(1) We assume that susceptible individuals (S ) do not directly transition to the co-infected
compartment (I12) with immune interference effects and biological time differences both strains.
There is a certain order in which susceptible individuals become infected by the two strains. In
other words, susceptible people can be infected with both viruses at the same time, but they will
not be infected with both strains at the same time from a strictly healthy state.

(2) Cross-infected individuals are strictly controlled and do not extensively interact with the
population in the environment. Therefore, in the evolution of the disease, cross-infected
individuals do not infect other compartments.

(3) Population mobility is not considered. Changes in the population in the environment are only
influenced by the birth rate Λ and the death rates d, d1, d2, and d12.

(4) The decay of immunity in recovered individuals is a slow process. Recovered individuals R1,
R2, and R12 do not directly transition back to being infected by the virus but instead return to
the susceptible compartment (S ) as their immunity declines. The immune system’s behavior is
highly individualized [22]. In co-infected individuals, the immune responses to pathogens of two
different strains are closely intertwined, thus eliciting a joint immune reaction. Consequently,
individuals with co-infections would not lose immunity to one strain prior to the other.

(5) An individual who has recovered from infection with one strain may acquire cross-protection
against other closely related strains [23]. Such cross-protection is not specific; hence, it might
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prevent re-infection by the same or similar strains but may not be sufficient to prevent infection
by different types of strains.

Figure 1. Diagram of System (2). After exposure to the virus, susceptible individuals S
in the environment infected with Strain 1 or Strain 2 result in infected individuals I1 and
I2, respectively. Interaction between infected individuals leads to the formation of a cross-
infected population I12. Each of the three infected populations exhibits distinct treatment
and mortality rates. Recovered individuals enter separate compartments R1, R2, and R12,
respectively. With temporary immunity of recovered people, the rate of immune degradation
varies among the different compartments.

Table 1. Coefficient definitions for System (2).

Parameter Definition
Λ Recruitment rate of susceptible individuals
β1 Transmission probability rate of Strain 1
β2 Transmission probability rate of Strain 2
β12 Transmission probability rate of co-infection
γ1 Recovery rate of Strain 1 infectious individuals
γ2 Recovery rate of Strain 2 infectious individuals
γ12 Recovery rate of co-infection individuals
m1 Immunity waning rate of recovered individuals with Strain 1
m2 Immunity waning rate of recovered individuals with Strain 2
m12 Immunity waning rate of co-infection recovered individuals
d Natural death rate of humans
d1 Mortality rate due to Strain 1 infection
d2 Mortality rate due to Strain 2 infection
d12 Mortality rate due to co-infection

Let β1 and β2 represent the infection rates of the two strains toward susceptible individuals per unit
time. The probability of a patient infected with Strain 1 (or Strain 2) being reinfected with Strain 2 (or
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Strain 1) is denoted as β2 (or β1). The probability of susceptible individuals coming into contact
with patients infected with Strain 1 and Strain 2 is given by I1/N and I2/N, respectively. Therefore,
the incremental number of new infections for Strain 1 and Strain 2 at time t, denoted as ∆I1 and
∆I2, respectively, can be calculated as β1I1S /N and β2I2S /N. According to the previous assumptions,
susceptible individuals do not directly become cross-infected, but instead become infected with one
strain before becoming infected with the other strain implying the derivation of the cross-infected
population from the population that was initially infected with only one strain. The effective contact
rate between individuals infected with Strain 1 and Strain 2 is I2/N. Similarly, the effective contact rate
between individuals infected with Strain 2 and individuals infected with Strain 1 is I1/N. Consequently,
the incremental number of cross-infected individuals at time t, denoted as ∆I12, is provided by (β1 +

β2)I1I2/N. Parameter definitions for System (2) are presented in Table 1, and the flowchart is explained
in Figure 1.

Then the dynamic model for the dual-strain system can be established as follows:

dS
dt
= −

1
N
β1I1S −

1
N
β2I2S + m1R1 + m2R2 + m12R12 + Λ − dS ,

dI1

dt
=

1
N
β1I1S −

1
N
β2I1I2 − (γ1 + d + d1) I1,

dI2

dt
=

1
N
β2I2S −

1
N
β1I1I2 − (γ2 + d + d2) I2,

dI12

dt
=

1
N

( β1 + β2) I1I2 − ( γ12 + d + d12) I12,

dR1

dt
= γ1I1 − (m1 + d) R1,

dR2

dt
= γ2I2 − (m2 + d) R2,

dR12

dt
= γ12I12 − (m12 + d) R12.

(2)

The initial conditions satisfy the following inequalities:

S ≥ 0, I1 ≥ 0, I2 ≥ 0, I12 ≥ 0,R1 ≥ 0,R2 ≥ 0,R12 ≥ 0. (3)

For the System (2) with non-negative initial values, its solutions are non-negative and bounded. The
proof is straightforward and can be found in [24]. Positivity is great for the existence of biologically
feasible solutions, while boundedness indicates finite solutions. Next, it is proven that the solutions of
System (2) are contained within a bounded area Ω.

Lemma 1. The set Ω =
{
(S , I1, I2, I12, R1, R2, R12) ∈ R7

+ : N ≤ Λ/d
}

is a positively invariant and
attractive set for System (2).

Proof. By summing all the equations in System (2), we acquire

Ṅ = Λ − dN − d1I1 − d2I2 − d12I12 ≤ Λ − dN. (4)

Applying the standard comparison principle [25], we have

N(t) ≤
Λ

d
+

(
N(0) −

Λ

d

)
e−dt. (5)
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If N(0) ≤ Λ/d, then N(t) ≤ Λ/d. Therefore, Ω means a positively invariant set for System (2).
However, when N(0) ≥ Λ/d, the solutions of the model will enter Ω in a finite time, or as t → ∞, we
have N(t)→ Λ/d.

Hence, this region is attractive for all solutions to the system. Therefore, the setΩmeans a positively
invariant and attractive set for the system.

The set Ω means a positively invariant and attractive set for System (2). The model is well-posed in
both epidemiology and mathematics.

2.2. The basic reproduction number R0

The disease-free and endemic equilibrium constitute two critical special points within the field of
epidemiology. The analysis presented in this study commences from an exploration of these two pivotal
equilibria. Obviously, the disease-free equilibrium of System (2) is M0 = (S 0, 0, 0, 0, 0, 0, 0), where
S 0 = Λ/d. The next-generation matrix method [26] is a commonly used approach to calculate the
basic reproduction number, R0. Next, this method will be applied in conjunction with the disease-free
equilibrium M0 to calculate the basic reproduction number of System (2).

Theorem 1. The basic reproduction number is R0 = max {R1,R2}, where R1 = β1/(γ1 + d + d1),
R2 = β2/(γ2 + d + d2).

Proof. Utilizing the next generation matrix method [26], the related next generation matrix is obtained
as

F =



1
N
β1I1S

1
N
β2I2S

1
N

(β1 + β2)I1I2


. (6)

The individual-to-next-generation transition matrix is given by

V =


1
N
β2I1I2 + (γ1 + d + d1)I1

1
N
β1I1I2 + (γ2 + d + d2)I2

(γ12 + d + d12)I12


. (7)

By taking partial derivatives of the row vectors of matrices F and V in terms of I1 and I2, and
replacing the values at the disease-free equilibrium, the matrices F and V are obtained as

F =


1

N0
β1S 0 0 0

0
1

N0
β2S 0 0

0 0 0

 ,V =

γ1 + d + d1 0 0

0 γ2 + d + d2 0
0 0 γ12 + d + d12

 . (8)
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Therefore, we have

FV−1 =


β1S 0

(γ1 + d + d1)N0
0 0

0
β2S 0

(γ2 + d + d2)N0
0

0 0 0

 . (9)

The spectral radius or maximum eigenvalue of FV−1 provides the basic reproduction number as

R0 = max
{

β1S 0

(γ1 + d + d1)N0
,

β2S 0

(γ2 + d + d2)N0

}
. (10)

Upon substituting the values at the disease-free equilibrium, i.e., S 0 = N0, the basic reproduction
number is acquired as

R0 = max
{

β1

γ1 + d + d1
,

β2

γ2 + d + d2

}
. (11)

Let R1 = β1/(γ1 + d + d1) and R2 = β2/(γ2 + d + d2). Hence, the basic reproduction number is
given by R0 = max {R1,R2}.

The basic reproduction number has served as a threshold for determining the existence of
disease-free equilibrium or endemic equilibrium in a system. Then the association between the basic
reproduction number and the steadiness of the disease-free equilibrium will be explored.

Theorem 2. If R0 > 1, the disease-free equilibrium M0 is unstable. If R0 < 1, the disease-free
equilibrium M0 is locally asymptotically steady.

Proof. The Jacobian matrix J(M0) of the system at equilibrium point M0 is given by

J(M0) =



−d −β1 −β2 0 m1 m2 m12

0 β1 − γ1 − d − d1 0 0 0 0 0
0 0 β2 − γ2 − d − d2 0 0 0 0
0 0 0 −γ12 − d − d12 0 0 0
0 γ1 0 0 −m1 − d 0 0
0 0 γ2 0 0 −m2 − d 0
0 0 0 γ12 0 0 −m12 − d


. (12)

The eigenvalues of J(M0) are λ1 = −d, λ2 = (γ1 + d + d1)(R1 − 1), λ3 = (γ2 + d + d2)(R2 − 1), λ4 =

−γ12 − d − d12, λ5 = −m1 − d, λ6 = −m2 − d, and λ12 = −m12 − d. If R0 < 1, that is, R1,R2 < 1, then
λ2, λ3 < 0. According to Lyapunov’s first method [27], it is concluded that the disease-free equilibrium
M0 is locally asymptotically stable. If R0 > 1, the disease-free equilibrium M0 is unstable.

Theorem 3. If R0 < 1, the disease-free equilibrium point M0 is a globally asymptotically stable
equilibrium point.

Proof. We construct the Lyapunov function as

H(S , I1, I2, I12) = I1 + I2 + I12. (13)
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Since I1, I2, I12 > 0, it follows that H(S , I1, I2, I12) > 0, and H(S , I1, I2) = 0 holds if and only if
I1 = I2 = 0.

Next, we prove that dH/dt ≤ 0 :

Ḣ(S , I1, I2, I12) = İ1 + İ2 + İ12

=
1
N
β1I1S +

1
N
β2I2S − (γ1 + d + d1)I1 − (γ2 + d + d2)I2 − (γ12 + d + d12)I12

=
S
N

(γ1 + d + d1)(
β1

γ1 + d + d1
− 1) +

S
N

(γ2 + d + d2)(
β2

γ2 + d + d2
− 1) − (γ12 + d + d12)I12

=
S
N

(γ1 + d + d1)(R1 − 1) +
S
N

(γ2 + d + d2)(R2 − 1) − (γ12 + d + d12)I12

≤ 0,

(14)

where Ḣ = 0 holds if and only if I1 = I2 = 0. Therefore, ifR0 < 1, by LaSalle’s Invariant Principle [28],
it follows that the equilibrium point M0 is globally asymptotically stable in Ω.

Theorem 4. The following conclusions hold at the local equilibrium points of System (2):

(1) The equilibrium point M1 = (S ∗, I∗1, 0, 0, R∗1, 0, 0) exists if and only if R1 > 1 > R2.

(2) The equilibrium point M2 = (S ∗, 0, I∗2, 0, 0, R∗2, 0) exists if and only if R2 > 1 > R1.

Proof. (1) Set α1 = β1I1/N and α2 = β2I2/N. Then, System (2) can be rewritten as

Ṡ = −α1S − α2S + m1R1 + m2R2 + m12R12,

İ1 = α1S − α2I1 − (γ1 + d + d1)I1,

İ2 = α2S − α1I2 − (γ2 + d + d2)I2,

İ12 = α1α2 − (γ12 + d + d12)I12,

Ṙ1 = γ1I1 − (m1 + d)R1,

Ṙ2 = γ2I2 − (m2 + d)R2,

Ṙ12 = γ12I12 − (m12 + d)R12.

(15)

Substitute the equilibrium point M1 into the above equation to get
− α∗1S ∗ + m1R∗1 + Λ − dS ∗ = 0,
α∗1S ∗ − (γ1 + d + d1) = 0,
γ1I∗1 − (m1 + d) = 0.

(16)

Then we obtain 

S ∗ =
m1α

∗
1Λ

q0(q0q1 − α
∗
1m1)

+
Λ

q0
,

I∗1 =
(m1 + d)α∗1Λ
γ1(q0q1 − α

∗
1m1)
,

R∗1 =
α∗1Λ

q0q1 − α
∗
1m1
,

(17)
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where q0 = (γ1 + d + d1)(m1 + d)/γ1, q1 = α
∗
1 + d.

At this point, the total number of individuals in the population is

N∗ = S ∗ + I∗1 + R∗1

=
m1α

∗
1Λ

q0(q0q1 − α
∗
1m1)

+
Λ

q0
+

(m1 + d)α∗1Λ
γ1(q0q1 − α

∗
1m1)

+
α∗1Λ

q0q1 − α
∗
1m1

=
m1α

∗
1Λγ1 + (m1 + d)α∗1Λq1 + α

∗
1Λγ1q1

(q0q1 − α
∗
1m1)q1γ1

+
Λγ1(q0q1 − α

∗
1m1)

q1γ1(q0q1 − α
∗
1m1)

=
Λα∗1γ1q1 + Λα

∗
1(m1 + d)(q1 + m1) + Λγ1(q0q1 − α

∗
1m1)

γ1(q0q1 − α
∗
1m1)

.

(18)

Expressions for S ∗, I∗1,R
∗
1, and N∗ in terms of α∗1 have now been obtained.

Since α∗1 = β1I∗1/N
∗, substituting the values of I∗1 and N∗ yields

α1 =
α∗1Λ(m1 + d)q1β1

α∗1Λγ1q1 + α
∗
1Λ(m1 + d)q1 + α

∗
1Λ(m1 + d)m1 + Λ(q0q1 − α

∗
1m1)
. (19)

Simplifying System (19) yields the following quadratic equation

c2α
∗2
1 + c1α

∗
1 + c0 = 0, (20)

where c2, c1, and c0 are the coefficients of the quadratic, linear, and constant terms of the variable
α∗1, respectively.

c2 = (γ1 + m1 + d)(m1 + d),
c1 = (m1 + d)(γ1 + d + d1 − β1) + γ1(d − m1),
c0 = d(γ1 + d + d1)(m1 + d)(1 − R1).

(21)

It can be seen that c2 > 0, and whenR1 > 1, c0 < 0, i.e., c0c2 < 0. The discriminant of System (21)
is thus △ = c2

1 − 4c0c2 > 0, suggesting that the equation has two solutions. Moreover, c0/c2 < 0,
indicating that the two solutions of System (20) have opposite signs. Thus, when R1 > 1, the
system has a distinct local endemic equilibrium M1 = (S ∗, I∗1, 0, 0,R

∗
1, 0, 0).

(2) The proof for R2 > 1 is similar and equivalent to M2 = (S ∗, 0, I∗2, 0, 0,R
∗
2, 0).

When the basic reproduction number R0 is below 1, the system will eventually reach a disease-free
equilibrium where no infected individuals exist in the environment. However, if a pathogen persists in
the environment, its basic reproduction number must be above 1.

2.3. Bifurcation analysis

Next, we study the bifurcation phenomena of System (2) using the centre manifold theory [29]. For
the sake of clarity, we define (S (t), I1(t), I2(t), I12(t),R1(t),R2(t),R12(t)) = (x1, x2, x3, x4, x5, x6, x7) = x,
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and then System (2) can be expressed as

ẋ1 = −β1ζ1 − ζ2ζ2 + m1x5 + m2x6 + m12x7 + Λ − dx1,

ẋ2 = β1ζ1 − β2ζ3 − (γ1 + d + d1) x2,

ẋ3 = β2ζ2 − β1ζ3 − (γ2 + d + d2) x3,

ẋ4 = (β1 + β2) ζ3 − (γ12 + d + d12) x4,

ẋ5 = γ1x2 − (m1 + d) x5,

ẋ6 = γ2x3 − (m2 + d) x6,

ẋ7 = γ12x4 − (m12 + d) x7,

(22)

where ζ1 = x1x2/
∑7

i=1 xi, ζ2 = x1x3/
∑7

i=1 xi, and ζ3 = x2x3/
∑7

i=1 xi.
The Jacobian matrix of System (2) at the disease-free equilibrium point M0 can be obtained as

System (12). Considering when R0 = R1 = β1/(γ1+d+d1), choose β1 = β
∗
1 as a bifurcation coefficient.

Through solving R1 = 1 for β∗1, β∗1 = β1/(γ1 + d + d1) is obtained. Thus, the Jacobian matrix can be
expressed as

J(M0) =



−d −β∗1 −β2 0 m1 m2 m12

0 0 0 0 0 0 0
0 0 β2 − γ2 − d − d2 0 0 0 0
0 0 0 −γ12 − d − d12 0 0 0
0 γ1 0 0 −m1 − d 0 0
0 0 γ2 0 0 −m2 − d 0
0 0 0 γ12 0 0 −m12 − d


. (23)

It is then obtained that the left eigenvector w and the right eigenvector v of the Jacobian matrix Jβ∗1
are equal, with w = v = [0, β2 − (γ2 + d + d2), (γ12 + d + d12), (m1 + d), (m2 + d), (m12 + d),−d]. To
determine the direction of the bifurcation, the signs of the two bifurcation coefficients A and B will
next be calculated.

A =

7∑
k,i, j=1

νkwiw j
∂2 fk

∂xi∂x j
(E0, β

∗
1) = −β1w2

2(w2 +

7∑
i=2

wi)
1
x∗1
− β2w2

3(w3 +

7∑
i=3

wi)
1
x∗1
,

B =

7∑
k, j=1

νkw j
∂2 fk

∂x j∂βm
(E0, β

∗
1) = β1w2 − β2w1, (m = 1, 2).

(24)

By substituting the specific values of the parameters from Table 2, it is not difficult to obtain that
A < 0 and B > 0. According to Theorem 4.1 in [30], this excludes the probability of a backward
bifurcation atR0 = 1 in System (2), meaning that a stable disease-free equilibrium and a stable endemic
equilibrium cannot coexist simultaneously. Therefore, at the threshold coefficient R1 = 1, a forward
or transcritical bifurcation exists as shown in Figure 2. Consequently, the endemic equilibrium point
is distinct, and an appropriate Lyapunov function can be constructed to certify its global asymptotic
stability [31].
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Table 2. Parameter definitions of System (2) and the control system.
Parameter Definition Value Reference
Λ Recruitment rate of susceptible individuals 1.2 × 104 [32, 33]
β1 Transmission probability rate of Strain 1 0.7598 Assumed
β2 Transmission probability rate of Strain 2 0.5249 [33]
γ1 Recovery rate of Strain 1 infectious individuals 0.3500 [34]
γ2 Recovery rate of Strain 2 infectious individuals 0.13978 [35]
γ12 Recovery rate of co-infection individuals 0.3500 Assumed
m1 Immunity waning rate of recovered individuals with Strain 1 0.0027 [36]
m2 Immunity waning rate of recovered individuals with Strain 2 0.011 [37]
m12 Immunity waning rate of co-infection recovered individuals 0.011 Assumed
d Natural death rate of humans 0.0003516 [33]
d1 Mortality rate because of Strain 1 infection 0.00032 [38]
d2 Mortality rate because of Strain 2 infection 0.008 [39]
d12 Mortality rate because of co-infection 0.002 [30]
A1 Cost of treatment for people infected with Strain 1 1 Assumed
A2 Cost of treatment for people infected with Strain 2 1 Assumed
A3 The cost of treatment of cross-infected persons 1 Assumed
B1 Cost of control action 1 0.5 × 107 Assumed
B2 Cost of control action 2 0.5 × 107 Assumed

Figure 2. Forward bifurcation diagram. It shows that a stable disease-free equilibrium and a
stable endemic equilibrium cannot coexist simultaneously.

3. Control system

Infectious diseases have had a severe impact on the economies, societies, and healthcare systems
of countries worldwide, posing significant challenges to human society and public health. To discuss
the feasibility of achieving complete control of the COVID-19 virus, optimal control methods [24,
27, 32] are employed, and the dynamics are simulated using System (2). Based on the discussion
of the basic reproduction numbers R0,R1,R2 and equilibrium points, the transmission rate (β) and
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the treatment recovery rate (γ) are chosen as control parameters. However, due to the considerable
difficulties associated with implementing control measures for disease fatality rates (d1, d2, d12) and
immune degradation rates (m1,m2,m12) in the field of public health, incorporation of control over these
two parameters is not considered.

Specific optimal control strategies are presented next, and the cost-effectiveness of prevention and
control meathods is analyzed on the basis of the timing of new strain outbreaks.

• Government measures for epidemic control and prevention of infectious diseases: Let u1(t)
represent the reduction factor of the strain transmission rate β, and β(1 − u1(t)) denote the actual
transmission efficiency of the strain under the implementation of control measures. Under the
government’s epidemic prevention and control measures, population mobility is restricted, and
large-scale gatherings are canceled. The promotion of prevention and control measures also leads to
a certain degree of voluntary reduction in population mobility, resulting in a decrease in the useful
contact rate between susceptible and infected individuals.

• Growth in healthcare workers and improvement of medical facilities: Let u2(t) represent the growth
factor of the patient recovery rate γ, and γ(1+u2(t)) denote the actual recovery rate under the situation
of increasing healthcare workers and improving medical facilities. The increased investment in
healthcare allows hospitals to have more resources for the timely treatment of patients.

Figure 3. Control flow diagram. The infection rate of the virus among susceptible individuals
is denoted by β, which, upon the implementation of control measures, is effectively reduced
to (1−u1)β. The recovery rate of infected patients, represented by γ, is increased to (1+u2)γ
through these measures. The controls are designed to restrain the spread of the virus by both
reducing the contact between susceptible individuals and the infected, and by enhancing the
healthcare system’s capacity to treat the disease.

The specific control flow chart is given by Figure 3. Therefore, considering the aforementioned two
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public health methods, the original System (2) is modified into the control mechanism below

dS
dt
= −

1
N

(1 − u1) β1I1S −
1
N

(1 − u1) β2I2S + m1R1 + m2R2 + m12R12 + Λ − dS ,

dI1

dt
=

1
N

(1 − u1) β1I1S −
1
N

(1 − u1) β2I1I2 −
[
γ1 (1 + u2) + d + d1

]
I1,

dI2

dt
=

1
N

(1 − u1) β2I2S −
1
N

(1 − u1) β1I1I2 −
[
γ2 (1 + u2) + d + d2

]
I2,

dI12

dt
=

1
N

(β1 + β2) (1 − u1) I1I2 −
[
γ12 (1 + u2) + d + d12

]
I12,

dR1

dt
= γ1 (1 + u2) I1 − (m1 + d) R1,

dR2

dt
= γ2 (1 + u2) I2 − (m2 + d) R2,

dR12

dt
= γ12 (1 + u2) I12 − (m12 + d) R12.

(25)

Up to this point, some measures have been introduced to intervene in the epidemic trend in
System (2), namely government measures for epidemic control and prevention of infectious diseases,
an increase in healthcare workers, and the improvement of medical facilities, resulting in the optimal
control System (25). The control system builds upon the original framework by incorporating the
impact of epidemic prevention measures on the disease’s trajectory. It integrates control elements as
coefficients within the transmission and recovery rates to mirror the real-time variations in the virus’s
spread and healing rates, with the degree of change directly tied to the strength of the preventive
measures. It becomes clear that achieving a transmission rate of 0 and a recovery rate of 1 signifies
the epitome of epidemic prevention, yet this is often challenging to realize. In practice, the cost of
such measures must be considered. We are faced with the task of balancing the costs against epidemic
management, striving to reduce the cumulative number of infections to the greatest extent possible
while incurring the minimal cost. Next, the control objective function for System (25) will be
constructed.

Let the control time be T0, and the control variables u1 and u2 be bounded and Lebesgue measurable
on the interval [0, 1]. Define the set U = {(u1, u2) | 0 ≤ ui ≤ 1, t ∈ [0,T0] , i = 1, 2}, then the objective
function is represented as

J (u1, u2) =
∫ T0

0

A1I1 + A2I2 + A3I12 +

2∑
i=1

1
2

Biu2
i

 dt, (26)

where Ai (i = 1, 2, 3) stands for the cost incurred by treating infected people by Strain 1, Strain 2, and
cross-infections. Bi (i = 1, 2) represents the cost incurred by population control measures and medical
inputs per unit time. Optimal control aims at minimizing the number of infected people for Strain 1,
Strain 2, and cross-infections while minimizing the control cost. The optimal control variables u∗1 and
u∗2 are sought that satisfy

J
(
u∗1, u

∗
2
)
= min

U
J (u1, u2) , (27)

subject to the controlled System (25). It is easy to verify that the system is compact in the control and
state space and that the objective function is convex. Based on Theorem 4.1 in Chapter 3 of Flemming
and Rishel [40], we can ensure the existence of an optimal control solution for this control system.
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To solve the optimal control Eqs (25)–(27), the Hamiltonian operatorH is defined as

H (I1, I2, I12, u1, u2) = A1I1 + A2I2 + A3I12 +

2∑
i=1

1
2

Biu2
i

+ λ1
dS
dt
+ λ2

dI1

dt
+ λ3

dI2

dt
+ λ4

dI12

dt
+ λ5

dR1

dt
+ λ6

dR2

dt
+ λ7

dR12

dt
,

(28)

where λi (i = 1, 2, ..., 7) are undetermined coefficients. According to Pontryagin’s maximum
principle [41, 42], the optimal solutions u∗1 and u∗2 of System (27) must satisfy ∂H(t, x, u, λ)/∂u = 0.
Setting ∂H/∂ui = 0, (i = 1, 2), we have

∂H

∂u1
= B1u1 +

Sλ1

N
(β1I1 + β2I2) +

I1λ2

N
(β2I2 − β1S ) +

I2λ3

N
(β1I1 − β2I2) −

I1I2λ4

N
(β1 + β2) = 0,

∂H

∂u2
= B2u2 − λ2γ1I1 − λ3γ2I2 − λ4γ12I12 + λ5γ1I1 + λ6γ2I2 + λ7γ12I12 = 0.

(29)

Solving these equations yields

u1 = (λ2 − λ1) β1I1S + (λ3 − λ1) β2I2S +
[
λ4 (β1 + β2) − λ2β2 − λ3β1

]
I1I2

NB1
,

u2 = (λ2 − λ5) γ1I1 + (λ3 − λ6) γ2I2 +
(λ4 − λ7) γ12I12

B2
.

(30)

Then u∗1 and u∗2 are obtained as

u∗1 =max
{

min
{

(λ2 − λ1) β1I1S + (λ3 − λ1) β2I2S +
[
λ4 (β1 + β2) − λ2β2 − λ3β1

]
I1I2

NB1
, 1

}
, 0

}
,

u∗2 =max
{

min
{

(λ2 − λ5) γ1I1 + (λ3 − λ6) γ2I2 +
(λ4 − λ7) γ12I12

B2
, 1

}
, 0

}
.

(31)

According to Pontryagin’s maximum principle [41, 42], the control functions u1(t), u2(t), and the
state variable x(t) of System (27) must satisfy

dx
dt
=
∂H(t, x, u, λ)

∂λ
,

dλ
dt
= −
∂H(t, x, u, λ)

∂x
.

(32)

In System (2), the state variable x(t) represents (S (t), I1(t), I2(t),R1(t),R2(t),R12(t)). Substituting the
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Hamiltonian operator Syetem (28) into Syetem (32), the coefficient λ is obtained as



dλ1

dt
=

N − S
N2 (1 − u1)

[
(λ1 − λ2) β1I1 + (λ1 − λ3) β2I2

]
+ λ1d +

[
(λ2 + λ4) β2 + (λ3 + λ4) β1

] 1
N2 (1 − u1) I1I2,

dλ2

dt
= (λ1 − λ2)

N − I1

N2 (1 − u1) β1S + (λ1 − λ3)
1

N2 (1 − u1) β2I2S +
[
λ2β2 + β1λ3 − (β1 + β2) λ4

]
(1 − u1)I2

+ λ2
[
γ1 (1 + u2) + d + d1

]
− λ5(1 − u1)γ1 − λ2

[
1
N

(1 − u1) (β1 − β2I2) − (γ1 (1 + u2) + d + d1)
]
,

dλ3

dt
= (λ2 − λ1)

1
N2 (1 − u1) β1I1S + (λ1 − λ3)

N − I2

N2 (1 − u1) β2I2S + λ3
[
γ2 (1 + u2) + d + d2

]
− λ6(1 + u2)γ2 +

[
λ2β2 + β1λ3 + (β1 + β2) λ4

]
(1 − u1)I2,

dλ4

dt
= − A3 +

1
N2 (1 − µ1)

[
(λ2 − λ1) β1I1S + (λ3 − λ1) β2I2S + (λ4 (β1 + β2) − λ2β2 − λ3β1) I1I2

]
+ λ4

[
γ12 (1 + u2) + d + d12

]
− λ7γ12 (1 + u2) ,

dλ5

dt
=

1
N2 (1 − µ1)

[
(λ2 − λ1) β1I1S + (λ3 − λ1) β2I2S + (λ4 (β1 + β2) − λ2β2 − λ3β1) I1I2

]
− λ1m1 + λ5(m1 + d),

dλ6

dt
=

1
N2 (1 − µ1)

[
(λ2 − λ1) β1I1S + (λ3 − λ1) β2I2S + (λ4 (β1 + β2) − λ2β2 − λ3β1) I1I2

]
− λ1m1 + λ5(m1 + d),

dλ7

dt
=

1
N2 (1 − µ1)

[
(λ2 − λ1) β1I1S + (λ3 − λ1) β2I2S + (λ4 (β1 + β2) − λ2β2 − λ3β1) I1I2

]
− λ1m12 + λ7(m12 + d).

(33)

In the control System (25), since the state variables do not have terminal values, the boundary
condition at time T0 is

λi(T0) = 0, (i = 1, 2, ..., 7). (34)

Combining Syetems (2), (31), and (33), the optimal control set U that satisfies Syetem (27) is
determined.

In the established optimal control system, two key public health measures have been introduced to
intervene in the development trend of the COVID-19 epidemic. First, u1(t) represents government
measures for epidemic control and prevention of infectious diseases. This includes limiting
population mobility and canceling large-scale gatherings, effectively reducing the effective contact
rate between susceptible and infected individuals. The influence of u1(t) on the transmission rate β is
significant as it directly changes the disease’s capacity of spreading within the population. Second,
u2(t) encompasses measures to increase healthcare workers and improve medical facilities. This
reflects an enhancement in the healthcare system’s capability to manage the pandemic, directly
affecting the recovery rate γ. By growing the value of u2(t), the rate that infected individuals recover
from the disease is elevated, thereby decreasing the number of active infections in the population.
Building upon System (2), System (25) aims to minimize the total number of infections in the
population at the lowest possible social control cost. The objective function J(u1, u2) quantifies the
trade-off between reducing infections and the costs associated with implementing control measures.
Here, Ai represents the cost of treating infections, and Bi represents the social cost per unit time of
population control measures and medical investments. In the process of minimizing J(u1, u2), the
optimal control variables u∗1 and u∗2 are sought to achieve an ideal balance between controlling the
epidemic and maintaining manageable costs. Next, the optimal control solution for Syetem (25) will
be found through numerical simulation, and the different evolutionary trends of the epidemic before
and after optimal control will be analyzed.
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4. Numerical simulations

The evolution of the virus varies depending on the appearance time of the new strain. In this section,
the evolution of two strains under different outbreak times of the new strain is discussed, along with the
evolution after the implementation of control measures. Let Strain 1 represent the novel coronavirus,
and Strain 2 represent the mutated strain of the novel coronavirus. The initial values of Syetems (25)
and Syetem (2) are assumed to be set as S (0) = 106, I1(0) = 10, I2(0) = 10, I12(0) = 0, R1(0) = 0,
R2(0) = 0, and R12(0) = 0. That is, at the beginning of the emergence of the two strains, there
were only ten infected people, and there was no evolution of cross-infection at this time. Considering
the controlled System (25), the adjoint Eq (33), the optimal control set Syetem (31), and the initial
conditions identical to the System (2), the terminal condition is obtained from Syetem (34). The
weight values are set as follows: A1 = A2 = A3 = 1, B1 = B2 = 0.5 × 107. For the balance between
the control variables u1 and u2, which are much smaller than the number of infected individuals, larger
balance coefficients (cost coefficients) Bi are needed, where i = 1, 2 are chosen. The remaining cost
coefficients Ai, where i = 1, 2, 3, are set to 1. The control model is simulated using the backward
difference method, and Table 2 shows all the coefficients taking part in the system. Consequently,
the basic reproduction numbers for the novel coronavirus and the mutated strain can be obtained as
R1 = 2.1667 and R2 = 3.5435, respectively.

4.1. Impact of different outbreak times of the new strain on the bistrain model

In this section, the influence of different outbreak times of the new strain on the evolution of two
strains is investigated using the bistrain cross-infection Model (2). According to epidemiological
theory, in the case of a basic reproduction number below 1, the disease is expected to be controlled in
the population, while a value greater than 1 suggests the potential persistence of the disease. In an
environment where two different strains coexist, with one strain having a basic reproduction number
greater than 1 and the other strain having a number less than 1, the strain with a higher reproduction
number is more likely to persist in the population. However, in certain cases with potential
superinfection dynamics, the replacement of the disease may depend on the outcome of competition
among hosts. Therefore, the dynamics of the model under various outbreak times of the new strain
will be studied.

According to Theorem 3, from an epidemiological perspective, when the basic reproduction number
of a disease is below 1, it will be eliminated from a population. Therefore, when two diseases compete
in a population, regardless of the time interval between the outbreaks of the two strains, the strain with
a threshold quantity less than 1 will be eradicated, while if the threshold quantity is greater than 1, it
allows the invasion of the competing disease. Then the evolution between the two strains under local
equilibrium states (R1 > 1,R2 > 1) of Strain 2 with different outbreak times is investigated.

As shown in Figure 4, the competition between Strain 2 and Strain 1 was simulated within 100 days
after the outbreak of Strain 1 at different time points. When both strains have a basic reproduction
number, R1 and R2, greater than 1, regardless of the time point at which Strain 2 outbreaks, Strain 1
will eventually disappear from the environment while Strain 2 becomes the dominant strain and persists
in the environment in the long term, according to Figure 4(b),(c). With the disappearance of Strain 1,
cross-infection cases also gradually diminish from the environment, as illustrated in Figure 4(d). From
Figure 4(a), it is observed that regardless of the outbreak time of Strain 2, the susceptible population
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in the environment stabilizes at the same level after the disappearance of Strain 1.

(a) Evolution of susceptible populations (S ) (b) Evolution of infection with Strain 1 (I1)

(c) Evolution of infection with Strain 2 (I2) (d) Evolution of cross-infected populations (I12)

Figure 4. Distinct simulations were conducted to demonstrate the relationship between the
time of the newly emerged strain and the values of I1, I2, I12, and S , under the condition
where R1 = 2.1667,R2 = 3.5435.

In summary, in the bistrain cross-infection model (2), the emergence time of Strain 2 does not affect
the evolution outcome of the two strains. Strain 1 will eventually disappear while Strain 2 persists in
the long term. However, the outbreak time of Strain 2 does affect the timing of large-scale epidemics in
the environment. The longer the time interval between the outbreak of Strain 2 and Strain 1, the more
frequent the fluctuations in the susceptible population; the greater the cumulative number of infections
for Strain 1, the higher the peak of its infection count, the fewer fluctuations for Strain 2, and the
smaller the number of cross-infections. This is because the evolution process of the two strains in
the environment is essentially a competition for “resources” (susceptible population). If Strain 1 and
Strain 2 exist separately in the environment, both strains will persist in the environment due to their
basic reproduction numbers being greater than 1. If the two strains outbreak simultaneously, as in the
case of t0 = 0 in Figure 4, Strain 1 will eventually disappear, while Strain 2 will persist in the long
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term. Now, let Strain 1 “develop” in the environment for a certain period of time. In this case, the later
Strain 2 enters the environment, the smaller the competition in the environment, and the higher the
peak of Strain 1’s infection count. On the other hand, the cross-infection cases are influenced by both
the infected population of Strain 1 and Strain 2, as they are generated by the reinfection of individuals
previously infected by either strain. The more infected individuals there are for both strains in the
environment, the greater the number of cross-infections, which aligns with real-world observations.

4.2. The impact of different outbreak times of the novel strain on the controlled system

(a) Evolution of susceptible populations (S ) (b) Evolution of infection with Strain 1 (I1)

(c) Evolution of infection with Strain 2 (I2) (d) Evolution of cross-infected populations (I12)

Figure 5. Distinct simulations were conducted to demonstrate the relationship between the
virulence of the newly emerged strain and the values of I1, I2, I12, and S after the optimal
control, under the condition where R1 = 2.1667,R2 = 3.5435.

After discussing the relationship between the outbreak time of the novel strain and the competition
between the two strains, we now explore the relationship between the controlled System (25), which
aims to minimize costs, and the outbreak time of Strain 2. From Figure 5, under the optimal control
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measures, the controlled System (25) reaches a steady state of local disease equilibrium, where
Strain 1 becomes extinct and Strain 2 persists in the environment in the long term. Under the
objective of minimizing costs, the extinction of Strain 1 is independent of the outbreak time of
Strain 2, as shown in Figure 5(b). In other words, regardless of which day within the 100-day period
Strain 2 outbreaks, Strain 1 will still become extinct despite having a basic reproductive number
greater than 1, as depicted in Figure 5(b). The extinction of Strain 1 is accompanied by the
disappearance of the co-infected population, as according to Figure 5(d). With the implementation of
control measures, a great decrease in the number of cross-infected individuals is shown, dropping
from a peak of 4.6 × 104 to less than 10,000 individuals. In the controlled system, the peak number of
infections caused by Strain 2 is higher compared to the uncontrolled System (2). However, the
infection count of Strain 2 is effectively controlled in the long run, exhibiting a clear stabilization
trend compared to the uncontrolled system, as demonstrated in Figure 5(c). Moreover, as the time
interval between the outbreaks of Strain 2 increases, there is greater fluctuation in the appearance of
susceptible individuals, and it takes longer for the system to approach stability, as shown in
Figure 5(a). Overall, the controlled System (25) effectively mitigates the infectious disease outbreak
compared to the uncontrolled System (2).

4.3. Comparison between the controlled and uncontrolled systems

After implementing control measures, there is a noticeable change in the susceptible population in
the environment compared to before the introduction of control measures, as illustrated in Figures 5(a)
and Figure 4(a). This is due to the strong intensity of controls applied in the early stages, causing
the susceptible population in the environment to rise at a constant natural growth rate until the virus
develops to a point where a downward trend is observed.

The number of infections in the environment under the controlled system is not always lower than
that of the original system. In the case of optimal epidemic control costs, regardless of the timing of the
maximum susceptible population caused by Strain 2, it is always greater than the original System (2),
as shown in Figure 6(a). When Strain 2 outbreaks occur at t0 < 60, the maximum number of infections
caused by Strain 1 in the controlled system is significantly lower than that in the original system.
However, when t0 > 60, the maximum number of Strain 1 infections in the original system is greater
than that in the controlled system, according to Figure 6(b). Figure 6(c) shows that the maximum
number of infections caused by Strain 2 in the controlled system is always greater than that in the
original system. Under the control measures, when t0 < 70, the maximum number of cross-infected
individuals in the controlled system is significantly lower than that in the original system. However,
when t0 > 70, the maximum number of cross-infected individuals is comparable between the controlled
and original systems, as shown in Figure 6(d).

Although the epidemic eventually stabilizes under the control measures, it does not necessarily
mean that the cumulative number of cases in the environment will decrease. When one strain is reduced
due to control measures, the resistance to the development of the other strain in the population is
diminished. If the control measures are not sufficiently strong at this point, it may lead to a large-scale
outbreak of the other strain in the population, resulting in a larger maximum number of infections
compared to the coexistence of both strains. Although the controlled system is not superior to the
original system at every moment, when the controlled System (25) stabilizes, the number of susceptible
individuals in the environment is higher than that in the original System (2), indicating the effectiveness
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of the two epidemic control methods in curbing the outbreak.

(a) The maximum number of susceptible people (S ) at different
outbreak times of Strain 2

(b) The maximum number of people infected by Strain 1 (I1) at
different outbreak times of Strain 2

(c) The maximum number of people infected by Strain 2 (I2) at
different outbreak times of Strain 2

(d) The maximum number of people cross-infected (I12) with
Strain 2 at different outbreak times

Figure 6. Under different outbreak times of Strain 2, the maximum values of the susceptible
population of the control system and the original system, Strain 1 infected population, Strain
2 infected population, and cross-infected population were compared.

4.4. Relationship between control cost and timing of the new strain outbreak

In this section, we will discuss the relationship between the timing of the Strain 2 outbreak and
control costs. Based on our previous discussions, we know that the control objective of the controlled
System (25) is to minimize the cost. So, what is the relationship between the timing of the two strains’
outbreaks and the control cost? As shown in Figure 7, we can observe that when the control duration
is set to 350 days, the lowest cost is achieved when the two strains simultaneously appear or when they
appear separately with a relatively long interval.

When both strains appear simultaneously in the population, the competition between the viruses
is the strongest, and neither strain has fully developed in the environment. At this point, the control
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cost is relatively low. When the two strains appear within a time interval, the infection peaks caused
by the two strains in the environment overlap, which adds pressure to epidemic control. In this case,
the control cost is relatively high. However, when the outbreak of Strain 2 is sufficiently delayed,
and Strain 1 has already been eliminated or is about to be eliminated during the control process, the
pressure on epidemic control targeting a single strain becomes lower, resulting in a natural decrease
in cost.

Figure 7. Relationship between the outbreak time of Strain 2 and the cost of control.
It suggests that the relationship between the intervals of virus outbreaks and the cost of
epidemic prevention is not a simple linear one; there exists an extremum.

In the comprehensive management and control of the COVID-19 pandemic, timely adjustments in
vaccination strategies based on model results are crucial. Prioritizing vaccines against the dominant
strain, particularly in resource-limited scenarios, can significantly reduce infection risks. Moreover,
adjusting the priority order of vaccination according to the predicted transmission trends of strains is a
key strategy in reducing infection rates. Simulation results indicate that implementing control
measures at different time points significantly impacts the trajectory of the epidemic. Therefore,
public health policies should be dynamically adjusted based on actual infection rates and healthcare
resources, such as modifying social distancing and lockdown measures according to the progression
of the epidemic. Additionally, enhancing medical resource allocation and raising public awareness
about epidemic prevention are key to controlling the spread of the disease. Governments and
healthcare institutions should increase investment in medical resources, including increasing the
number of healthcare workers, enhancing treatment facilities, and ensuring adequate supplies of
medical goods and medicines. Promoting the importance of vaccination, proper personal hygiene
practices, and adherence to social distancing guidelines are crucial. Even when the pandemic is under
control, continuous monitoring of virus mutations and infection trends is necessary to adjust strategies
promptly and prevent a resurgence of the epidemic. Long-term monitoring and assessment ensure the
effectiveness of pandemic control measures and reduce the long-term threat to public health.

5. Conclusion

The extensive spread of infectious diseases can lead to significant socio-economic challenges, with
the emergence of variant strains potentially complicating epidemic prevention and control efforts,
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thereby causing a marked increase in both morbidity and mortality rates. This article examines the
effects of unpredictable viral mutations on the model at various points in time, exploring the optimal
control costs and epidemic trends under different outbreak scenarios to address the gaps in existing
research on strains with varying outbreak timings. Our findings indicate that while the timing gap
between two strain outbreaks does not alter the epidemic’s ultimate trajectory, it does affect the cost of
prevention measures during the control phase. The relationship between the interval of strain
outbreaks and control costs is nonlinear, exhibiting a peak. A concentrated outbreak of two strains
somewhat reduces prevention costs due to inter-strain competition; a larger interval between
outbreaks may result in the mutant strain disappearing or causing a minor outbreak due to already
implemented preventive measures against the original strain, thereby lowering costs. Compared to
current dynamic models, this study incorporates various disease transmission-related factors,
including virus mutation, reinfection due to reduced immunity in recovered individuals, population
migration, and cross-infection.

Epidemic development in infectious disease research is influenced by numerous factors. However,
this study only addresses a subset of epidemiological factors, leaving several others for independent
investigation and further exploration, such as the competition and evolution among different types of
infections, relapse and incomplete treatment, and the emergence of resistance. Additionally,
determining many of the model’s parameters discussed here may be challenging, inaccurate, or costly.
Incorporating the uncertainty of these parameters into model development to improve prediction
accuracy and applicability is a subject that merits further detailed exploration.
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