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Abstract: The immune system is meant to protect against invading microbes. Although this system is 

effective against many microbes, some can use molecular mimicry to turn the immune system against 

the host and activate autoimmune responses. The resulting autoimmunity has significant implications 

for public health and healthcare costs. It is well known that regulatory T cells (Tregs) are crucial for 

self-tolerance and that their function is impaired after exposure to self-antigens or antigens with 

molecular mimicry, leading to the activation of autoimmune responses. How molecular mimicry 

disrupts Tregs in this manner remains under debate. This review contributes to the field of the 

pathogenesis of autoimmunity by proposing that purinergic signaling in the lymph nodes, with 

extracellular ATP, ADP, and adenosine as ligands, plays a pivotal role in this process. Repeated or 

high-dose microbial infection causes the release of large amounts of extracellular ATP sufficient to 

reach the threshold of extracellular ATP levels for activating P2X7 purinergic receptors (P2X7Rs) on 

dendritic cells and Tregs. This hampers the ability of Tregs to suppress autoimmune responses. 

Crucially, P2X7Rs are activated at very high extracellular ATP levels, thus only after repeated or high-

dose infection with microbes. Arguably, in contrast to the rapid elimination of microbes with foreign 

antigens, the clearance of invading microbes that employ molecular mimicry requires the activation of 

P2X7Rs at the expense of self-tolerance. Because all processes required to activate autoimmune 

responses occur in secondary lymphoid organs, this article hypothesizes that, contrary to current 

convention, microbes do not need to enter organs to initiate autoimmunity. However, some types of 

microbes can prevent P2X7R-induced Treg disruption by converting extracellular ATP to adenosine, 

mitigating autoimmune responses resulting in chronic diseases with less severe inflammation. The 
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proposed hypothesized mechanism has potential implications for the understanding and treatment of 

autoimmune disorders. 

Keywords: P2X7R; purinergic signaling; extracellular ATP; Tregs; Bregs; self-tolerance; molecular 
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1. Introduction 

Autoimmune disorders have a major impact on the daily lives of patients and their families, as 

well as on public health. With their rapidly increasing prevalence, autoimmune disorders also 

contribute to rising healthcare costs [1]. Therefore, understanding the mechanism by which 

autoimmunity develops is essential and urgently needed [1]. Currently, the development of 

autoimmunity is attributed to a complex interaction of multiple genetic and environmental risk factors, 

including microbial infections [1]. In this review, I will discuss the link between microbes that mimic 

human antigens and autoimmunity. 

The immune system should be the best ally of the host. It successfully protects against many 

microbes when they attempt to invade the body and proliferate in host cells. For example, Newcastle 

disease virus (NDV) can be a ruthless killer in birds [2] but only causes transient inflammation of the 

local mucosa at its entry site and flu-like symptoms in humans (avian pseudopest) [3,4]. However, 

numerous microbes can manipulate the immune system by mimicking host antigens (molecular 

mimicry). These microbes cause the best ally of the host to turn against itself [5–8]. It is no surprise 

that these microbes are strongly related to autoimmune disorders [9]. 

Recently, in the context of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 

pandemic, autoantibodies (antibodies specific for self-antigens) associated with viral infections have 

attracted increasing attention. However, interactions between autoantibodies and microbial infections 

have long been known to occur. The first hypothesis that there was an autoimmune response in the form 

of autoantibodies in patients with syphilis dates back to 1909 [10]. Later, in 1934, researchers found 

brain-specific antibodies (autoantibodies) in rabbits. These autoantibodies were induced by injections of 

a fresh rabbit brain emulsion and an emulsion of brain tissue infected with a vaccine virus [11]. A few 

years later, in 1945, autoantibodies directed against infected liver and normal liver tissue were 

observed in rhesus monkeys vaccinated against yellow fever [12]. Additionally, autoantibodies 

specific for the human heart were found in the majority of patients with streptococcal rheumatic fever 

in 1945 [13]. 

Since then, advances in immunology have shown that autoreactive T cells play a key role in 

autoimmune responses [14,15]. The basic concept is that the immune system manages precursors of 

autoreactive T cells in the thymus (thymocytes) by eliminating the clones with the strongest 

responses (thymic clonal deletion) or by directing them to become regulatory T cells (Tregs) that can 

control the remaining autoreactive T cells [16]. However, it has become clear that molecular mimicry 

can disrupt the control of autoreactive T cells. Microbes that employ molecular mimicry harbor 

antigens with sufficient similarity to the host’s antigens to be recognized as self-antigens. 

There is ample evidence from research in humans and animals and in vitro studies to support the 

role of molecular mimicry in the development of autoimmune disorders [5,17–20]. However, the 
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precise mechanism by which molecular mimicry can cause the immune system to lose its ability to 

promote self-tolerance has not yet been fully clarified and is therefore still debated [1,6,9,21]. This 

review attempts to contribute to the understanding of the mechanism of autoimmune responses by 

proposing a link between microbial molecular mimicry and autoimmune responses. This approach is 

based on the relatively newly understood immunobiological effects of purinergic signaling (see the 

graphical abstract in Figure 1). 

 

Figure 1. Graphical abstract showing how the purinergic receptor P2X7R putatively links 

molecular mimicry with autoimmune responses. Tregs are known to maintain self-tolerance 

by controlling autoreactive lymphocytes, and activation of their P2X7Rs impairs the number 
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and, more importantly, the suppressive function of Tregs. This occurs only at high extracellular 

ATP levels resulting from repeated or high-dose infection with these microbes and allows 

autoreactive T cells and B cells to escape Treg suppression and activate autoimmune responses 

with autoantibody production. Subsequently, these autoreactive immune cells migrate via 

systemic circulation and cause tissue damage in the body, depending on the self-antigens they 

mimic. Therefore, the defense against invading microbes that are sufficiently similar to human 

antigens to be recognized as self-antigens by the human immune system (molecular mimicry) 

requires activation of P2X7Rs on immune cells at the expense of self-tolerance. Source: The 

figure was extensively modified from Hasan D et al. (2022) [22] under the Creative Commons 

Attribution License CC BY 4.0, with permission. 

2. Control of autoimmune responses by Tregs 

In 1955, Jerne postulated that immunoglobulins could react with any antigen except for host 

antigens (self-antigens) because these antibodies are supposed to be eliminated (via clonal selection) [23]. 

Building on this hypothesis, Burnet hypothesized in 1957, using the concept of clonal selection, that it 

is not autoreactive antibodies but rather autoreactive lymphocytes that are eliminated [24,25].  

2.1. Control of autoreactive T cells: Clonal deletion and Treg suppression 

Tregs are known to maintain self-tolerance by controlling autoreactive lymphocytes. They are 

essential for the prevention of autoimmune disorders [26,27]. Currently, the mechanisms of self-tolerance 

and activation of autoimmune responses are known to be complex [16], as illustrated in Figure 2. Although 

autoreactive thymocytes (T cell precursors) with high autoreactive T cell receptor (TCR)-peptide-MHC 

affinity or peptide-MHC density [the major histocompatibility complex (MHC) in mammals corresponds 

to human leukocyte antigen (HLA) in humans] are clonally deleted in the thymus, autoreactive 

thymocytes with intermediate autoreactive TCR-peptide-MHC affinity or peptide-MHC density are 

diverted to Tregs [16] (Figure 2B). However, a substantial proportion of autoreactive thymocytes 

escape from clonal deletion in the thymic cortex and medulla by dodging thymic negative selection 

due to their dual αβ TCR expression [28–31]. Tregs suppress these autoreactive T cells to prevent the 

activation of autoimmune responses (Figure 2C) [16,32–35]. Similar to autoreactive T cells, a 

proportion of autoreactive B cells also escape deletion in the bone marrow [36,37]. This is probably 

due to altered BCR/TLR signaling through coreceptor B cell–activating factor receptor (BAFFR) 

and/or coreceptor CD40 because of the presence of a single-nucleotide polymorphism (C1858T; 

R620W) in protein tyrosine phosphatase nonreceptor type 22 (PTPN22R620W) [36,37]. These 

autoreactive B cells give rise to plasma cells that produce autoantibodies [38,39]. Fortunately, Treg 

suppression is not limited to autoreactive T cells. Additionally, autoreactive B cells and the production 

of autoantibodies—a sensitive indicator of the activation of autoimmune responses [40,41]—are 

controlled by Tregs and by follicular regulatory T cells (Tfrs) [42,43]. 
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Figure 2. Graphical representation of the putative relationships among adequate 

immunogenic immune response, self-tolerance, and autoimmune response. A) T cells and 

B cells develop from nonautoreactive precursors or precursors with low autoreactive TCR-

peptide-MHC affinity or low peptide-MHC density following the classic pathway of 

epitope presentation by antigen-presenting cells (especially DCs), leading to T cell and B 

cell activation. This allows the immune system to rapidly eliminate invading microbes. B) 

Autoreactive T cell precursors with high TCR-peptide-MHC affinity or high peptide-MHC 

density are clonally deleted or diverted to Tregs in the thymus. In addition, autoreactive B 

cell precursors are clonally deleted in the bone marrow. C) However, due to dual TCR 

expression or altered BCR/TLR signaling, a proportion of these autoreactive T cell and B 

cell precursors escape from clonal deletion, and a proportion of autoreactive T cell 

precursors fail to be diverted to Tregs. The damaging activities of these cells are constantly 

suppressed by Tregs. D1) However, this protection mechanism is not as robust as 

protection by means of thymic clonal deletion; certain circumstances (repeated exposure 

or exposure to a high load of antigens) can lead to the activation of the purinergic P2X7Rs 

of Tregs and DCs, followed by the disruption of Treg suppressive function. This enables 

autoreactive T cells to escape Treg suppression—a powerful trigger for the activation of 

autoimmune responses of the adaptive immune system. D2) Some microbes have a special 

trick up their sleeves: They encode proteins that upregulate the expression of the 

ectoenzyme CD39 in infected cells, including immune cells. This decreases the levels of 

extracellular ATP by converting ATP to ADP and adenosine, activating P2Y12Rs and 

AdoRA2As in Tregs and conserving their ability to mitigate autoimmune responses. Green 
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text boxes indicate a state in which autoimmune responses are not activated; red text boxes 

indicate a state in which autoimmune responses are activated; and pink text boxes indicate a 

state in which activated autoimmune responses are mitigated. DCs: dendritic cells; P2X7R: 

purinergic P2X7 receptor; P2Y12R: purinergic P2Y12 receptor; AdoRA2A: adenosine 

receptor A2A; TCR: T cell receptor; Tregs: regulatory T cells; MHC: major histocompatibility 

complex; CD39: ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD 1). 

2.2. The importance of memory Tregs 

Self-antigen-specific Tregs are consistently induced in the thymus [16] and in secondary 

lymphoid organs [44,45]. Notably, T cells need continuous TCR signaling to remain viable. When 

TCR signaling decreases because antigen levels decrease, such as during the contraction phase after 

an immune response, the cells undergo apoptosis. This also applies to Tregs. Self-antigens are 

structural parts of our body. It is obvious that the ability of Tregs to promote self-tolerance and protect 

against autoreactive T cells must have existed from the beginning of life. Because memory Tregs can 

escape from apoptosis during the contraction phase of an immune response, they do not need 

continuous TCR signaling to survive and do not proliferate. Thus, memory Tregs can persist for 

decades in infected peripheral sites or secondary lymphoid organs, ensuring durable maintenance of 

self-tolerance [46–49]. It is therefore essential that a significant proportion of Tregs are memory Tregs. 

2.3. Autoreactivity of Treg TCRs 

It makes sense that to specifically suppress autoreactive T cells, Treg TCRs must be able to 

recognize epitopes of self-antigens and hence must be autoreactive [50,51]. At first glance, reports of 

Tregs specific to microbes (such as Mycobacterium vaccae [52], Leishmania major [53,54], Candida 

albicans [55], Bordetella pertussis [56], and Helicobacter hepaticus [57]) and to alloantigens [58,59] 

seem to challenge the self-reactive nature of Tregs. However, at a closer look, it appears that all these 

microbes [60–67] and alloantigens [68–70] harbor pentamer peptides that have a sufficient degree of 

similarity to human antigens to be recognized as self-antigens by the human immune system (molecular 

mimicry) [71]. This also applies to a report that used a naïve T cell hybridoma and a Treg hybridoma 

from transgenic mice with a very limited TCR repertoire (a single Ea52–68 peptide) and analyzed 

hundreds of TCRs derived from Tregs. That report concluded that there is evidence opposing the 

tendency of Tregs to self-react [72]. However, this finding is under scrutiny and is disputed because 

the reported self-reactivity of the T cell hybridoma and Treg hybridoma may be below the threshold 

of detection [73]. Therefore, it is still reasonable to believe that Tregs are truly autoreactive. 

2.4. Treg tools for maintaining self-tolerance 

Tregs have several tools at their disposal to complete the important task of suppressing 

autoreactive T cells [74]. Tregs can secrete anti-inflammatory cytokines (IL-10, IL-35, and TGF-β) 

that inhibit autoreactive effector T cell function. Tregs can use cytotoxic serine proteases in their 

cytoplasmic granules to destroy autoreactive T cells (leading to apoptosis) by “drilling” a hole through 

the cell membrane using the enzyme perforin and delivering deadly content. In addition, Tregs can 

cause metabolic disruption by depriving autoreactive T cells of IL-2 and by hydrolyzing extracellular 
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ATP to adenosine to suppress autoreactive T cell function. Tregs can also target DCs through the 

binding of their cytotoxic T lymphocyte–associated protein 4 (CTLA-4) to the CD80/CD86 receptor 

on DCs. This induces the production of immunosuppressive indoleamine 2,3-dioxygenase (IDO) by 

DCs. Finally, Tregs can inhibit the maturation and function of DCs through the interaction of 

immunosuppressive LAG-3 molecules on Tregs with membrane-bound MHC class II molecules on 

DCs [74]. It is clear that Treg tools are sufficiently powerful to destroy autoreactive T cells and 

effectively control the activation of autoimmune responses. 

2.5. Regulatory B cells (Bregs) 

In addition to Tregs, Bregs also exist. Bregs differentiate from B cells and/or from immature B 

cells [75,76], and some authors have reported that regulatory Tfh cells in patients with hepatitis B 

infection [77] and Tfrs in ARDS [78] induce the differentiation of Bregs. Tfrs are controlled by 

Tregs [42,75]; thus, the loss of Tregs affects the number and function of Bregs. Bregs contribute to 

immune suppression by producing soluble anti-inflammatory cytokines (IL-10, TGF-β, IL-35, and 

adenosine) [75,79–82]. Bregs express several immunosuppressive surface molecules, such as CD1d, 

programmed cell death protein ligand 1 (PD-L1) [83], Fas ligand (FasL or CD95L) [84], and even T 

cell immunoglobulin and mucin domain 1 (TIM-1), in selected populations of Bregs [85]. Additionally, 

Bregs can induce the expansion of Tregs and the inhibition of Th17 cells [86–88]. Bregs can also 

release cytotoxic serine proteases [granzyme B (GrB)] after cell-to-cell contact and perforin-mediated 

plasma membrane perforation. The anti-inflammatory mechanism of these GrB+ Bregs involves 

inhibiting the proliferation of CD4+ T cells [89,90] and the activation of Th1 and Th17 cells [91]. 

Thus, Tregs and Bregs play crucial roles in maintaining self-tolerance. Because Tregs and Bregs 

produce and release the anti-inflammatory cytokines IL-10, IL-35, TGF-β, and adenosine, the 

proinflammatory activity of innate immune cells [neutrophils, mast cells, macrophages, natural 

killer (NK) cells, etc.] is also suppressed near Tregs and Bregs [92–94]. 

2.6. Treg-mediated protection against autoimmunity is not perfect 

A key idea in self-tolerance research is that the protective effect of Tregs is not as robust as that 

of thymic clonal deletion. Although moderate antigen loads increase the number and suppressive 

function of Tregs [33], specific circumstances (such as repeated self-antigen exposure or high self-

antigen loads) can lead to the escape of autoreactive T cells from normal suppression by Tregs [32–35]. 

This occurs via impairment of the suppressive function of Tregs rather than via reduced Treg 

numbers [32,34,35] (Figure 2D1), which inevitably leads to the activation of autoimmune responses. 

Conveniently, this activation results in the expression of autoantibodies [40,41], which can be 

measured in clinical settings, as illustrated in a recent report on patients with moderate and severe 

traumatic brain injury (TBI) [95]. It is reasonable to assume that in these patients, high systemic levels 

of free self-antigens from damaged brain tissue are sufficient to hamper Treg suppressive function. 

That paper described the upregulation of IgM and IgG autoantibodies in the first week, and this change 

persisted for several years in the majority of patients. These autoantibodies were specific to self-

antigens in brain tissue, such as myelin-associated glycopeptide (MAG), myelin basic protein (MBP), 

paraneoplastic Ma antigen 2 (PNMA2), tight junction protein 1 (TJP1), claudin 5 (CLDN5), zinc finger 

protein 397 (ZNF397), and selectin E (SELE). Additionally, autoantibodies to thyroid-specific thyroid 
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stimulating hormone receptor (TSHR) [95] and autoantibodies to ubiquitous self-antigens, such as collagen 

type V alpha 2 chain (COL5A2), gamma-aminobutyric acid type A receptor subunit beta3 (GABRB3), 

and angiotensin I-converting enzyme (ACE), were observed. Autoantibodies in TBI patients have 

also been reported by other authors [96–98], and some authors have suggested that the presence of 

autoantibodies is associated with worse outcomes and may predict late post-TBI 

neurodegeneration [95,97,98]. A remarkable paper described the association of the presence of 

autoantibodies in the pituitary and hypothalamus with inflammation and persistent male 

hypogonadotropic hypogonadism after TBI [99]. Moreover, autoantibodies have been reported after 

spinal cord injury [100–102], and these autoantibodies are correlated with elevated serum 

proinflammatory cytokine levels [103,104]. 

Overall, extensive (traumatic) tissue damage can induce autoimmune responses with increased 

autoantibody levels, presumably due to a high load of free self-antigens. Some microbes have 

reportedly developed the ability to mimic human self-antigens [71]. This provides them with immune 

camouflage when they enter the human body. In addition, high systemic levels of these antigens may 

also interfere with Treg suppressive function and activate autoimmune responses. 

3. Microbes that exhibit molecular mimicry can regulate Tregs and activate autoimmune 

responses 

Microbes have developed a clever method to evade recognition by our adaptive immune system. 

Although many microbial antigens do not exhibit molecular mimicry, some antigens may exhibit such 

mimicry [71]. Available data suggest that invading microbes (such as viruses, bacteria, and fungi) that 

possess antigenic cross-reactivity with human self-antigens and human autoreactive TCRs and BCRs 

have the potential to disrupt the control of autoreactivity. A paper published in 2001 reported an 

interesting experiment in mice infected with herpes simplex virus type 1 strain KOS (HSV-1 KOS) [105]. 

The cause of corneal damage [herpes stromal keratitis (HSK)] after HSV-1 KOS infection was 

identified as the UL6 peptide of the virus. This protein exhibits molecular mimicry with mouse corneal 

self-antigens. The researchers generated a replication-competent HSV-1 KOS mutant with a single 

amino acid substitution in the UL6 peptide (UL6S309L). Although wild-type (WT) HSV-1 KOS 

infection induced HSK at a specific dose, mutant HSV-1 KOS infection induced HSK only at a 1000-

fold greater dose. These high doses are not typically observed in nature. On day 5, when the virus was 

still present, the histopathology of the damaged cornea in mice infected with mutant and WT HSV-1 

KOS was comparable. By day 10, when the virus was no longer present, the corneal pathology in mice 

infected with the mutant virus was clearly reduced, and the pathology resolved on day 15 in these mice. 

In contrast, the corneal pathology in mice infected with the WT virus became progressively worse, 

presumably due to the activation of autoimmune responses [105]. In addition, researchers have developed 

transgenic mice that generate monoclonal CD4+ T cells that exclusively recognize UL-6 (C1-6 mice) and 

mice that generate CD4+ T cells that exclusively recognize ovalbumin (OVA mice). WT HSV-1 KOS 

infection caused HSK in C1-6 mice but not in OVA mice. Thus, molecular mimicry appears to play a 

crucial role in the development of microbe-induced HSK [105]. 
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3.1. Putative relationships between adequate immunogenic immune response, self-tolerance, and 

autoimmune response 

If invading microbes harbor non-self-antigens (foreign antigens), the microbes are swiftly 

eliminated, and inflammation is limited (Figure 2A). Even if an invading microbe exhibits molecular 

mimicry, it is unlikely that all of its antigens are similar to human antigens (these antigens that differ 

from human antigens are regarded as foreign). A mixture of foreign antigens and antigens with 

molecular mimicry is more likely. Hence, even at low infection doses, these foreign antigens may 

induce a proinflammatory response that clears the pathogen and infected cells (Figure 2A). Presumably, 

this occurs without disturbing Tregs because, at low levels of antigens with molecular mimicry, 

autoreactive T cells remain under Treg suppression (Figure 2C). This is a clever mechanism that stops 

low-dose infection by microbes with molecular mimicry from evading human adaptive immune 

surveillance. 

In contrast, repeated or high-dose infection with microbes harboring antigens that exhibit molecular 

mimicry simulates repeated exposure to self-antigens or exposure to a high load of self-antigens. In this 

case, the suppressive function of Treg is decreased, activating autoimmune responses [32–35] 

characterized by the production of autoantibodies [41,43,75,106–109] (Figures 1 and 2D1). Hence, 

microbes harboring antigens with molecular mimicry cannot be eliminated easily. Autoreactive T cells 

must escape Treg suppression before they can attack the invading pathogen. I propose that this type of 

microbe can only be eliminated at the expense of self-tolerance. 

Remarkably, this hypothesis corresponds with an extraordinary but long-forgotten finding that 

was reported in 1945 [110–113]. In rabbits, 7–14 days after a single injection of rabbit kidney emulsion 

plus Staphylococcus, a low incidence of proteinuria, casts and red cells in the urine, and serum 

autoantibodies to kidney tissue were observed. However, after repeated injections of the emulsion, the 

incidence of urinary changes corresponding to nephritis increased dramatically, reaching 100%. 

Molecular mimicry of vaccine antigens has also been reported [114,115], and the recent pandemic 

provides an example of this concept in medical practice. Reportedly, in 22 healthy individuals who 

received at least two SARS-CoV-2 mRNA–based vaccines, the number of SARS-CoV-2 spike-

specific Tregs in the peripheral blood mononuclear cell population increased. In addition, these 

individuals developed SARS-CoV-2 spike-specific Treg memory cells [116]. Indeed, secondary 

infection can quickly activate memory Tregs and cause a rapid Treg response to prevent tissue damage 

caused by autoimmune responses [46,47]. This observation is consistent with the finding that in many 

patients, autoreactivity (in the form of autoantibodies) was not observed after administration of the SARS-

CoV-2 mRNA vaccine [117]. However, in other patients, autoantibody formation after SARS-CoV-2 

vaccination (including mRNA-based vaccines) was observed [118–121]. In a few patients, this was 

accompanied by severe autoimmune symptoms such as thrombotic thrombocytopenia [119,122] 

or pericarditis [123–125]. In addition, in patients with severe COVID-19, both increased Treg 

numbers [126–129] and reduced Treg numbers [130–134], including reduced SARS-CoV-2-reactive 

Treg numbers [135], have been reported. 

Thus, vaccination with antigens or infection with microbes that exhibit molecular mimicry may 

prevent autoimmune responses in some patients but induce autoimmune responses in other patients. 

The available data suggest that autoimmune responses can be induced by repeated or high-dose 

microbe infection, by a high-dose of vaccine antigens or by vaccination shortly after microbial 

infection. 
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4. Purinergic signaling 

Microbes harboring molecular mimics can evade immunosurveillance at low antigen loads 

and can activate autoimmune responses after repeated exposure to antigens or at high antigen   

loads [9,17–21,136,137]. However, the underlying mechanism is unclear. Recent advances in the 

study of purinergic signaling in the context of immunobiology have made it clear that purinergic 

receptors on immune cells play a pivotal role in the activation of autoimmune responses [138,139]. 

This may partially explain the mechanism of microbe-induced autoimmune responses. 

4.1. Introduction to purinergic signaling 

Adenosine and nucleotide molecules were discovered between 1929 and 1936 [140,141]. In 1939, 

researchers attributed the ability to transport intracellular energy to ATP [142–145]. In 1948 and 1959, 

it was discovered that extracellular ATP functions differently from intracellular ATP, namely through 

intercellular signaling (communication between cells) [146,147], which was later termed purinergic 

signaling. Geoffrey Burnstock was the first to describe purinergic co-transmission in neurons in 1972 [148]. 

Almost 20 years passed before the relevance of purinergic signaling became widely accepted [149,150]. 

The ever-so-important P2X7R (initially named P2Z receptor) was identified and cloned by researchers 

in Geneva, Switzerland [151], and was first reported by researchers at the University of Ferrara, Italy, 

in 1995 [152]. 

Purinergic signaling is indispensable for intercellular signaling in mammals [150,153,154]. A 

total of four adenosine receptors (AdoRs), seven P2X purinergic receptors (P2XRs), and eight P2Y 

purinergic receptors (P2YRs) have been identified [155–159] (Table 1). These receptors are expressed 

in almost every cell in the body. The effect of the activation of purinergic receptors depends, among 

other factors, on the type of receptor activated and the type of cell where the receptor is located [154]. 

For example, P2X7Rs play a key role in the physiological functions of several organs, such as electrical 

signaling in the central and peripheral nervous systems [160,161], surfactant release in the lungs [162–164], 

mucin production in the airways [165], and insulin release in pancreatic islet beta cells [166,167]. This 

paper focuses on the effect of the activation of purinergic signaling in immune cells, particularly the 

effect of the activation of P2X7Rs in the immune system. 

4.2. Purinergic signaling in immunity 

Purinergic signaling, which involves all related ligands (ATP, ADP, UTP, adenosine, etc.) and 

all related receptors except P2X6Rs, is crucial for the regulation of inflammation [22,168–172]. Some 

receptors are involved in proinflammatory responses, some are involved in anti-inflammatory effects, 

and others may be involved in both responses [22,168–172]. For example, the activation of AdoRs by 

adenosine may promote an immune response in some cells; however, in general, it suppresses the 

activation of immune responses (Table 2, rows 1–3). In contrast, P2X7Rs are not involved in anti-

inflammatory responses, and they stand out from other purinergic receptors [22,152,171,172]. 
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Table 1. Purinergic receptors and their ligands. ATP: adenosine triphosphate; ADP: adenosine diphosphate; UTP: uridine triphosphate; 

UDP: uridine diphosphate; AdoR: adenosine receptor; P2XRs and P2YRs: purinergic nucleotide receptors. 

Purinergic receptors and their ligands [155–159] 

Natural ligands Receptors 

Adenosine AdoRA1, AdoRA2A, AdoRA2B, and AdoR3 

ATP P2X1R, P2X2R, P2X3R, P2X4R, P2X5R, P2X7R, and P2Y11R 

ADP P2Y12R 

ADP and ATP (ADP > ATP) P2Y1R and P2Y13R 

UDP, UTP, and ATP (UDP > UTP >> ATP) P2Y6R 

UDP P2Y14R 

UTP and ATP (UTP > ATP) P2Y2R and P2Y4R 

ATP P2X6R molecules are mostly retained in the endoplasmic reticulum. They do not exit the 

endoplasmic reticulum as a homopolymer but do so as a heteropolymer (with P2X2R and/or P2X4R) 

or after enhanced glycosylation-induced improved trafficking of P2X6R homopolymers. 

After exiting the endoplasmic reticulum and becoming inserted into the cell membrane, P2X6R can 

be activated by extracellular ATP. 
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Table 2. Examples of the effects of extracellular adenosine, ATP, and ADP on selected immune cells through three purinergic receptors. 

CGS-21680: Specific AdoRA2A agonist; NECA: 5’-N-ethylcarboxamide adenosine, an agonist of AdoRA2A, AdoRA1, and AdoRA3; 

oATP: periodate-oxidized ATP (P2X7R antagonist); Treg: regulatory T cell; DCs: dendritic cells; AdoR: adenosine receptor; IFN-β: 

interferon beta; FoxP3: Forkhead box P3; CTL: cytotoxic T lymphocyte; Th: T helper cell; Th17: IL-17-secreting T helper cell; CTLA-

4: cytotoxic T lymphocyte-associated protein 4 (CD152); CD39: nucleoside triphosphate diphosphohydrolase 1 (NTPD1); CD73: 5'-

nucleotidase (5'-NT); TCR: T cell receptor; ART2-P2X7 pathway: extracellular NAD+-induced ATP-independent p2X7R activation 

involving ADP-ribosyltransferase 2; STAT-1: signal transducer and activator of transcription 1; GVHD: graft-versus-host disease; WT: 

wildtype. Source: Modified table from Hasan D et al. (2022) [22] and Hasan D et al. (2017) [162] under the Creative Commons 

Attribution License CC BY 4.0, with permission. 

Examples of the effects of extracellular adenosine, ATP, and ADP on select immune cells through the activation of three purinergic receptors (AdoRA2A, P2X7R, and P2Y12R) 

Row number Receptor Ligand [149] Immune cell type or experimental model Results of receptor signaling Reference 

number 

1 AdorA2A CGS-21680 Mouse naïve T cells Promotes differentiation toward CD4+FoxP3+Lag3+ 

Tregs, inhibits Th1 and Th17 differentiation, inhibits 

IL-6 secretion, and increases TGF-β secretion. 

[173] 

2  CGS-21680 and 

NECA 

Mouse CD4+CD25+FoxP3+ Tregs Increases the number of Tregs and increases CTLA-

4 receptor expression. Upregulates expression of the 

ectoenzymes CD39 and CD73, accelerating 

adenosine generation from extracellular ATP. 

[174] 

3  Adenosine Human CD4+CD25+CD127low/−Tregs and 

CD8+ T cells 

Tregs from gastric cancer patients hydrolyze ATP to 

generate adenosine. Adenosine synthesized by Tregs 

promotes apoptosis and suppresses the proliferation 

of CD8+ T cells. Tregs reduce CD8+ T cell activity 

by promoting cAMP synthesis. Tregs inhibit the 

immune function of CD8+ T cells through the 

AdoRA2A pathway. 

[175] 

4 P2X7R Inactivated state in 

the absence of ATP 

Macrophages and P2X7R-transfected 

HEK-293 cells 

P2X7 is a scavenger receptor for apoptotic cells in 

the absence of its ligand ATP. 

[176,177] 

5 P2X7R ATP-release 

channel 

Alveolar epithelial type I cells (AT I cells), 

murine osteoclast cells, murine 

neuroblastoma cells, astrocytic cell line, 

murine astrocytes, and B16 melanoma cells 

Release ATP after mechanical deformation (AT I 

cells), spontaneously (osteoblast cells), after 

activation (neuroblastoma cells, astrocytic cell line), 

and after γ irradiation (melanoma cells). 

[178–183] 

6   Mouse 3T3 fibroblasts P2X7R-mediated ATP secretion is accompanied by 

depletion of cytosolic ATP. 

[184] 

     Continued on next page 
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Examples of the effects of extracellular adenosine, ATP, and ADP on select immune cells through the activation of three purinergic receptors (AdoRA2A, P2X7R, and P2Y12R) 

Row number Receptor Ligand [149] Immune cell type or experimental model Results of receptor signaling Reference 

number 

7   Bone marrow–derived DCs from WT mice 

and Panx1−/− C57BL/6 mice 

Upon stimulation of the P2X7 receptor by ATP, 

Panx-1 contributes to rapid DC motility by 

increasing the permeability of the plasma membrane, 

which results in supplementary ATP release. 

[185] 

8  

 

 

 Murine macrophages and RAW 264.7 

macrophages 

Infection with Leishmania donovani substantially 

increases extracellular release of ATP. 

[186] 

9  

 

 A549 alveolar epithelial cells Infection with human rhinovirus RV-16 increases 

basal extracellular ATP release and ATP release 

after a second stimulation by hypotonic and isotonic 

solutions. 

[187] 

10   Mouse influenza model Influenza infection increases plasma ATP levels 3-

fold and pulmonary ATP levels 5-fold. 

[188] 

11   RAW 264.7 macrophages and L929 

fibroblasts 

Infection with vesicular stomatitis virus (VSV) 

increases extracellular ATP in a time-dependent 

manner. 

[189] 

12 P2X7R ATP, low tonic 

basal activation 

HEK 293 and HELA cells Increases mitochondrial calcium level, membrane 

potential, and cellular ATP levels, and promotes 

serum-independent growth. This process requires an 

intact pore-forming function. 

[190] 

13   In vitro scratch wound assay with HaCat 

cells (human skin keratinocytes) 

Medium hyaluronan fragment (MMW-HA, between 

100 and 300 kD) increases expression of the tight 

junction protein ZO-1 and induces a low activation 

of the P2X7 receptor, resulting in improved closure 

of the wound. This is accompanied by pore 

formation, as shown with Yo-Pro-1 cellular uptake. 

The P2X7R antagonist brilliant blue G (BBG) 

completely inhibits this process. 

[191] 

14   HEK293 and NIH3T3 cells Increases the Ca2+ content of the endoplasmic 

reticulum, activates NFATc1, and protects from 

apoptosis. 

[192] 

15   PC3 cells LNCaP, Kelly, RPMI-8226, 

DU145, and SK-MEL-5 cells 

Drives the expression of nfP2X7, a key mediator of 

cell survival. 

[193] 

16   Human osteoclast-like cells Promotes an increase in extracellular adenosine 

concentrations. 

[194] 

     Continued on next page 
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Examples of the effects of extracellular adenosine, ATP, and ADP on select immune cells through the activation of three purinergic receptors (AdoRA2A, P2X7R, and P2Y12R) 

Row number Receptor Ligand [149] Immune cell type or experimental model Results of receptor signaling Reference 

number 

17   HEK293 cells Initiates anaerobic glycolysis independent of the 

oxygen content. Upregulates glucose transporter 

Glut1 (thus enhancing intracellular glycogen stores). 

Upregulates glycolytic enzymes (PFK, G3PDH, 

PKM2), phosphorylated Akt/PKB, and hypoxia-

inducible factor 1a (HIF-1a) expression. Impedes the 

Krebs cycle independent of oxygen concentrations 

by promoting pyruvate dehydrogenase kinase 1 

(PDHK1) and inhibiting pyruvate dehydrogenase 

(PDH, conversion of pyruvate to acetyl-CoA). 

[195] 

18 P2X7R ATP ≥ 100 µM C57BL/6 mice P2X7 activation inhibits the suppressive potential and 

stability of Tregs and promotes the conversion of Tregs 

to Th17 cells in vivo. In contrast, P2X7R inhibition 

promotes the conversion of CD4+ T cells into Tregs 

after stimulation of their T cell receptors (TCRs). 

[196] 

19   C57BL/6 wild type and P2X7 knockout 

mice 

P2X7 knockout mice show an increase in the number 

of CD90/CD45RBlow FoxP3+ Tregs in the colon 

lamina propria, with prevention of Treg death in 

mesenteric lymph nodes, and these Tregs produce 

more IL-10. Colitis is prevented or reduced in P2X7 

knockout mice. Treg cells lacking the P2X7 receptor 

have higher levels of integrin CD103. ATP 

activation of P2X7R triggers Treg death. 

[197] 

20   C57BL/6 mice, renal ischemia‒reperfusion 

injury 

P2X7R antagonist oATP prior to renal ischemia 

increases renal Foxp3DCD4D Treg infiltration and 

reduces IL-6 and CCL2 levels. 

oATP treatment following injury improves renal 

function, decreases the infiltration of innate and 

adaptive effector cells, increases the renal infiltration 

of Foxp3+CD4+ Tregs, increases tubular cell 

proliferation, and reduces renal fibrosis. 

[198] 

21   C57BL/6 mice P2X7R activation reduces the frequency of Tregs, 

and P2X7R inhibition increases the expansion of 

Tregs. 

[198] 

22     CD4+CD25+FoxP3+ Tregs Facilitates NAD+-induced Treg depletion through 

the ART2-P2X7 pathway. 

[199] 

     Continued on next page 
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Examples of the effects of extracellular adenosine, ATP, and ADP on select immune cells through the activation of three purinergic receptors (AdoRA2A, P2X7R, and P2Y12R) 

Row number Receptor Ligand [149] Immune cell type or experimental model Results of receptor signaling Reference 

number 

23     Humanized mice model GVHD, HaCat 

cell, Jurkat cells (E6-1 clone), and mouse 

DCs 

Increases CD80, CD 86, STAT-1, and P2X7R 

expression; IFN-β release; and T cell expansion. 

Reduces Treg numbers. 

[200] 

24   Humanized mice model GVHD Anti-hP2X7 monoclonal antibodies increase human 

Treg and human NK cell numbers on Day 21 and 

reduce clinical and histological GVHD in the liver 

and lung compared to the control treatment at the 

disease endpoint. 

[201] 

25   LGMDR3 (Limb-girdle muscular 

dystrophy R3) mice with α-sarcoglycan 

gene (SGCA) knockout 

P2X7 antagonist A438079 improves mouse motor 

function and decreases serum creatine kinase levels, 

reduces the percentage of central nuclei, reduces fiber 

size variability, and reduces the extent of local fibrosis 

and inflammation significantly. Flow cytometric 

characterization of muscle inflammatory infiltrates 

revealed significantly decreased numbers of innate 

immune cells and increased numbers of Tregs. 

[202] 

26     Mouse CD4+CD25+FoxP3+ Tregs P2X7R activation facilitates NAD+-induced Treg 

depletion through the ART2-P2X7 pathway. 

[199] 

27     BALB/c mice GVHD model, DCs Activation of P2X7Rs increases CD80, CD 86, 

STAT-1, and P2X7R expression, IFN-β release, and 

effector T cell expansion. Reduces Treg numbers. 

P2X7R blockade in GVHD improves survival. 

[200] 

28     Mouse, human, murine B cells Induces shedding of IgE receptor (CD23) and 

CXCL16. Soluble CD23 sustains growth of B cell 

precursors, promotes B cell and T cell differentiation, 

and drives cytokine release from monocytes. CXCL16 

is a chemoattractant for lymphocytes. 

[203,204] 

29 
  

Jurkat cells (E6-1 clone) Naïve T cells TCR stimulation triggers rapid release of ATP and 

upregulates P2X7 gene expression. Autocrine ATP 

stimulation through the P2X7R is required for TCR-

mediated calcium influx, NFAT activation, and IL-2 

production. 

[205] 

30   Wild-type and Panx-1 knockout C57BL/6 

mice, bone marrow–derived DCs 

ATP promotes the rapid migration of DCs through the 

activity of pannexin 1 channels and P2X7 receptors. 

[185] 

     Continued on next page 
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Examples of the effects of extracellular adenosine, ATP, and ADP on select immune cells through the activation of three purinergic receptors (AdoRA2A, P2X7R, and P2Y12R) 

Row number Receptor Ligand [149] Immune cell type or experimental model Results of receptor signaling Reference 

number 

31     Mouse and P2X7 knockout mice, 

CD11c+CD103+ DCs 

Mediates rapid infection-induced recruitment of 

CD11c+CD103+ DC subsets into the epithelial layer of 

the gut. 

[206] 

32 
  

DCs cultured from murine bone marrow 

precursor cells 

Induces autocrine-mediated (pannexin-1 channels) 

rapid migration of DCs through reorganization of the 

actin cytoskeleton. 

[185] 

33 
  

Human monocytes Induces MMP-9 and TIMP-1 release. [207] 

34     Wild-type and P2X7 knockout C57BL/6 

mice, M1 macrophages 

Induces release of 74 proinflammatory proteins 

detected by an antibody array and 33 inflammatory 

proteins detected by LC‒MS/MS. 

[208] 

35     Wild-type and P2X7 knockout C57BL/6 

mice M2 macrophages 

Induces release of 21 anti-inflammatory proteins 

detected by LC‒MS/MS. 

[208] 

36     CLP-induced sepsis in mice, macrophages Enhances intracellular bacterial killing. [209] 

37 
  

Macrophages and P2X7R-transfected 

HEK-293 cells 

Mediates rapid uptake of beads and bacteria in the 

absence of serum after ATP activation. 

 

38     Human mast cells Induces degranulation. [210] 

39     Wild-type and P2X7 knockout C57BL/6 

mice, naïve NKTs 

Facilitates NAD+-induced inhibitory signaling 

through the ART2-P2X7 pathway, resulting in 

nonfunctional NKTs. 

[211] 

40     Wild-type and P2X7 knockout C57BL/6 

mice, activated NKTs 

Facilitates NAD+-induced stimulatory signaling 

through the ART2-P2X7 pathway, resulting in 

functional NKTs with increased IFN-γ and IL-4 

release. 

[211] 

41   Human peripheral neutrophils Human CAP18/LL-37 suppresses neutrophil 

apoptosis through the activation of formyl-peptide 

receptor-like 1 and P2X7R. 

[212] 

42 P2X7R ATP > 1 mM, 

prolonged vigorous 

activation 

Macrophages, HeLa cells, 1321N1 

astrocytes, and HEK293 cells 

Induces Panx-1-mediated large pore formation and 

interleukin-1 beta release. 

 

[213] 

43   Human neutrophils and HL-60 cells Mediates large pore formation and superoxide 

generation. 

[214] 

     Continued on next page 
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Examples of the effects of extracellular adenosine, ATP, and ADP on select immune cells through the activation of three purinergic receptors (AdoRA2A, P2X7R, and P2Y12R) 

Row number Receptor Ligand [149] Immune cell type or experimental model Results of receptor signaling Reference 

number 

44     Female C57BL/6 (B6) and BALB/c mice, 

ART2 knockout BALB/c mice, P2X7 

knockout C57BL/6 mice, mature peripheral 

T cells 

High-dose ATP promotes apoptosis, cell death, and 

CD62L shedding (homing receptor for central T 

cells) independent of the NAD+-induced ART2-

P2X7 pathway. 

[215–217] 

45   J774 cells and HEK cells expressing the 

P2X7 receptor 

Promotes the formation of pores permeable to very 

large ions, leading to cytolysis 

[151] 

46 P2Y12R ADP > ATP Murine model of sepsis, cecal ligation, and 

puncture (CLP). Cocultures of human 

platelets and T cells with or without anti-

CD3/CD28 

Blockade of the P2Y12 signaling pathway restrains 

Treg proliferation in vivo and in vitro. 

[218,219] 

4.3. The role of P2X7Rs in the immune system 

In general, P2X7Rs have several functions, and they are all present in immune cells. First, P2X7Rs expressed on the surface of monocytes 

and macrophages act as scavenger receptors for apoptotic cells by effectively enhancing their engulfment (Table 2, row 4). P2X7Rs are 

indispensable for cytoskeletal rearrangement [220] and membrane blebbing [221] during the process of phagocytosis [222]. Second, P2X7Rs act 

as ATP release channels after mechanical deformation, after irradiation, after activation, after stimulation with isotonic or hypotonic solutions, 

after stimulation by microbe-infected cells, or spontaneously, often in conjunction with pannexin 1 channels (Panx-1s) (Table 2, rows 5–11). Third, 

P2X7Rs act as promotors of cell proliferation—referred to as low tonic basal activation—in cells with high expression of P2X7Rs, such as cells 

involved in wound closure or cancer (Table 2, rows 12–17). Fourth, P2X7Rs act as intrinsic cation channels that transduce transmembrane signals, 

inciting a proinflammatory response in innate and adaptive immune cells [149,223] (Table 2, rows 18–41). Finally, P2X7Rs act as promoters of 

cell death by promoting the formation of macropore channels (Table 2, rows 42–45). 

4.4. A crucial element in the activation of autoimmune responses: The threshold for extracellular ATP-induced activation of P2X7Rs is much 

greater than that of other purinergic receptors 

Extracellular levels of purinergic signaling ligands are very low under resting conditions (Figure 3A). After release, extracellular ATP molecules 

are hydrolyzed by membrane-bound ectonucleotidases or extracellular soluble nucleotidases (CD39, CD73, tissue nonspecific alkaline phosphatase, etc.),
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generating extracellular ADP, AMP, adenosine, inosine, and other metabolites and returning their 

extracellular levels to those observed under resting conditions (Figures 3A and 4) [168–170]. This 

process, referred to as resensitization, is essential for purinergicreceptors to recover from 

desensitization following receptor activation, during which the receptors are unresponsive to stimuli. 

To a certain extent, desensitization occurs after every activation, and time is required to return to a 

state of complete resensitization after ligand clearance [224–229]. The resensitization time is 

dependent on, among other factors, the extent of activation. Specifically, the higher the activation 

level is, the longer the time required for complete resensitization to occur [227,229] (orange boxes 

at the bottom of the graph in Figure 3). 

 

Figure 3. Schematic representation of the activation of purinergic receptors on immune 

cells. A) Basal levels of purinergic receptors under resting conditions. B) Microbial 

infection drives the controlled cellular release of ATP molecules. Increased extracellular 

nucleotides and adenosine produced by extracellular hydrolyzing nucleotidases activate 
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P2XRs, P2YRs, and adenosine receptors (AdoRs). This results in the activation of the 

proinflammatory response without P2X7R activation. C) In the case of repeated infection 

or infection with a high-dose of microbes that exhibit molecular mimicry, ATP release 

increases, and extracellular ATP levels reach or exceed 100 µM, activating P2X7Rs. On 

the one hand, this causes an increase in the activation of AdoRA2As and P2Y12Rs, 

increasing the number of anti-inflammatory Tregs. On the other hand, the increased 

activation of other P2XRs, P2YRs, and AdoRs fuels a proinflammatory immune response, 

and P2X7R activation disrupts Treg function, allowing autoreactive T cells and B cells to 

escape Treg suppression. D) As inflammation progresses, prolonged and high levels of 

extracellular ATP (with concomitant high levels of ADP and adenosine due to extracellular 

hydrolysis of ATP) induce all purinergic receptors, except for P2X7Rs, to enter a state of 

desensitization without recovery, causing paralysis of the immune response against 

invading microbes. This also induces macropore formation, leading to cell death (except 

for CTLs, which are resistant to extracellular ATP-induced cytolysis), with massive release 

of ATP, inducing a state of hyperinflammation. The green line represents the extracellular 

ATP levels. The ascending part of the line represents increasing ATP levels due to the 

extracellular release of ATP, and the descending part of the line reflects decreasing ATP 

levels resulting from the clearance of ATP by extracellular or membrane-bound ATP-

hydrolyzing ectonucleotidases and soluble extracellular nucleotidases. The blue line 

represents the activation of purinergic receptors other than P2X7Rs, and the red line 

represents the activation of P2X7Rs. The orange boxes at the bottom of the graph represent 

the recovery time of the receptors from a state of desensitization to a state of complete 

resensitization. Increasing the intensity and duration of receptor activation increases the 

recovery time. Prolonged high ATP levels prevent recovery from the desensitized state. 

ATP: adenosine triphosphate; AdoR: adenosine receptor; P2XRs and P2YRs: purinergic 

nucleotide receptors; CTLs: cytotoxic T cells. Source: Modified figure from Hasan D et al. 

(2022) [22] under the Creative Commons Attribution License CC BY 4.0, with permission. 

Microbial infection is linked to purinergic signaling, as it increases extracellular ATP release through 

P2X7R combined with Panx-1 as an ATP release channel [186–189]. In experimental virus-infected cells, 

extracellular ATP concentrations and activation of P2X7Rs increase with increasing exposure time and 

microbe concentration [189]. Extracellular ATP hydrolysis (Figure 4) causes extracellular ADP, AMP, 

and adenosine levels to increase. The subsequent activation of P2Rs (P2XRs and P2YRs) and AdoRs 

initiates the proinflammatory immune response to counter-invading microbes (Figure 3B). However, 

the levels of extracellular ligands required to activate P2Rs (other than P2X7Rs) and AdoRs are quite 

modest [228,230,231]. The activation of P2X7R, an intrinsic cation channel that activates a 

proinflammatory response, is initiated at extracellular ATP levels that are at least 10-fold or greater 

than the ligand concentrations observed to activate other P2Rs [223,226,230]. The EC50 (the effective 

concentration 50, defined as the level required for the ligand to reach effective receptor activation 

halfway between maximal and baseline receptor activation) of AdoRs for adenosine ranges from 1 nM 

to 1.4 µM [228,232], and the EC50 of P2Rs for ATP, ADP, or UTP ranges from 0.01 µM                             

to 10 M [155–159,230–232]. In contrast, the activation of P2X7R is initiated at 10-fold or greater 

levels of extracellular ATP (≥100 µM, with an EC50 > 1 mM) [223,226,230] (Figures 3B and C). Thus, 
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the P2X7R-induced proinflammatory response occurs only after a certain dose of microbes is exceeded, 

as occurs in repeated or severe infection (Figures 3C and D). 

 

Figure 4. Extracellular ATP, ADP, AMP, and adenosine clearance by ATP-hydrolyzing 

ectonucleotidases (membrane-bound enzymes) and soluble extracellular nucleotidases. To 

prevent the accumulation of adenosine and nucleotide molecules from the extracellular 

space, ATP is converted to adenosine in several steps by ectoenzymes or soluble 

extracellular enzymes. These enzymes include NPP, CD39, CD73, TNAP, and ADA. 

Some adenosine molecules are then converted to inosine by the soluble extracellular 

enzyme ADA. The remaining extracellular adenosine molecules enter cells through 

specific channels (ENTs and CNTs). Inside the cells, adenosine and inosine are converted 

to inosine and hypoxanthine by ADA and ADK, respectively. This process is essential for 

receptors to recover from desensitization following receptor activation (resensitization). 
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CD39: ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD 1); CD73: ecto-5’-

nucleotidase (5’-NT); NPP: nucleotide pyrophosphatase/phosphodiesterase; TNAP: 

tissue-nonspecific alkaline phosphatase; ADA: adenosine deaminase; ADK: adenosine 

kinase; HGPRT: hypoxanthine-guanine phosphoribosyltransferase; ATP: adenosine 

triphosphate; ADP: adenosine diphosphate; AMP: adenosine monophosphate; ADO: 

adenosine; ENTs: equilibrative nucleoside transporters; CNTs: concentrative nucleoside 

transporters. Source: Figure from Hasan D et al. (2022) [22] under Creative Commons 

Attribution License CC BY 4.0, with permission. 

As summarized in Table 2 (rows 1–3 and 46), activation of AdoRA2A or P2Y12R may increase 

the number and suppressive function of Tregs. P2X7Rs are highly expressed in Tregs and dendritic 

cells (DCs) [196,197,199,200]. In contrast to the activation of AdoRA2A and P2Y12R, activation 

of P2X7Rs causes changes in T cell balance, promoting effector T cell expansion and Treg 

contraction [196,197,199,200]. Crucially, the disruption of Tregs occurs exclusively after the 

activation of P2X7Rs on DCs, Tregs, and other immune cells and not via the activation of any other 

purinergic receptor [22,162]. The mechanisms by which P2X7R activation affects Tregs and DCs are 

presented in Table 2, rows 18–27 and 30–32, respectively. As shown in Figure 3C, P2X7Rs are 

activated only after high levels of extracellular ATP are reached. Activated P2X7Rs disrupt Treg 

suppressive function, allowing autoreactive T cells to be activated and attack invading microbes exhibiting 

molecular mimicry at the expense of self-tolerance. This is highlighted by the finding that although P2X7R 

is not required to control lung tuberculosis after aerosol infection with a low dose (~50 CFU) of M. 

tuberculosis (Erdman strain) in P2X7 knockout mice [233], P2X7R blockade can significantly reduce lung 

inflammation in WT mice intratracheally infected with a high-dose (~100 CFU) of the M. bovis MP287/03 

strain in a model of severe lung tuberculosis [234]. 

Thus, available data suggest that the activation of purinergic receptors on immune cells activates 

inflammation at moderate extracellular levels of their ligands. However, the activation of P2X7Rs on 

immune cells, which interferes with Treg suppression of autoreactive T cells, occurs at much higher 

extracellular ATP levels. 

4.5. Evidence of the relationship between P2X7R and autoantibody production 

Immunization with type II collagen (CII) in mice induces arthritis with IgG autoantibodies 

specific to CII. Intraperitoneal treatment with the P2X7R antagonist oxidized ATP (oATP) 

significantly decreases CII-specific IgG autoantibody levels and improves clinical outcomes [235]. 

Other researchers reported that immunization with a plasmid containing the M2 receptor (M2AChR) 

cDNA sequence induces dilated cardiomyopathy with autoantibodies to M2AChR in P2X7 knockout 

and WT mice. The autoantibody levels in P2X7 knockout mice are significantly lower than those in 

WT mice [236]. Additionally, in Sjogren’s syndrome, the expression and activation of the P2X7R 

inflammasome axis in human salivary glands and human circulating lymphomonocytes are greater in 

autoantibody-positive patients than in autoantibody-negative patients [237,238]. 
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4.6. Immune responses, autoimmune responses, and hyperinflammation with a cytokine storm 

Infections caused by microbes that contain foreign antigens (antigens without molecular mimicry) 

that can be eliminated rapidly are associated with modest increases in extracellular adenosine and 

nucleotide levels. In these infections, all of the purinergic receptors required for an adequate immune 

response, except P2X7Rs, are activated (Figure 3B). However, infections caused by microbes that 

exhibit molecular mimicry (these microbes also harbor foreign antigens) will initially increase Treg 

numbers and activation [33], delaying the (auto) immune response against their antigens. When the 

immune response against foreign antigens is not sufficiently effective, microbes proliferate extensively. 

I believe that this causes an increase in ATP release and extracellular ATP levels above the threshold 

that allows P2X7Rs to become activated in addition to P2XRs, P2YRs, and AdoRs, hampering the 

ability of Tregs to suppress autoreactive T cells and B cells (Figure 3C). A faster autoimmune response 

is expected after repeated doses or under high-dose infection (associated with greater ATP release) 

with microbes that exhibit molecular mimicry. If the proinflammatory process is not resolved and 

severe inflammation occurs, extracellular ATP levels further increase, causing prolonged vigorous 

activation of P2X7Rs. This inevitably leads to macropore formation and cytolysis, with concomitant 

uncontrolled ATP release (Table 2, rows 42–45) [151,172,213,214]. All immune cells are affected by 

cytolysis, except for cytotoxic T cells (CTLs), which include autoreactive CTLs, because CTLs are 

resistant to extracellular ATP-induced cytolysis [239], possibly due to the very high expression and 

activity of ATP-hydrolyzing nucleotidases on the CTL membrane [240]. This results in a state known 

as hyperinflammation, with maximally activated autoreactive CTLs and abundant cytokine 

production (cytokine storm, Figure 3D) [22,241,242]. Hyperinflammation is a potentially life-

threatening condition. However, even hyperinflammation may resolve spontaneously. At the 

macropore-formation stage, P2X7R-dependent release of matrix metalloproteinase 2 (MMP-2) occurs, 

which can control runaway P2X7Rs by proteolytic degradation of P2X7Rs [243,244]. 

4.7. Purinergic receptors are subject to desensitization at high extracellular ligand concentrations, 

but P2X7Rs are exempt from receptor desensitization 

As mentioned above, one intriguing phenomenon certainly deserves more attention: desensitization. 

At very high extracellular adenosine and nucleotide concentrations, purinergic receptors are likely to 

become unresponsive to stimulation by their ligands. An even more fascinating finding is that all purinergic 

receptors except for P2X7Rs are subject to desensitization [223,226,230] (Figure 3D). At very high 

extracellular adenosine and nucleotide concentrations, all immune responses except for autoimmune 

responses are paralyzed. Thus, there is simultaneous immunosuppression (against foreign antigens) 

and strong activation of autoimmune responses. During severe microbial infection, ATP is released 

beyond the capacity of extracellular hydrolyzing nucleotidases to clear it (as depicted in Figure 4), 

after which extracellular ATP accumulates [245] alongside elevated extracellular levels of adenosine 

and other nucleotides. This results in hyperinflammation, with highly activated P2X7Rs, disruption of 

many immune cells (except CTLs), cytokine storm, and desensitization of other purinergic receptors, 

which interferes with normal immune responses to microbes [22]. Hence, during 

hyperinflammation, the host is more susceptible to invading microbes [22,163] (Figure 3D). I 

hypothesize that the desensitization of purinergic receptors on immune cells may be the underlying 

mechanism of secondary immune paralysis in severe diseases. For example, sepsis-induced 
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immunosuppression [246,247] is also known as compensatory anti-inflammatory response 

syndrome (CARS) in critically ill patients [248,249]. 

4.8. Two examples of the involvement of purinergic signaling in autoimmune responses: Increased 

versus decreased blood Treg levels in COVID-19 patients 

Recently, a study reported that the blood levels of Tregs, Bregs, and autoantibodies to type I IFNs 

in COVID-19 patients requiring high-flow oxygen therapy or noninvasive ventilation are significantly 

greater than those in nonhospitalized COVID-19 patients and healthy controls. The increased Treg and 

Breg levels are even greater in those positive for autoantibodies to type I IFNs [129]. This phenomenon 

can be interpreted as the simultaneous activation of proinflammatory immune responses, autoimmune 

responses, and tolerogenic responses. It is quite challenging to explain this phenomenon from the 

perspective of immunobiology. However, when purinergic signaling is involved, we can deduce that 

ATP, ADP, and adenosine levels are sufficiently high to activate all purinergic receptors, including 

P2X7Rs, and can still achieve adequate resensitization. In this scenario, there is simultaneous 

activation of anti-inflammatory responses (by activated AdoRA2As and P2Y12Rs) that increase Treg 

numbers and activation of proinflammatory responses (against foreign antigens) fueled by the 

activation of other P2XRs, P2YRs, and AdoRs. In addition, the activation of P2X7Rs in immune cells 

hampers Treg suppressive function, leading to the escape of autoreactive T cells and B cells from Treg 

suppression (Figure 3C), which initiates, among other processes, the production of autoantibodies 

despite the increased numbers of Tregs. Thus, Treg numbers and autoantibody levels are expected to 

increase with increasing extracellular ATP, ADP, and adenosine levels. 

In contrast, other researchers reported exactly the opposite results. In one study, healthy controls 

were not included, and autoantibody levels were not determined. The lack of autoantibody levels 

makes it difficult to assess whether Treg suppressive function is affected. The blood Treg numbers in 

patients who did not require oxygen therapy (those with mild disease) were slightly but still 

significantly greater than those of patients who required oxygen via a nasal cannula or oxygen 

mask (those with moderate disease). However, blood Treg numbers in patients requiring noninvasive 

or invasive mechanical ventilation (those with severe disease) were far lower than those in patients 

with moderate or mild disease [134]. Hypothetically, from the perspective of purinergic signaling, we 

can deduce that the activation of purinergic receptors in patients with mild and moderate disease in 

this cohort corresponds to the mechanism presented in Figure 3C. In patients with severe disease who 

are undergoing mechanical ventilation, it corresponds to a state of hyperinflammation where Treg 

numbers are affected by ATP-induced macropore formation and cytolysis, as depicted in Figure 3D. 

4.9. Autoimmune disorders often have common symptoms involving the disruption of multiple tissues 

or organs 

On the one hand, in the case of disruption of Tregs with TCRs matching ubiquitous antigens, 

we would expect that symptoms would be generalized. On the other hand, in the case of tissue-

restricted antigens (TRAs), symptoms are expected to be confined to certain tissues or organs. 

However, in reality, this is often not true; autoimmune disorders share many common symptoms, 

such as headache [250,251], pruritus [252], sleep disturbances [253], fatigue [253,254], pain [255], 

chronic pain [256], and neuropsychiatric symptoms [257]. 
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There are two explanations for the common symptoms of autoimmune disorders. First, P2X7Rs 

are expressed on all Tregs [196,197,199,200]; therefore, activation of these receptors disrupts the 

suppressive function of Tregs in general, irrespective of whether their TCRs are specific to microbes 

that mimic self-antigens. This leads to autoimmune responses against self-antigens in multiple tissues 

or organs. This phenomenon may be the basis of the well-known “bystander T cell activation” 

phenomenon in which T cells that are not specific to disease-related antigens damage host cells without 

proper antigen recognition [258–262]. Second, according to bioinformatics analysis, microbes tend to 

exhibit molecular mimicry with multiple human antigens rather than a single antigen [263,264]. An 

interesting article reported that after severe COVID-19, the generated antibodies include autoantibodies, 

specific antibodies to the SARS-CoV-2 spike protein receptor-binding domain, and other nonspecific 

antibodies. Remarkably, the profile of autoreactive antibodies in critically ill patients with COVID-19 

was very comparable to that in patients with acute respiratory distress syndrome (ARDS) following 

bacterial pneumonia in the ICU with similar self-antigen targets, such as antinuclear antibodies (ANAs) 

and anti-carbamylated protein responses (anti-CarPs). Researchers have even observed an overlap with 

autoantibodies found in patients with systemic lupus erythematosus (SLE) [265]. 

Thus, undermining the suppressive function of Tregs can easily promote the escape of 

autoreactive T cells and B cells specific to multiple antigens. This clearly affects multiple tissues or 

organs with concomitant production of autoantibodies to more than one antigen [106]. However, 

critically, not all microbial infections lead to immediate and severe autoimmune responses; some 

microbes are able to efficiently suppress autoimmune responses. 

4.10. Some microbes that exhibit molecular mimicry have a clever strategy to mitigate autoimmune 

responses 

Although the activation of AdoRs by adenosine may promote an immune response in some 

immune cells, in general, AdoR activation reduces the number and inhibits the functions of DCs, T 

cells, B cells, antibody-producing plasma cells, macrophages, neutrophils, and NK cells [266]. In 

addition, activation of AdoRA2A increases the number and promotes the suppressive function of 

Tregs (Table 2, rows 1–3). Microbes, after invading the body, can reduce the extracellular 

concentration of ATP by converting ATP to adenosine to such an extent that the activation of P2X7Rs 

in immune cells may not occur. The “advantage” for microbes is that the resulting increase in 

extracellular adenosine levels restores the number and suppressive function of Tregs, mitigating 

autoimmune responses; however, for the host, this occurs at the expense of defense against these 

microbes (Table 2, rows 1–3 and Figure 2D2). It is therefore not a coincidence that, in patients infected 

with certain viruses that exhibit molecular mimicry, such as Epstein‒Barr virus (EBV), human 

immunodeficiency virus (HIV), and hepatitis C virus (HCV) [5], the expression of the ATP-hydrolyzing 

enzyme CD39 (Figure 4) is upregulated in infected cells, Tregs, and other immune cells [267–270]. 

Subsequently, activation of AdoRA2A by adenosine increases Treg number and suppressive function. 

This mitigates autoimmune responses, resulting in a chronic condition with much less severe 

inflammation, such as chronic EBV infection [271], chronic HIV infection [272], and chronic HCV 

infection [273]. 

In severe infection with EBV, HIV, or HCV, a further complication develops. Presumably, ATP 

release [178,180,185] combined with upregulated CD39 expression reduce extracellular ATP 

concentrations, preventing P2X7R activation and converting extracellular ATP to adenosine. Because 
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ATP release does not depend on extracellular ATP-induced P2X7R activity but rather is driven by 

microbial infection [186–189], in severe infection, high ATP release combined with upregulated ATP-

hydrolyzing nucleoside activities strongly decrease ATP levels and further increase high extracellular 

adenosine levels [162,163]. This potentially increases the risk of organ fibrosis [274,275], and organ 

fibrosis has been reported in patients with chronic EBV [276], HIV [277], and HCV [278,279] 

infection. 

In short, I propose that by employing this strategy, microbes can survive and proliferate in the 

body for quite a long time, causing chronic inflammatory disease and increasing the risk of fibrosis 

without triggering severe autoimmune responses. 

4.11. A P2X7R antagonist must reach adequate inhibitory concentrations in secondary lymphoid 

organs to ameliorate autoimmune symptoms 

Blocking P2X7Rs on DCs and Tregs is an obvious next step in treating autoimmune disorders. 

However, to ameliorate the symptoms of autoimmune responses, P2X7R antagonists must reach 

adequate effective concentrations in secondary lymphoid organs, where DC-activated T cells and 

Tregs are induced. P2X7R activation is indispensable in many organs (the central and peripheral 

nervous system [160,161], the lung [162–164], the airways [165], the pancreas [166,167], etc.). 

Consequently, traditional approaches involving oral or intravenous administration of P2X7R 

antagonists cannot safely achieve adequate concentrations without disrupting essential organ 

functions. Indeed, despite effective ex vivo antagonism of P2X7Rs in immune cells, clinical trials 

have failed to demonstrate the efficacy of the P2X7R antagonists CE-224,535 (Pfizer) [280] and 

AZD-9056 (AstraZeneca) [281] in the treatment of rheumatoid arthritis and major depressive disorder 

under JNJ-54175446 (Johnson and Johnson) [282]. Apparently, the safe serum levels of these 

antagonists are not high enough to produce effective P2X7R inhibition of Tregs in secondary lymphoid 

organs. This is referred to as the very narrow therapeutic index (NTI, a narrow window between 

effective doses and doses causing adverse toxic effects), which is a common and difficult to overcome 

problem in drug development [283]. In contrast, oral AZD9056 significantly improved the Crohn’s 

Disease Activity Index (CDAI) in patients with Crohn’s disease [284]. I propose that this success can 

theoretically be ascribed to the effect of high local concentrations of AZD9056 in tertiary lymphoid 

organs in the gut, where the drug enters the mucosa, enabling effective antagonism of P2X7Rs on local 

immune cells involved in the pathogenesis of Crohn’s disease [285]. 

5. Conclusions 

In this review, I discuss the regulation of autoimmunity in relation to self-antigens and antigens 

of microbes with molecular mimicry. Under certain conditions, microbes with molecular mimicry are 

able to activate autoimmune responses. In addition, I have explained the mechanism of the activation 

of autoimmune responses by microbes with molecular mimicry using the knowledge of purinergic 

signaling. I found that P2X7Rs on immune cells, especially on Tregs and DCs, play a critical role by 

affecting the suppressive function of Tregs followed by the activation of autoimmune responses. 

Previously, it was thought that microbes had to reach target organs and enter cells to damage organs. 

However, since the activation of autoimmune responses occurs almost exclusively in the secondary 

lymphoid organs, it appears that it is sufficient for microbes with molecular mimicry to reach the lymph 
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nodes to initiate autoimmune responses. The resulting autoreactive T cells that escape Treg 

suppression migrate via systemic circulation and cause organ damage throughout the body. As a result, 

depending on the mimicked self-antigens, one or more organs are affected. Consequently, the 

elimination of microbes with molecular mimicry occurs at the expense of self-tolerance (Figure 1). 

I have also proposed that some types of microbes that express molecular mimicry, by exploiting 

the purinergic conversion of extracellular ATP to the anti-inflammatory adenosine, may mitigate 

autoimmune responses at the expense of the ability to clear microbes. This may be the basis for the 

development of microbe-induced chronic diseases. 

As mentioned in the Introduction section of this review, autoimmune disorders resulting from the 

activation of autoimmune responses have a major impact on people’s daily lives and public health. In 

addition, their rapidly increasing prevalence contributes to rising healthcare costs. Therefore, effective 

treatments are urgently needed. However, the development of effective treatments for autoimmune 

disorders is challenging due to their NTIs. This review provides an indication for targeting secondary 

lymphoid organs (such as local lymph nodes) with a P2X7R antagonist. I believe it is not necessary to 

target all lymph nodes. The drug dose required to effectively inhibit the P2X7Rs of immune cells in a 

small volume of local lymph nodes is relatively low. When the drug reaches systemic circulation, it is 

highly diluted to very low concentrations. This prevents systemic P2X7R inhibition and other adverse 

effects. As suggested previously [22], I hypothesize that targeting local lymph nodes with a P2X7R 

antagonist can increase the production and suppressive function of Tregs. These Tregs migrate through 

the systemic circulation to suppress autoreactive T cells and B cells throughout the body. 

In my opinion, this review differs from reviews in the field of microbe-induced autoimmunity 

because of the involvement of purinergic signaling. This allows me to elucidate biological processes 

that would otherwise be nearly impossible to explain. In addition, this approach provides an 

opportunity to explore new avenues in the field of microbe-induced autoimmunity. 
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