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Abstract: The recruitment of therapeutics and most importantly COVID-19 vaccines has seen a 

measurable reduction in transmission, re-infection, severity, hospitalization and mortality associated 

with the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The development 

and approval of some vaccines and therapeutics undoubtedly signaled renewed hope for public 

health personnel, the government, the World Health Organization (WHO) and the entire world 

population. At present, most countries have progressed beyond administering first and second doses 

to administering COVID-19 vaccine updated boosters to prevent transmission and provide protection. 

Notably, a bivalent COVID-19 vaccine from Pfizer–BioNTech and Moderna, also called an “updated” 

COVID-19 vaccine booster dose, is a formulation that houses the original virus strain and omicron 

BA.1, which provides broad immunity against COVID-19 including the omicron variant (BA.1) and 

the Paxlovid drug (Nirmatrelvir-ritonavir) authorized for use by the Food and Drug Administration 

(FDA) and the European Medicines Agency. This current review outlines the variant of concern 

(VOC), viral cell entry and pathogenesis, host immunity and viral immune evasion. In addition, we 

discuss the therapeutic and vaccine treatment approach, WHO and FDA authorization, vaccine 

storage and vaccine efficacy. In conclusion, bearing in mind the trend of continued mutations as 
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observed on the spike (S) glycoprotein and receptor binding domain (RBD) of SARS-CoV-2, which 

lead to more immune-evasive strains such as BQ.1, BQ.1.1, BF.7, XBB and XBB.1, researcher and 

clinician attention should be tailored toward the design and development of variant-specific vaccines 

for future interventions. 

Keywords: SARS-CoV-2; variant of concern (VOC); spike (S) glycoprotein; receptor binding 

domain (RBD); angiotensin converting enzyme 2 (ACE2); host immunity; viral immune evasion; 

antiviral medications; vaccines 

 

1. Introduction 

Genetic mutations among viruses, especially SARS-CoV-2, occur frequently due to high levels 

of viral replication mechanism, re-infection and transmissibility capacity [1]. Severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) is a virulent strain member of the Coronaviridae 

family that has had a significant impact on human health, the world economy, food and animal 

productivity [2]. SARS-CoV-2 was first reported to cause severe pneumonia in December 2019, in a 

seafood wholesale market in Wuhan, Hubei province, China. As of 28 February 2020, over 80000 

confirmed cases had been reported worldwide, which made the World Health Organization on 30 

January 2020 declare that the SARS-CoV-2 outbreak constituted a Public Health Emergency of 

International Concern [1]. The ongoing coronavirus disease 2019 (COVID-19) pandemic has 

resulted in over 5.2 million deaths globally; however, concerted efforts in understanding the 

mechanism and mode of transmission, incubation and genetic mutations of the virus paved the way 

for the development of effective vaccines [2]. SARS-CoV-2 is capable of causing mild to severe 

respiratory symptoms which highlight the need for continued testing, active monitoring, surveillance, 

control and most importantly vaccination. 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses have continuously 

evolved over the years now, with many variants simultaneously emerging across the world [2]. 

Presently, the growing public burden caused by the continued infection and re-infection of people 

whose immune systems had produced antibodies as a result of previous infection has made 

researchers judge SARS-CoV-2 variants as variants of concern (VOC) and variants under monitoring 

(VUM) to ensure effective global surveillance and efficient investigations of the ongoing global 

response to the COVID-19 pandemic [3,4]. Several SARS-CoV-2 variants have emerged across 

different countries with Alpha, Beta, Delta, Gamma and Omicron being the most recent variants of 

concern as approved by WHO Virus Evolution Working Group [4]. This classification was done 

based on genetic changes known to affect the virus's features, such as transmissibility, prevalence 

and virulence, which led many countries to impose travel restrictions and border control measures. 

These variants of concern, also known as variants of interest, have been reported to have the ability 

to re-infect previously infected and recovered persons because they can evade immune responses, 

thus making them less susceptible to monoclonal antibodies, which impact the effectiveness of 

mRNA vaccines [4,5]. According to reports, the spike (S) protein of SARS-CoV-2 has the ability to 

evade neutralizing antibodies, and D614G mutations within the receptor binding domain (RBD) of 

the spike (S) protein result in increased viral load and promote adhesion of the virus spike protein to 

the angiotensin converting enzyme 2 (ACE2) receptor [6]. Therefore, the biochemical mechanism of 
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spike (S) glycoprotein and ACE2 as an entry receptor for SARS-CoV-2, in no doubt, consequently 

increases infectivity [7]. Today, these variants of concern have necessitated the need for effective and 

continued vaccination, sandwiched with non-pharmaceutical protocols and other public health 

prevention measures [3]. 

The scourge of SARS-CoV-2 has left an indelible mark that has revolutionized the world’s 

perspective in responding to pandemics and emerging infectious diseases [8]. The pharmaceutical 

industries were not left behind, because their swift and proactive approach to producing prophylaxis 

and therapeutics and re-profiling some novel drugs to mitigate the spread of COVID-19 disease was 

top notch [9]. At the moment, anti-SARS-CoV-2 vaccines are the game changers, due to their ability 

to reduce morbidity and mortality [10,11]. Vaccination targeting the S glycoprotein (including the E, 

M and N proteins) is one of the most effective tools to halt the spread of COVID-19 disease [10]. 

Vaccines have been proven to stimulate a strong humoral as well as cellular response, which is 

determined by the strength of the immune responses generated after vaccination [11]. These 

responses are aimed at stimulating the production of SARS-CoV-2 neutralizing antibodies as well as 

memory cells [12]. Cascades of immunomechanistic processes involving activated T cells and 

stimulated B cells differentiate into plasma cells to produce neutralizing antibodies [12,13]. Some of 

the B cells become quiescent and later on differentiate into memory B cells, which elicit 

immunological memory against SARS-CoV-2 [13,14]. It was also reported that primed CD4+ 

memory cells and CD8+ T cells are capable of proliferating in the human system to modulate the 

elimination of infected cells and clearance of SARS-CoV-2 [15]. The present study reviewed the 

SARS-CoV-2 variants of concern, viral entry and host immunity, viral immune evasion and treatment 

approach with the intention of providing current knowledge on SARS-CoV-2 variants of concern, 

vaccine efficacy on these variants and updated booster shots. 

2. SARS-CoV-2 variants of concern (VOC) 

As it stands today, SARS-CoV-2 is one of the most lethal infectious diseases of public health 

concern because of its high transmissibility, mortality scale and genetic mutations [16]. The current 

pipeline of research on SARS-CoV-2 has attracted huge financial commitment in understanding the 

SARS-CoV-2 pathogenesis, virus etiology, genetic mutations, chemotherapy and immunogenicity, 

which has significantly accelerated clinical treatments [17]. However, there are still knowledge gaps 

that need to be unraveled for effective prophylaxis design and development [4]. Evolution is a 

gradual process that leads to the emergence of young, complex organisms from simpler, older 

organisms (WHO, 2021). SARS-CoV-2 has been reported to evolve strains characterized by genetic 

mutations in the spike (S) protein, N-terminal domain (NTD) and receptor binding domain (RBD), 

which enhance its entry into the target host cell receptors and could also compromise the neutralizing 

antibodies [18,19]. Genetic mutations are rapid in RNA viruses due to the RNA-dependent RNA 

polymerase and cofactors that possess proofreading activity [19]. The World Health Organization 

(WHO) SARS-CoV-2 Evolution Working Group was established to monitor SARS-CoV-2 variants, 

virulence, genetic changes and their impact on COVID-19 countermeasures and develop and 

implement a global risk monitoring framework for SARS-CoV-2 variants [18,20]. SARS-CoV-2 has 

continuously undergone genetic mutations leading to the emergence of different viral strains of 

public health concern categorized as variants of concern as approved by the WHO Technical 

Advisory Group on Virus Evolution (TAG-VE) [21]. Five VOCs had been classified and designated 
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on March 26, 2022, to be currently in circulation to reflect evolutionary changes in their 

epidemiology over time [21]. 

2.1. Lineage B.1.1.7 (alpha) 

The SARS-CoV-2 lineage B.1.17 was the first most dominant circulating variant reported in the 

United Kingdom (UK) on 14 December 2020 [4,16]. This alpha variant is characterized by high 

transmissibility of about 40–50%, 43–90% fecundity, hospitalization, disease severity and deaths 

compared with the original virus [4]. The virulence attributed to the SARS-CoV-2 lineage B.1.17 

resulted from the genetic mutations observed in the spike (S) protein, with about eight mutations: 

Δ69–70 deletion, Δ144 deletion, N501Y, A570D, P681H, T716I, S982A and D1118H [22]. The 

N501Y within the receptor binding domain (RBD) of the spike (S) protein plays a vital role in the 

binding affinity to the host angiotensin converting enzyme 2 (ACE2) receptor, leading to a high viral 

load [23]. Furthermore, immune escape in immunocompromised patients was linked to Δ69–70 and 

Δ144 deletions in the spike protein [24,25]. Based on clinical reports, the Pfizer (mRNA vaccine), 

Moderna (mRNA vaccine), AstraZeneca, Novavax (adjuvant recombinant protein vaccine) and 

Janssen (adenoviral vector vaccine) vaccines were effective in preventing the severity of the disease 

and hospitalizations when working against the alpha variant [26,27]. Pfizer and AstraZeneca 

vaccines were evaluated and proven to elicit effective immune responses of about 90% after first and 

second doses among individuals whose sera displayed excellent reduced neutralizing effects against 

the alpha variant [28,29]. Additionally, Novavax was reported to have 89.3% efficacy against the 

alpha variant and reduce viral transmission [30,31]. Moderna and Janssen vaccines were also 

reported to significantly neutralize alpha variants, with the Moderna vaccine being approved by the 

FDA for children aged six months to five years with certain immunocompromising conditions [32]. 

2.2. Lineage B.1.351 (beta) 

The beta variant was first identified in the UK in May 2020, probably connected to travelers 

from South Africa [23]. According to Kim et al. [16], the beta variant’s genetic changes resulted in 

increased transmissibility and hospitalizations compared to the alpha variant. It was found to have 

genetic mutations (L18F, D80A, D215G, R246I, K417N, E484K, N501Y, D614G and A701V) in the 

spike (S) protein, with the K417N, E484K and N501Y mutations located on the receptor binding 

domain (RBD) [33,34]. These alterations enhance spike (S) protein infusion to the ACE2 receptor of 

the host cells, thus leading to an increased transmission rate [35,36]. Studies have shown that the 

beta variant is highly resistant to neutralizing antibodies from vaccinated individuals because of the 

E484K mutation [16,23]. However, the disease severity of the beta variant in immunocompromised 

patients is moderate compared with the delta and omicron variants [37,38]. Multiple studies have 

shown that Pfizer and Moderna vaccines with efficacy of 96.4% significantly neutralize beta variants 

after first and second doses; likewise, Novavax was 60% effective against the beta variant 

[4,31,39,40]. Also, a significant reduction of the beta variant was observed when bamlanivimab and 

etesevimab monoclonal antibody treatments were co-administered [41,42]. 
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2.3. Lineage P.1 (gamma) 

The P.1 lineage (gamma variant) was the major cause of many hospitalizations and deaths in 

Manaus, Brazil. It was first identified by the Institute of Infectious Diseases, Japan, in Amazonas 

state returnees from Brazil in January 2021 [23,43]. The molecular characterization of the genome 

sequence of lineage P.1 found that the gamma variant contains about 21 genetic mutations with 10 

alterations (L18F, T20N, P26S, D138Y, R190S, H655Y, T1027I, K417T, E484K, and N501Y) in the 

spike (S) protein [4,44–46]. Additionally, three genetic mutations identified on the receptor binding 

domain mirror those of the alpha and beta variants, which are capable of accelerating the binding 

affinity of the spike (S) protein to the ACE2 host receptor cells and are associated with increased 

virus transmissibility, immune escape potential, re-infections and viral fecundity [4,45,47]. Gamma 

variant re-infection cases have not been well established at a population level across the globe but 

have been widely reported with clinical proof [48]. Based on the reports of Collier et al. [49], the 

gamma variant has been shown to be relatively resistant to neutralizing antibodies from vaccine sera 

after vaccination with Moderna and Pfizer vaccines. However, according to a study in France,    

the first and second doses of vaccination with Moderna and Pfizer vaccines were reported to have 

77–88% efficacy against the previous variants of concern [50,51]. The gamma variants have been 

implicated as being susceptible to the therapeutic effects of casirivimab and imdevimab [50]. 

2.4. Lineage B.1.617 (delta) 

According to the Ministry of Health and Family Welfare’s report on March 24, 2021, the delta 

version of lineage B.1.617 SARS-CoV-2, which caused the second wave of the COVID-19 pandemic 

in India, has three sub-lineages (B.1.617.1, B.1.617.2 and B.1.617.3). Due to the sub-lineage 

B.1.617.2’s high transmissibility, quick incubation period, severe illness and probable immunological 

escape, WHO named it a variant of concern (VOC) [52]. According to studies, the delta variant is  

50% more contagious than the alpha variant due to genetic mutations in the spike (S) protein (19R, 

G142D, 156del, 157del, R158G, L452R, T478K, D614G, P681R and D950N), with P681R being 

linked to promoting SARS-CoV-2 infusion into host receptor cells and increased morbidity [23]. 

According to studies, L452R and T478K mutations can increase the spike (S) protein's affinity for 

the ACE2 receptor on host cells, increasing viral load and transmissibility. These mutations have also 

been linked to immune escape from vaccine recipients [53–56]. Furthermore, compared to the alpha, 

beta and gamma versions, the WHO assessment revealed that the delta variation was the most 

widespread and virulent SARS-CoV-2, suggesting that it was the most dominant form to be 

concerned about [52]. 

Additionally, studies from Ontario, Canada, found that delta variant virulence, disease severity 

and transmissibility rate were remarkably higher compared with other variants, accompanied by 

hospitalizations, intensive care unit admissions and deaths [57,58]. The evolution of the original 

lineage of the delta variant due to mutations in the spike (S) protein was found to give rise to 

lineages B.1.617.2.1 (delta AY.1 and AY.4.1) with mutations (V70F, A222V, W258L and K417) in the 

spike (S) protein [59,60]. The K417 mutation mirrors that which is present in the beta variants 

identified to contribute to immune evasion and reduction of the spike protein interaction with 

neutralizing antibodies from host cells [61]. Treatment with monoclonal antibodies, convalescent 

plasma and vaccines has shown a positive neutralization effect [62]. The Pfizer and AstraZeneca 
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vaccines have shown 72–88% efficacy against the delta and alpha variants from studies carried out in 

the UK and Scotland after two doses [63]. A study showed that Pfizer and AstraZeneca vaccines are 

effective in reducing the transmissibility of COVID-19 and hospitalization cases in individuals with 

confirmed delta variant infection [64]. 

2.5. Lineage BA.1.1.529 (omicron) 

The omicron variant with sub-lineages BA.1, BA.2, BA.3, BA.4 and BA.5 was first detected by 

WHO on 11 November 2021 in Botswana, on 14 November 2021 in South Africa and on 1 

December 2021 in California, United States [23,65]. The omicron variant (BA.1.1.529) was 

designated as a variant of concern due to a potential increase in transmissibility, resistance to 

therapeutics and immune escape [52]. Additionally, instances of the omicron variants have been 

reported in England, Switzerland, Portugal, New Zealand, Nigeria, Mauritius and the Democratic 

Republic of the Congo [66]. The sub-variant BA.2, with 59 genetic mutations, of which 29 are in the 

spike (S) protein, has a higher replication potential of about 1.4 fold that of BA.1. However, the 

clinical symptoms of BA.2 infection, such as sore throat and pharyngitis, are similar to those of BA.1 

[67,68]. The evolution of the omicron sub-variant BA.2 generated the 12
th

 lineage BA.2.12.1, which 

accounts for about 26% of the SARS-CoV-2 genomes, with additional spike mutations S704L and 

L452Q critically responsible for virus infusion and binding of the spike protein to the ACE2 receptor 

of the host cell [62]. It is the most dominant strain in the United States, whereas BA.4 and BA.5 are 

dominant variants in South Africa and Europe [69]. 

Furthermore, BA.2.12.1 has the ability to infect individuals already recovered from or immune 

to BA.1 [67,70]. The risk of transmission, mutation, immune evasion and proliferation associated 

with the omicron variants remains exceptionally high [67]. This fact makes the omicron variant the 

most mutated, contagious even among vaccinated people and easily spread variant of concern, with 

recent evidence presenting the omicron variants with a higher transmissibility potential than other 

variants [66]. The omicron variant was responsible for the fourth wave of SARS-CoV-2 infections 

that ravaged South Africa, leading to increased hospitalizations, disease severity, straining of health 

facilities, community and global spread and deaths [65]. As of January 10, 2022, the US had reported 

about 1.35 million cases of SARS-CoV-2 infections, and in May 2022, the figures increased beyond 

the normal as a result of increased home testing [71,72]. According to research conducted in 

Denmark, the transmission potential of the omicron variant among people, especially household 

members, was 2.6–3.7 fold greater than the delta variant among vaccinated and boosted individuals, 

while among unvaccinated individuals, the omicron variant was only 1.17 fold more infectious than 

the delta variant [73]. The sequence genome of the omicron variant found more than 30 amino acid 

mutations and deletions (K417N, N440K, G446S, S477N, T478K, E484A, Q493K, G496S, Q498R, 

N501Y, Y505H and P681H) on the spike (S) protein capable of binding to ACE2 of the host cell, 

thus leading to high transmission of SARS-CoV-2 and immune evasion [66]. The mutation N501Y 

has been implicated in playing a very pivotal role in virus binding to ACE2 host receptor cells, which 

mirrors that of the alpha variant [74]. 

Based on the vaccination reports, three doses of Pfizer and Moderna vaccine have been proven 

to neutralize the omicron variants; however, reported cases of omicron variant transmission among 

some fully vaccinated individuals were observed [75]. This finding is in accord with the report of 

Hoffmann et al. [76], which showed the omicron variant capable of resisting vaccine elicited 
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neutralizing antibodies and sera of convalescent patients. The mutations present in the omicron 

variants were linked to increased transmissibility and virus infusion into host cells [54]. Given the 

surge in infection and reinfection with omicron and its subvariants, booster doses were recommended 

for vaccinated and immunocompromised individuals [67]. 

3. Host cell entry and pathogenesis of SARS-CoV-2 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus 

disease 2019 (COVID-19). It is a single-stranded RNA-positive (+ssRNA) sarbecovirus subgenus 

beta-coronavirus with structures and genetic composition closely related to severe acute respiratory 

syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus 

(MERS-CoV) [55]. The SARS-CoV-2 protein structure is made up of the spike (S) protein, 

nucleocapsid (N) protein containing RNA as the genetic material, envelope (E) glycoprotein, 

membrane (M) protein and multiple open reading frames (ORF3a, ORF3b, ORF6, ORF7a, ORF7b, 

ORF8, ORF9, and ORF10) [77]. The virus gains entry into the host cell with the help of the spike (S) 

glycoprotein located on the outer surface of the virion, which mediates the infection process, leading 

to the cleavage of the virus spike (S) protein by human transmembrane proteases 2 (TMPRSS2) into 

an amino (N) terminal S1 subunit and a carboxyl (C) terminal S2 subunit containing a fusion peptide 

to enhance the infusion of the virus into the host cell [55]. The amino (N) terminal S1 subunit is 

composed of a receptor binding domain (RBD) and an N-terminal domain (NTD), which facilitate 

spike (S) glycoprotein binding to human angiotensin converting enzyme 2 (ACE2) receptors 

(virus-cell membrane fusion), thus enhancing viral entry into the host cell [78,79]. Scientific findings 

have shown that the spike glycoprotein has the ability to preferentially influence the interaction, 

recognition, receptor binding and virus fusion with the ACE2 receptor of host cells [79]. The 

respiratory and circulatory systems are preferentially targeted by SARS-CoV-2 upon entry into the 

host cell, leading to pneumonia with the lungs and other tissues as the primary targets [55,80]. Other 

organs such as myocardial cells, the upper esophagus, enterocytes from the ileum, proximal tubular 

cells of the kidney and urothelial cells of the bladder also express ACE2 receptors in addition to the 

respiratory epithelial cells of the human lungs [55,81]. Human transmembrane proteases 2 begin to 

cleave the spike (S) protein as a result of the spike (S) glycoprotein’s receptor binding domain 

interacting with ACE2 receptors on type 2 alveolar epithelial cells in the human lungs. This enhances 

viral cell membrane fusion and replication, which is crucial for viral entry into the host cell and 

results in severe damage to the gastrointestinal tract (GI) and hepatobiliary, cardiovascular, renal and 

central nervous systems [82]. Furthermore, research has demonstrated that the highly immunogenic 

phosphoproteins known as nucleocapsid (N) proteins interact with viral genomic RNA to release a 

spiral nucleocapsid that promotes viral RNA replication and cell signaling, thereby making it easier 

for the virus to infect host cells [79,83,84]. Additionally, it has been suggested that the membrane 

protein (M) and envelope (E) glycoprotein work together to block the immunological responses and 

activation brought on by gamma interferon (IFN) [79,85]. 

4. Host immunity against SARS-CoV-2 

The human immune system is endowed with multiple signaling cascades of biochemical 

mechanisms designed to confer immunity and defend the human system against pathogens. These 
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cascades of immunophysiological processes ultimately lead to the activation of antiviral innate 

immunity (with interferons, cytokines, chemokines, Toll-like receptors, natural killer cells, 

macrophages, monocytes, granulocytes, mast cells and dendritic cells) and adaptive immunity (with 

T and B lymphocytes) [86,87]. The innate immunity is the first defense against invading 

SARS-CoV-2, resulting in a nonspecific response leading to the production of antiviral and 

proinflammatory molecules aimed at interrupting critical steps of the viral cycle, thus clearing 

infection and also preventing reinfection by SARS-CoV-2 [86,88]. During viral infection, the 

SARS-CoV-2 spike (S) receptor binding domain interacts with the host ACE2 to generate new viral 

copies, which are then released into the host [86]. This viral invasion prompts a rapid immune 

response (immune defense-based protective phase) through the recruitment of interferons, cytokines, 

chemokines, Toll-like receptors, natural killer cells, macrophages, monocytes, granulocytes, mast 

cells and a host of other immune mediators to detect and restrict different stages of the viral life cycle 

in order to prevent the spread of SARS-CoV-2 [89,90]. Previous studies have shown that activation 

of TLR2 triggers an innate immune response to viral clearance in order to prevent tissue damage and 

also suppress excessive inflammation, thus maintaining the integrity of local epithelial cells [90]. 

The innate immune system uses immune cells such as Toll-like receptors 3, 7 and 8, retinoic acid 

inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) to recognize 

pathogen-associated molecular patterns (PAMPs) or host molecules associated with disturbances of 

homeostasis (danger-associated molecular patterns (DAMPs)) through the specific pattern 

recognition receptors (PRRs), which then activate the antiviral signaling cascades to release 

interferons (IFN), chemokines and proinflammatory cytokines [91,92]. These soluble factors are 

locally mobilized to the infected tissues and organs for a rapid cellular response, which is dependent 

on the concentration and time of secretion of these soluble mediators [93,94]. 

A cytokine storm (cytokine-releasing syndrome) is caused by dysregulated production or 

overactivation by inducing a massive release of cytokines and chemokines, which can cause organ 

damage and ultimately result in organ failure and death in critically ill patients [95,96]. This 

multisystemic immune dysregulation is what causes viral sepsis in these patients. By spreading 

methodically, the localized inflammatory response brought on by viral infection draws immune cells 

to the particular infected organs. Necrosis factor alpha (TNF-α) and gamma interferon levels were 

concurrently elevated, according to Karki et al. [97], which was the cause of the inflammatory cell 

death. Patients with severe MERS-CoV and SARS-CoV infections were also shown to have 

cytokine-releasing syndrome. Controlled cytokine release is crucial in preventing SARS-CoV-2 

infection, but Leisman et al. [98] found that dysregulated synthesis of antiviral and proinflammatory 

mediators is the main factor in multiorgan failure and acute respiratory distress syndrome. Increased 

levels of IL-1, IL-1 receptor antagonist (IL1RA), IL-2, IL-6, IL-7, IL-10, tumor necrosis factor 

(TNF-α), IFN-gamma, granulocyte-macrophage colony-stimulating factor (G-CSF), fibroblast 

growth factor, platelet-derived growth factor (PDGF) and vascular endothelial growth factor were 

found in COVID-19 patients [98]. According to clinical studies, the severity of COVID-19 was 

found to significantly correlate with serum levels of IL-1, IL-2, IL-6, IL-7, IL-10, TNF-α, G-CSF, 

CCL2, CCL3, CXCL8 and CXCL10 [99]. Additionally, to support earlier research, a significant 

plasma rise in IL-6, IL-10 and TNF-α in COVID-19 patients compared to those with mild symptoms 

revealed a negative correlation between the recovery stage and plasma cytokine concentration in the 

COVID-19 patients [100,101]. IL-6, IL-1β and other chemokines were seen upregulated in a 

different study of bronchoalveolar lavage fluid (BALF) in COVID-19 patients with severe and mild 
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SARS-CoV-2, confirming the recruitment of these cytokines and chemokines to the inflamed lung 

and their presence in the profiled blood of SARS-CoV-2 patients [101,103]. Since there is a link 

between the plasma levels of patients with severe COVID-19 and the level of pulmonary 

inflammation and viral load, these immune cells can be used as helpful biomarkers for testing and 

monitoring SARS-CoV-2 illness development [86]. It is important to note that the COVID-19 

cytokine releasing syndrome is caused by coordinated actions of immune cells including 

macrophages, dendritic cells, neutrophils, monocytes, B cells, T cells, NK cells and tissue-resident 

cells like epithelial and endothelial cells with cytokines and chemokines [100]. 

5. Viral immune evasion 

In order to prevent viral clearance and postpone the emergence of adaptive immunity, the 

SARS-CoV-2 virus and other coronaviruses employ a variety of evasion techniques. To disrupt the 

interferon (IFN) signaling system, they accomplish this by encoding a diverse variety of viral 

structural proteins and non-structural proteins (nsp). The SARS-CoV-2 virus and other coronaviruses 

are susceptible to cascades of interferon-mediated antiviral responses that are triggered by the 

interferon (IFN) signaling pathway [104]. A protein complex (retinoic inducible gene I (RIG-I), 

adapter protein mitochondrial antiviral signaling protein (MAVS) and type 1 IFN induction turn on 

Janus kinase 1 (JAK1), tyrosine kinase 2 (Tyk2) and interferon regulatory factor 3 (IRF3)), which 

transduces signals downstream of the IFN- receptor to bind interferon-stimulated response elements 

(ISREs). In order to decrease the type 1 IFN pathway and evade the host immune response, the 

SARS-CoV-2 inhibits STAT phosphorylation, nuclear translocation and activation of interferon 

regulatory factor 3 (IRF3) [105]. SARS-CoV-2 encodes non-structural proteins like nsp1, nsp6, nsp8, 

nsp9, nsp13 and nsp16 that play integral roles in inhibiting host transcription, translation and protein 

transport [79,86,106]. Studies have shown that nsp6 and nsp13 interact with TANK binding kinase 1 

(TBK1) to antagonize IFN signaling in order to prevent IRF3 phosphorylation [107]. The 

SARS-CoV-2 ORF6 was demonstrated to efficiently bind importin karyopherin α2 (KPNA2) to 

prevent IRF3 nuclear translocation [79,108,109]. In addition, open reading frame 8 (ORF8) and N 

glycoprotein were reported to inhibit IFN signaling by suppressing phosphorylation and nuclear 

translocation of STAT1 and STAT2, while ORF8 and nsp1 impair the expression of IFN-stimulated 

response elements (ISRE)-driven transcription of interferon stimulated genes (ISGs) and production 

of IFN in epithelial cells of tissues [90]. 

Viral proteases such as the papain-like protease initiate proteolytic cleavage and processing of 

viral polyproteins such as the ubiquitin-like molecule ISG15 found in positive-strand RNA viruses 

[110]. Zhang et al. [90] reported two viral proteases, PLpro and 3Clpro or main protease (Mpro), 

encoded in the genome of SARS-CoV-2 that play pivotal roles in viral polyprotein cleavage during 

viral replication. The essential modulators of IFN signaling, STAT2 and nuclear factor Kappa B 

essential modulator (NEMO), are cleaved by the main protease, a 3C-like protease (3Clpro), while a 

papain-like protease (PLpro) cleaves the ubiquitin-like molecule ISG15 with the aim to attenuate 

type 1 IFN responses [111,112]. 

The SARS-CoV-2 virus has also developed another strategy to shut off host gene expression by 

exploring the host translational machinery to degrade host mRNA [113,114]. Small ribosomal 40S 

subunits favorably bind no-structural protein 1 (nsp1) to interrupt mRNA translation at different 

stages during initiation to suppress the synthesis of antiviral genes [115,116]. In addition, 
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non-structural proteins such as nsp10 and nsp14 have been implicated in shutting off the synthesis of 

antiviral genes by exerting translational inhibition activity geared toward stalling the transcription of 

interferon stimulate genes (ISGs) to release type 1 IFN by forming the nsp10-nsp14 complex [117]. 

Studies have shown that SARS-CoV-2 can trigger multiple complement cascades through three 

major pathways, which are the lactic pathway, the classical pathway and the alternative pathway of 

the complement system [114,118]. The complement system coordinates highly ordered interactions 

involving more than 50 proteins present on cell surfaces and in the plasma [114]. During viral 

infection, complement cascade hyperactivation makes the S glycoprotein interact with lectin pathway 

recognition molecules to activate the alternative pathway while the N glycoprotein interact with 

lectin pathway effector enzyme mannose-binding lectin-associated serine protease 2 (MASP-2) to 

activate the lectin pathway, which leads to severe inflammatory lung damage [119,120]. In addition, 

the deleterious effect of the complement system in eliminating MASP-2 or blocking the N 

glycoprotein–MASP-2 interaction has been implicated as a major cause of N protein-induced 

complement hyperactivation and lung injury, which can consequently lead to lung failure [121,122]. 

6. Treatment approach 

At the early stage of the pandemic, clinical scientists had limited scientific information about 

the pathogenesis and mode of transmission of SARS-CoV-2, which made treatment and prevention 

very difficult. This created the urgency for clinical researchers to explore viable means of mitigating 

the surge of reported cases of infection and increased deaths. Some of the therapeutic strategies used 

for treatment and prevention of COVID-19 spread include drug repurposing, experimental therapies, 

and vaccination. 

7. Antiviral medications 

Molnupiravir is a broad-spectrum oral antiviral medicine that works by acting on the RdRp 

enzyme of SARS-CoV-2 to inhibit viral replication and prevent severe symptoms [123]. It is usually 

used to treat early SARS-CoV-2 infection after neutralizing monoclonal antibodies (nMAbs). Early 

treatment with molnupiravir from a phase 3 double-blind, randomized, placebo-controlled trial has 

shown credible results in terms of reduced viral load, risk of hospitalization and mortality in at-risk 

unvaccinated individuals [124]. Molnupiravir is characterized by common side effects such as 

feeling dizzy and headaches and is not recommended for pregnant women [125]. In addition, the 

potential effect of molnupiravir on bone and cartilage of patients younger than 18 years has been 

reported by Gandh et al. [125]; thus, it should not be prescribed for patients below 18 years. 

Nirmatrelvir-ritonavir (Paxlovid) is a SARS-CoV-2 protease inhibitor composed of two antiviral 

agents (oral pill) used to treat COVID-19 patients with underlying conditions that increase the risk of 

severe COVID-19 symptoms [123]. Nirmatrelvir-ritonavir has been reported to inhibit viral 

replication as well as reduce viral load in COVID-19 patients with mild to moderate symptoms and a 

risk of hospitalization [123]. It is more effective than molnupiravir and is also considered for 

individuals aged 12 or older or 65 or older [126,127]. Nirmatrelvir-ritonavir is authorized for use 

within 5 days of COVID-19 symptom onset in nonhospitalized patients, but it is devoid of common 

side effects such as nausea, diarrhea, and dizziness [125]. Molecular docking approach was used to 

predict the binding affinity of ritonavir (a component of Nirmatrelvir-ritonavir ) with SARS-CoV-2 
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main protease complex structure through Cavity-detection guided Blind Docking (CB-Dock2) 

computation method (Figure 1a). Ritonavir binds to the SARS-CoV-2 main protease active site and 

prevents cleavage of the viral polyproteins thereby forming immature non-infectious viral particles. 

The molecular interactions between ritonavir and SARS-CoV-2 main protease (Mpro) showed high 

binding affinity with binding energy of −7.8 kcal/mol. The molecular interactions produced eight 

hydrophobic interactions with MET165, MET49, ASN142, THR25, THR26, LEU27, GLU166, 

HIS41and one hydrogen bond with THR190 whereas three weak hydrogen bond with GLN189 and 

MET165 (Figure 1b). In addition, nirmatrelvir-ritonavir is not recommended for patients with severe 

kidney or liver disease and should not be prescribed to pregnant patients or patients attempting to 

become pregnant [125]. 

Fluvoxamine is an antidepressant medication of the selective serotonin reuptake inhibitor (SSRI) 

and sigma-1 receptor agonist (S1R) class. It is approved by the Food and Drug Administration (FDA) 

to treat patients with obsessive compulsive disorder (OCD); however, in the course of repurposing 

drugs for COVID-19 treatment, fluvoxamine was used for clinical trials [128]. Fluvoxamine interacts 

with the sigma-1 receptor on immune cells to downregulate the expression of inflammatory genes. 

Previous studies by Calusic et al. [129] showed fluvoxamine to be effective and safe for the 

treatment of COVID-19 intensive care unit (ICU) patients, but due to insufficient evidence from 

clinical trials to support this claim, the FDA did not approved fluvoxamine for the treatment of 

COVID-19. 

Remdesivir is an antiviral medication known to inhibit viral RNA-dependent RNA polymerase 

in vitro against SARS-CoV-2 [130]. The Food and Drug Administration (FDA) approved remdesivir 

for treatment of hospitalized COVID-19 patients, especially adults and pediatrics (12 years of age or 

older and weighing at least 40 kg) [131,132]. Clinical evidence from a randomized double-blind 

placebo-controlled trial showed 87% lower risk of hospitalization than placebo when at-risk 

non-hospitalized patients with COVID-19 were treated with a 3-day course of remdesivir; however, 

several trials found no significant effect of remdesivir on patient outcomes [133,134]. 

Sotrovimab is an anti-SARS-CoV-2 neutralizing antibody medicine known to be very effective 

in vitro against alpha, beta, gamma and delta SARS-CoV-2 variants. It is a neutralizing monoclonal 

antibody (nMAb). Neutralizing monoclonal antibodies (nMAbs) are synthetic proteins that act like 

human antibodies in the immune system [135]. They are made by cloning an antibody that can stick 

to the spike protein of the virus and neutralize it before migrating into the lungs, hence preventing 

transmission and reinfection [136]. It is administered to non-hospitalized patients as an infusion. 
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Figure 1. (a) Showing Ritanovir, a protease inhibitor, binding to SARS-CoV-2 main 

protease (Mpro) at vina score: −7.8 kcal/mol. (b) Main protease—Ritanovir interaction 

with amino acid residues: hydrophobic interactions (dark grey dotted lines) MET165, 

MET49, ASN142, THR25, THR26, LEU27, GLU166, HIS41; hydrogen bond (dark blue 

dotted lines) THR190; weak hydrogen bond (light blue dotted lines) GLN189 and 

MET165. 

8. Vaccines 

The COVID-19 pandemic outbreak in 2020 overstretched health facilities and world economies 

and caused unprecedented deaths across the world [137]. These key indices, out of several others, 

made governments, the World Health Organization (WHO), health institutions, pharmaceutical 

companies, universities, research institutions and other partners invest substantial capital and human 

resources in sequencing the SARS-CoV-2 genome for the purpose of developing vaccines against 

COVID-19 [137,138]. The approach of drug repurposing to stem the spread of SARS-CoV-2 did not 

yield the expected results; thus, vaccines were the available antidotes [139]. Vaccines are biologics 

that provide active, acquired immunity through the production and release of antibodies against 

diseases. This is achieved through a process called vaccination, which is simple, safe and effective 

and is therefore rightly considered one of the most economical healthcare interventions [137]. 

Vaccines could serve as prophylaxis administered to healthy individuals to prevent infection with a 

disease-causing organism or therapeutics that are administered to fight an already existing illness in 

an individual by persuading the immune system to fight harder [29]. The spike S glycoprotein of 

SARS-CoV-2 has been the prime target for most research groups in developing vaccines, explored 

for its antigenic and immunogenic value [30]. There are different types of SARS-CoV-2 vaccine 

platforms, which are inactivated vaccines, live virus vaccines, viral vector-based vaccines, nucleic 

acid vaccines and protein-based vaccines. 
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8.1. Inactivated vaccines 

Inactivated vaccines are traditionally produced by inactivating in vitro-cultured viruses (whole 

viral particles) using heat or formaldehyde while maintaining the integrity of the virus particles to 

substantially stimulate the immune response. This is one of the oldest procedures for vaccine design 

and development, as it is noninfectious, safer, more stable and easy to produce and has successfully 

been deployed in the production of the Hepatitis A vaccine and the polio vaccine [139]. The concept 

of designing inactivated vaccines is to utilize the whole virus in killed form to develop vaccines that 

can elicit a robust immune response without host cell interference [139]. These vaccines have a 

relatively short development cycle, thus guaranteeing fast production of safe and effective vaccines 

with no side effects. This could be attested to when about half of the COVID-19 inactivated vaccines 

progressed into phase III and IV clinical trials, with some of them being approved for distribution. 

Notable vaccines that fall into this platform include Covaxin, BBIBP-CorV, Sinopharm (Wuhan), 

CoronaVac, and CoviVac [140–150] (Table 1). Inactivated vaccines have antigen neutralizing 

efficacy on SARS-CoV-2 variants of concern, including delta and omicron variants. Decreased 

immunogenicity was probably observed against mutant strains; therefore, repeated doses are needed 

to sustain immune responses [151,152]. These vaccines have been reported to confer 50–90% 

protection against SARS-CoV-2 variants, are noninfectious in immunosuppressed individuals and are 

suitable for long-term preservation (freeze-drying) and transportation [153–155]. Since the cultured 

viruses have been inactivated and are therefore nonreplicating, it is worthy of noting that inactivated 

vaccines require adjuvants such as aluminum salt (alum) to increase their immunogenicity. 
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Table 1. Some approved COVID-19 vaccines. 

Vaccine name Platform Target Efficacy* Efficacy against variant strain (reduction%) Formulation of 

booster dose 

Storage Reference 

**Pfizer 

BioNTech 

(BNT162b2) 

mRNA-based vaccine (mRNA 

expressing a trimeric RBD) and 

BNT162b2 (mRNA expressing 

spike protein) 

Full-length S protein with 

proline substitutions 

95% Alpha B.1.1.7 (93%), Beta B.1351 (75%), 

Gamma (P1) (88%), Delta B1.617.2 (88%) 

and Omicron variants (55.9%) 

Bivalent −70 ℃ (shipping) 

and 2–8 ℃ (6 

months) 

[141,142] 

**Moderna 

(mRNA-1273) 

mRNA-based vaccine (mRNA 

expressing spike protein) 

Full-length S-2P protein 95% Alpha B.1.1.7 (88%), Beta B.1351 (73%), 

Gamma (P1) (63%), Delta B.1617.2 (77.8%) 

and Omicron variants (55.9%) 

Bivalent −20 ℃ (shipping) 

and 2–8 ℃ (6 

months) 

[141,142] 

Johnson and 

Johnson 

(Ad26.CoV2) 

Non-replicated viral vector 

(adenovirus Ad26) 

Recombinant replication in 

competent adenovirus 

serotype 26 (Ad26) vector 

encoding full-length S protein 

66–85% Alpha B.1.1.7 (73.9%), Beta B.1351 (31%), 

Gamma (P1) and (P2) (62.7%), Delta 

B.1617.2 (65%) and Omicron variants 

(55.9%) 

Monovalent 2-8 ℃ (3 month) 

and −20 ℃ (2 

years) 

[143] 

Oxford/Astrazene

ca (ChAdOx1) 

Non-replicated viral vector 

(ChAdOx1-S-(AZD1222)) 

Chimpanzee adenovirus 

vectored vaccine (ChAdOx1) 

expressing S protein 

70% Alpha B.1.1.7 (73.9%), Beta B.1351 (31%), 

Gamma (P1) and (P2) (62.7%), Delta 

B.1617.2 (65%) and Omicron variants 

(55.9%) 

Monovalent 2–8 ℃ (6 

months) 

[144,145] 

Novavax (NVX 

CoV2373) 

Recombinant protein vaccine 

(spike protein + matrix-M 

adjuvant) 

S protein with matrix-M 

adjuvant 

90% Alpha B.1.1.7 (89.7%), Beta B.1351 (51.1%), 

Gamma P1 (91.8%), Delta B.1617.2 (78.7%) 

and Omicron variants (55.9%) 

Monovalent, 

saponin 

2–8 ℃ (6 

months) 

[144,143] 

Sinovac–coronaV

ac vaccine  

Inactivated vaccine (inactivated 

virion + aluminium hydroxide) 

Whole inactivated 

SARS-CoV-2 

50–84% Alpha B.1.1.7 (71–91%), Beta B1.351 

variants (70%), delta B.1617.2 (52%), 

Gamma (P1) (50%), Omicron BA.2 (62.65%) 

Monovalent, 

aluminum salts 

2–8 ℃ (6 

months) 

[146,147] 

Sputnik V 

(Gam-Covid-Vac) 

Non-replicated viral vector 

(adenovirus Ad5 and Ad26) 

Recombinant Ad26 and 

recombinant Ad5 encoding 

fulllength S protein 

92% Alpha B.1.1.7 (85.7%), Beta B.1351 

(81.17%), Delta B.1617.2 (65.35%) and 

Omicron variants (56.9%) 

Monovalent 2–8 ℃ (6 

months) 

[148,149] 

*: Efficacy against original strain and protection from severe infections; **: Bivalent COVID-19 vaccine approved by the Food and Drug Administration (FDA). 
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8.2. Live virus vaccines 

Live virus vaccines, also called live attenuated viral vaccines, are designed using virulence gene 

knockout and codon pair deoptimization concepts by passing the weakened viruses through cell 

cultures to produce non-pathogenic vaccines with the inherent ability to induce lifelong innate 

immunity [156]. The codon pair deoptimization-based method was used by Trimpert et al. [157] to 

mutate the S protein by knocking out an amino acid at position 283 on the spike protein to 

genetically modify the SARS-CoV-2 genes and thus attenuate the virulence of the virus [158]. Codon 

pair deoptimization, also known as synthetic attenuated virus engineering, is a novel technique that 

utilizes suboptimal or underrepresented codon pairs to achieve attenuation of recorded  

SARS-CoV-2 [156]. The strategy involves synthetic recording of viral genomes that alters the 

positions of synonymous codons, thereby increasing the number of suboptimal codon pairs and CpG 

dinucleotides in recorded genomes [159]. However, the retained viral amino acid sequences induce 

innate, mucosal, cellular and humoral immunity against viral structural and nonstructural proteins 

and also protect the upper respiratory tract through nasal inhalation [2]. Live attenuated viral 

vaccines are very reactive, although there are potential safety concerns for individuals with 

weakened immune systems due to the reverse genetics of virulent strains. At the moment, no live 

attenuated viral vaccine has been approved for use by the WHO. However, COVI-VAC and 

MV-014-212 vaccines were approved for clinical trials [159]. 

8.3. Viral vector-based vaccines 

The viral vector vaccines are engineered viruses with replication attenuated (Adenovirus shell) 

carrying DNA encoding a SARS-CoV-2 viral protein capable of evoking strong Th1 immune 

responses. Non-replicating viral vector-based vaccinations convey genetic material of a specific 

antigen to the host cell in order to stimulate immunization against the targeted antigen [160,161]. 

Vaccinations based on viral vectors are not new: “(a) high-efficiency gene transduction; (b) highly 

selective delivery of genes to target cells; and (c) generation of powerful immune responses and 

improved cellular immunity” are the benefits of viral vectors. There are seven viral vector-based 

vaccinations in use as of June 2021 [159]. Two of them are for the Ebola virus, and five are for the 

COVID-19 virus. The viral vector-based vaccines approved by WHO for emergencies are AZD1222 

(AstraZeneca-University of Oxford) and Ad26.COV-2-S (Johnson & Johnson) [162] (Table 1). 

8.4. Virus-like particle vaccine 

The SARS-CoV-2 viral-like particle vaccines are empty virus shell without infectious viral 

genome. They are non-infectious assemblies of viral structural proteins with very good adjuvant 

potential to induce strong immune response [156]. Virus-like particle vaccines induce both humoral 

and cellular immune response through action of binding unto the ACE2 on the S protein [163]. The 

biology and safety of virus-like particle vaccines is well established, as is the technology     

process [156]. A very good example of a SARS-CoV-2 viral-like particle vaccine produced by 

Premas Biotech is Triple-Antigen vaccine [159]. 
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8.5. mRNA vaccine 

The concept of an mRNA-based vaccine dates back to years of designing therapeutics to 

address cancer and other infectious diseases. This technology involves the in vitro synthesis of 

antigen-encoding mRNA capable of stimulating the production of specific proteins to induce strong 

humoral and cellular immune responses [164,165]. BNT162b2 by Pfizer-BioNTech and mRNA-1273 

by Moderna Biotechnologies Inc. are the most effective mRNA vaccines authorized by the FDA and 

WHO for emergency use against SARS-CoV-2 [154,166] (Table 1). The choice of BNT162b2 and 

mRNA-1273 is predicated on the strong Th1 and GC B cell immune responses exerted by the 

nucleoside-modified mRNA encoding the full-length S protein encapsulated in lipid nanoparticles, 

vector, viral protein or polypeptide [167]. COVID-19 vaccines can only convey the genetic 

information of the antigen by synthesizing the corresponding DNA or RNA of the viral protein [168]. 

Messenger RNA vaccines are stored at low temperatures to avoid degradation (temperatures of −80 

to −60 ℃ for BNT162b2 and−25 to −15 ℃ for mRNA-1273). 

8.6. DNA vaccine 

DNA vaccines are produced from genetically engineered plasmids that contain viral antigens. 

This vaccine platform containing the viral antigens uses a vector to deliver itself into the host cell in 

order to initiate the production of viral proteins by transcription in the nucleus and translation in the 

cytoplasm to induce strong immunogenicity. The prospects of DNA vaccine research on HIV, malaria 

and influenza have shown remarkable progress over the years [169]. The most common COVID-19 

DNA vaccines in clinical trials include INO-4800 COVID-19 vaccine, AG0301-COVID-19 vaccine, 

and nCov vaccine; however, no DNA vaccine has been approved for emergency use by the    

WHO [170]. Furthermore, studies have shown that DNA vaccines are safe, are more stable than 

mRNA vaccines, have a low production risk and can be stored for a long duration either in 

refrigeration or at room temperature, but they have been shown to induce slow immune    

responses [171,172]. 

8.7. Protein subunit vaccines 

Protein subunit vaccines are primarily recombinant proteins engineered from antigenic proteins 

of the full-length SARS-CoV-2 spike glycoprotein using an established cell expression system such 

as the baculovirus-Spodoptera frugiperda (Sf9) insect cell expression system, yeasts, bacteria and 

human embryonic kidney cells [173]. The process involves the selection of a gene that encodes the 

spike glycoprotein or receptor binding domain (RBD), followed by fusion of the encoded gene with 

an adenovirus [159]. Reports have shown protein subunit vaccines capable of eliciting Th1 cell 

immunogenicity. At the present, NVX-CoV2373 (Novavax) is the only protein subunit vaccine 

approved by the WHO for emergency use [173] (Table 1). Protein subunit vaccines are easy to 

produce, safe, robust and more effective. 
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9. Bivalent COVID-19 vaccines 

The evolution of the omicron variant (BA.1), whose target spike (S) glycoprotein and receptor 

binding domain contain a staggering number of mutations, makes it highly transmissible with high 

records of hospitalization and reinfection. Considering the concerns, the attention of public health 

personnel on the threats posed by the omicron variant (BA.1) to the efficacy and effectiveness of the 

COVID-19 vaccines as a matter of emergency led to the creation of bivalent COVID-19    

vaccines [166]. A bivalent COVID-19 vaccine, also called an "updated" COVID-19 vaccine booster 

dose, is a formulation that houses the original virus strain, which provides broad immunity against 

COVID-19, and the omicron variant (BA.1), which provides better protection against COVID-19 

caused by the omicron variant (BA.1) [174]. The first of this kind approved by the FDA were 

produced by Pfizer-BioNtech (containing 15 μg of mRNA directed against the ancestral strain of 

SARS-CoV-2 and 15 μg directed against BA.1) and Moderna (containing 15 μg of mRNA directed 

against the ancestral strain of SARS-CoV-2 and 15 μg directed against BA.1) [141] (Table 1). 

The FDA’s Vaccines and Related Biological Products Advisory Committee report shows that the 

research findings of Pfizer–BioNTech and Moderna revealed not much significant difference (1.5 to 

1.75 times as high) in titer values of the bivalent COVID-19 vaccine compared with the monovalent 

boosters [141]. The gradual replacement of the omicron BA.1 strain by the more immune-evasive 

and contagious omicron sub-strains BA.4 and BA.5 caused the FDA to authorize the immediate   

use of the bivalent COVID-19 vaccine as agreed by the US Government led by the Biden 

administration [174]. However, research findings from David Ho and colleagues examining the 

levels of neutralizing antibodies against BA.4 and BA.5 strains in individuals after the monovalent 

and bivalent COVID-19 vaccines were administered depict no significant difference in neutralization 

of the SARS-CoV-2 variant, including the antibodies against BA.4 and BA.5 strains [136]. Similarly, 

report findings from Barouch and colleagues also revealed no clinical difference in the CD4+ or 

CD8+ T-cell responses between participants in the monovalent booster group and those in the 

bivalent booster group [141]. This outcome could be attributed to the primed memory response 

mechanism already initiated by the immune cells of previously vaccinated individuals against the 

ancestral SARS-CoV-2 on epitopes shared between BA.4 and BA.5 and the ancestral strain [142]. 

A more robust strategy is in place to develop BA.4 and BA.5 mRNA vaccines with a greater 

quantity of BA.4 and BA.5 mRNA to target specific epitopes peculiar to the BA.1 strain and 

sub-variants (of BA.4 and BA.5). This was evidently proven through BioNTech’s published data on 

its bivalent vaccine containing the BA.1 strain, which showed significant BA.1 specific neutralizing 

antibody responses compared to individuals vaccinated with the monovalent vaccine containing   

30 or 60 μg of BA.1 mRNA or a bivalent vaccine containing 30 μg of BA.1 mRNA and 30 μg of 

ancestral strain mRNA [141]. From the findings so far, it is obvious that the bivalent     

COVID-19 vaccine elicits similar immune responses as a booster vaccine with the monovalent 

vaccines [141,142]. Considering the trend of continued mutations as observed on the spike (S) 

glycoprotein and receptor binding domain (RBD) of SARS-CoV-2, which led to more 

immune-evasive strains such as BQ.1, BQ.1.1, BF.7, XBB and XBB.1, the attention of researchers 

and clinicians might be tailored toward the design and development of variant-specific vaccines for 

future interventions [141]. 
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10. Conclusions 

The authorization of therapeutics and vaccines by the WHO and other regulatory bodies has 

gone a long way toward conferring immunity and protection against SARS-CoV-2. However, the 

continued mutations as observed on the spike (S) glycoprotein and receptor binding domain (RBD) 

which may likely lead to the emergence of new unfamiliar strains is a genuine cause of concern. 

Therefore, constant and steady research is required to improve present knowledge on viral 

pathogenesis and also to design and develop variant-specific vaccines for future interventions. 
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