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Abstract: Mast cells are best known for their involvement in the pathogenesis of allergic reactions 
and inflammation. Due to the wide variety of activation methods and the various mediators that mast 
cells can synthesize and store, they can regulate all stages of the inflammatory process. There are a 
large amount of data describing the role of mast cells in the development of autoimmune rheumatoid 
arthritis, but their role in the development of inflammatory traumatic osteoarthritis remains poorly 
described. However, non-autoimmune cartilage damage is the main reason for joint replacement 
surgeries. As important regulators of the inflammatory process, mast cells could be an interesting 
target for the treatment of osteoarthritis. Herein, we summarize the knowledge about the role of mast 
cells in the pathogenesis of osteoarthritis and outline various approaches that, to varying degrees, 
seem promising for the correction of the disease. 
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1. Introduction 

Mast cells (MCs) are myeloid tissue cells containing a large number of basophilic granules, 
known for their important role in the development of allergies, as well as in the regulation of the 
inflammatory process. MCs granules contain pre-stored mediators that are released in response to a 
stimulus, such as histamine, proteoglycans, or proteases [1]. Moreover, when stimulated, MCs begin 
to synthesize mediators de novo, such as various cytokines, chemokines, and growth factors [1]. It 
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should be noted that MCs are characterized by a differential release of their mediators; depending on 
the stimulus, a different set of factors are synthesized and secreted by cells [1,2]. Due to this and a 
unique set of mediators, mast cells are involved in all stages of inflammation, from its initiation to 
wound healing [3]. 

Osteoarthritis (OA) is a common cause of population disability. Regardless of the reasons for 
the disease initiation, whether it be trauma, aging, obesity or genetic causes, OA is largely 
inflammatory [4,5]. The important signs of joint inflammation are infiltration by immune cells, the 
growth of catabolism enzymes and the synthesis of pro-inflammatory cytokines and chemokines [5,6]. 
And a large role in the regulation of the inflammatory process belongs to MCs, which, due to the 
large spectrum of regulatory molecules and the presence of differential secretion, can “orchestrate” 
other cells [3]. 

In the joint, MCs are located in the subintima of the synovial membrane, capsule, and 
periarticular fat, and generally play a negative role in the development of OA [7]. Genetic and 
pharmacological depletion of MCs leads to a decrease in the severity of symptoms in experimental 
OA models [8]. Moreover, injection of MCs causes histopathological changes of OA in cartilage, 
although without pain and swelling [9]. Injection of MCs after the development of OA aggravates the 
disease, and this effect is leveled by the membrane stabilizer Tranilast [9]. 

With the development of OA, an increase in the number of both degranulated and intact MCs 
has been shown [7]. At the same time, there is a clear positive correlation between the amount of 
MCs and synovial inflammation, as well as pain assessed by the visual analog scale (VAS) and 
Knee injury and Osteoarthritis Outcome Score (KOOS) scores [10–12]. It has also been noted that 
the number rather than the percentage of degranulated MCs correlates with pain and cartilage 
damage [11]. 

Recruitment of new MCs seems to occur due to the secretion of stem cell factor (SCF) by 
various synovial cells, including fibroblasts, monocyte/macrophages, and endothelial cells [13]. SCF 
binds to the c-kit receptor, which is present only on MCs in adulthood, causing progenitor division, 
maturation, and chemotaxis [13,14]. Drugs targeting c-kit and MCs maturation such as Imatinib [8] 
and Sorafenib [15] have been shown to reduce experimental OA. 

In osteophytes developing in OA, an increase in the number of MCs has been shown, mainly 
due to migration of the precursors from the bloodstream; however, recruitment from the subchondral 
bone is also possible, and the differentiation and maturation of MCs are largely provided by the 
components of synovial fluid [16]. Apparently, the environment that forms in osteoarthritis causes 
additional recruitment of MCs, which creates a vicious circle of inflammation. 

Thus, a clear correlation between the MCs number, their morphological and functional status 
and the degree of OA development strongly suggests that MCs play a significant role in the 
pathogenesis of OA. Below we will consider in more detail which pathways of MCs activation and 
which of their mediators may be involved in this process. We also summarized which MCs-targeted 
pharmacological approaches have already shown some success in experimental or clinical studies 
and could already be used to treat OA. 
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2. Mast cell activation 

2.1. Immunoglobulin E (IgE) 

IgE is widely known as an activator of MCs in immediate hypersensitivity (type I) allergic 
reaction. However, the role of IgE and its ability to activate MCs cannot be underestimated in OA. In 
a model of experimental OA, cartilage damage, osteophyte formation, and synovitis were 
significantly less expressed in IgE-deficient and anti-IgE neutralizing antibody recipient mice [8]. 
Pilot clinical trials in humans have shown the efficiency of anti-IgE therapy [17]. A similar effect has 
been detected in mice with a deficit of the IgE high-affinity receptor (FcεRI) and in pharmacological 
inhibition of downstream signaling caused by the Syk agonist PRT062607 [8]. 

Activation of IgE receptors on MCs causes the calcium-dependent release of pre-stored 
mediators from granulae, which is reviewed hereinafter [8]. At the same time, phosphoinositide 
3-kinases (PI3K), extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases (JNK), 
nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and protein kinase C (PKC) 
are also activated, initiating the synthesis of mediators de novo, the first being metabolites of 
arachidonic acid, cytokines, chemokines, NO, and reactive oxygen species (ROS) [1,18]. 

In spite of the great role of IgE in its pathogenesis, OA does not appear to be a typical allergic 
reaction, and the problem of antigen for immunoglobulin is still open. Some authors suppose that 
exogenous allergens or cartilage breakdown products may become antigens [8]. On the contrary, 
MCs activation mechanisms by IgE not bound with antigens have been described [19]. It is 
interesting that the general level of IgE (particularly Dermatophagoides farinae-specific IgE) in 
serum correlates with an increased risk of OA development [20], and allergy cases appear more often 
in patients with OA [21]. It seems that the presence of IgE, both free and bound with antigens, may 
increase OA development whilst not being its initiator. 

2.2. Damage-associated molecular patterns (DAMPs) 

The development of traumatic osteoarthritis occurs after trauma and tissue damage, and DAMPs 
that are released in damaged tissues play the main role in initiating this process [22]. DAMPs include 
components of destroyed extracellular matrices, high-mobility group box 1 protein (HMGB1), heat 
shock proteins (HSPs), uric acid, altered matrix proteins, and S100 proteins. DAMPs play an 
important part in the initiation and development of OA (for detail, see [23]). Briefly, activation of the 
receptor for advanced glycation end-products (RAGE) and Toll-like receptors (TLRs) causes the 
release of matrix metalloproteinases (MMPs), ROS, cytokines, and chemokines by innate immunity 
cells, which are present in the synovial membrane. This causes a further increase in the inflammatory 
response. There are different types of TLRs on the membrane of MCs, and their activation causes the 
de novo synthesis and secretion of cytokines, chemokines, and phospholipid metabolites [24]. It has 
been shown that extra domain A of fibronectin (FN-EDA), which is gained by protease-infused 
fibronectin breakdown, is a ligand for TLR4 and causes dose-dependent secretion of tumor necrosis 
factor α (TNFα), interleukin 6 (IL-6), and IL-1β [25]. In experimental OA, an intra-articular 
injection of the inhibitor of TLR4 TAP2 has been shown to decrease cartilage degeneration and 
reduce pain [26]. It is interesting that lubricin (proteoglycan 4, Prg4), produced by the surface cells 
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of cartilage, may concurrently bond with TLR2 and TLR4, thus being capable of inhibiting the 
inflammatory process in OA [27,28]. 

Another important DAMP receptor, RAGE, bonds with glycation end-products (AGEs), besides 
its reaction to such DAMPs as HMGB1, S100 proteins, and amyloid-β protein. RAGE activation 
causes noticeable exocytosis and histamine secretion by MCs and increases ROS production, while 
the cytokine profile remains unchanged [29]. Blocking RAGE with anti-RAGE monoclonal antibody 
(mAb) causes a dose-dependent reduction in exocytosis [29]. 

NLRs are “non-classic” DAMP receptors because, rather, they are sensors of 
pathogen-associated molecular patterns. Nucleotide-binding oligomerization domain (NOD)-, 
leucine-rich repeat (LRR)-, and pyrin domain-containing protein 3 (NLRP3), alongside other 
proteins, form a multimeric structure named “the inflammasome,” and its activation depends on the 
TLR activation on a cell [30]. Apparently, NLRP3 plays an important role in the development of OA 
and synovial inflammation (for detail, see [31]). NLRP3, similar to other DAMP sensors, is 
expressed in many cells of the synovial membrane, although it is not particularly shown for MCs. 
However, there is information about the presence of NLRP3 in endometrium MCs, and its activation 
increases the inflammatory response [32]. 

2.3. Complement 

The complement system is known primarily for its antimicrobial activity, but more and more 
information is accumulating about the regulatory influence of individual components in 
non-inflectional inflammation. Components C3, C5, C7, and C9 are found in the synovial fluid of 
patients with OA [33]. The formation of the last C5b–C9 membrane–attack complex (MAC) 
enhances the inflammatory response, and the genetic depletion of the C5 and C6 components reduces 
the severity of cartilage destruction in experimental OA [33]. The complement anaphylatoxins C3a and 
C5a can be MCs activators and chemoattractants [34,35]. It is interesting that the mechanism of MCs 
degranulation differs from that of IgE during complement activation and is associated with the fusion 
of individual granules with the membrane and the weaker production of cytokines [34]—although, at 
the same time, the complement potentiates IgE-dependent mast cell activation and degranulation [36]. 

It has also been shown that MCs themselves can synthesize and secrete complement 
components C1q, C3, and C5, while secreted tryptase and chymase can cleave C3, converting it into 
the active form C3a [37]. In general, preliminary in vitro experiments have shown success in 
preserving chondrocytes by inhibition of C3a with antibodies [38], as well as in reducing cartilage 
degeneration and inflammation in experimental OA using chondroitin sulfate (CS) E 
oligosaccharides due to inhibition of the MAC by targeting C5 [39]. 

2.4. Nerve growth factor (NGF) 

As already noted, the number of MCs positively correlates with pain in OA. An important role 
is played by the activation of MCs by NGF. During inflammation in the joint, NGF production is 
increased by various cells of the synovial membrane, and the expression of its tropomyosin receptor 
kinase A (TrkA) receptor on MCs and sensory neurons also increases; in OA, there is a noticeable 
clustering of peptidergic fibers and MCs. In response to TrkA activation, MCs synthesize 
prostaglandin D2 (PGD2), which, by activating the DP1 receptors on neurons, leads to the 
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emergence of an action potential and pain sensations [40]. In addition, activation of TrkA on MCs 
themselves leads to their secretion of histamine, which causes pain hypersensitivity [1,41]. 

A systematic analysis of anti-NGF therapy (tanezumab) showed a decrease in pain in patients; 
however, in some cases, cartilage deterioration was observed, and animal studies have provided 
conflicting results depending on the timing and dose of the drug [42]. The use of the TrkA blocker 
AR786 has also been shown to lead to a reduction in pain and, in general, contributed to the 
reduction of synovitis, although it had no effect on the cartilage itself [43]. Apparently, NGF is not 
one of the main factors in the development of cartilage damage in OA, although it significantly 
affects pain. 

2.5. Substance P 

An important polypeptide neurotransmitter responsible for the appearance of pain is substance P, 
secreted mainly by afferent fibers, as well as by MCs themselves [44]. A clear colocalization of nerve 
endings containing substance P with MCs has been shown in OA [45]. Interestingly, the activation of 
TK by substance P does not occur through interaction with canonical neurokinin-1 receptor (NK1R), 
but rather through Mas-related G-protein-coupled receptor 2 (MRGPRX2), which leads to the 
secretion of PGD2, cytokines, and chemokines, attracting more inflammatory cells to focus [1,46]. In 
general, this is indirectly confirmed by conflicting data on the use of NK1R blockers for the 
treatment of OA and the relief of pain [47]. At the same time, MRGPRX2 antagonists clearly prevent 
the activation of MCs, although their action for the treatment of OA has not yet been shown [48]. 

3. Pre-stored mediators 

3.1. Biogenic amines 

The main mediator pre-stored in MCs granules is histamine. Histamine has many biological 
functions that depend on its receptor, the primary ones being provided through H1R: Vasodilation, 
increased vascular permeability, platelet aggregation, and the stimulation of the production of 
adhesion molecules, cytokines, and chemokines [49]. In the joint, histamine receptors are located on 
chondrocytes, synovial fibroblasts, various immune cells, and the endothelium [49]. Cross-sectional 
analysis has shown that H1R blocker intake is associated with a decrease in the severity of OA in 
patients [50]. Another retrospective study also showed a decreasing trend in structural progression in 
knee OA while taking antihistamines [51]. However, convincing prospective studies on the 
effectiveness of antihistamine therapy in OA, including animal models, have not been conducted. 

Another important biogenic amine of MCs is serotonin, and it plays an important role in pain 
formation. Interestingly, serotonin has both hyperalgesic and analgesic effects, depending on the cell 
type and location. At the periphery, serotonin predominantly potentiates pain, and many of its 
receptors may be involved in this process [52]. In an adjuvant-induced arthritis model, serotonin 
depletion reduced the severity of the disease, which may rather indicate a negative role for 
serotonin [53]. There is also evidence that serotonin is associated with increased pain in rheumatoid 
arthritis (RA) [54,55]. In part, this effect may be due to an increase in prostaglandin E2 (PGE2) 
synthesis by synovial cells [56]. However, the role of serotonin and the regulation of its activity in 
OA has not yet been studied. 
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3.2. Proteoglycans 

Mast cell proteoglycans are stored in granules and are ionically bound to proteases such as 
tryptase, chymase, and various exopeptidases. Interestingly, during secretion, the protease–
proteoglycan complex remains intact, although tryptase more often dissociates at a neutral pH (for 
more detail, see [57]). Heparin itself has a known anticoagulant property, although the level of 
activation of the coagulation pathway increases in arthritis [58]. As a thrombin blocker, heparin may 
also have a therapeutic effect on OA, although endogenous amounts from MCs are insufficient to 
detect significant effects [59]. Chondroitin sulfate and hyaluronic acid are important components of 
the cartilage extracellular matrix and can be used to treat OA [60,61]. At the same time, it has been 
shown that chondroitin sulfate and hyaluronic acid are able to stabilize MCs, prevent 
pro-inflammatory mediator secretion, and reduce their proliferation [62,63]. 

3.3. Enzymes 

According to the content of neutral proteases, MCs are divided into several subtypes. 
Tryptase-chymase MCs (MCTC) contain tryptase, chymase, and cathepsin G, and there are also 
tryptase-only MCT and chymase-only MCC. MCC are localized mainly in the mucous membranes of 
the gastrointestinal tract, skin, and bronchi [64]. Normally, 60% of all MCs present in the joint are 
MCTC, but in OA, an increase in MCT is observed, although MCTC remains the same in absolute 
numbers [65]. In OA, tryptase is primarily known for destroying the extracellular matrix, chondrocyte 
apoptosis and stimulation of pro-inflammatory molecules secretion by synovial cells [8,66]. 

Tryptase has two isoforms, α and β, and β-trypatase has protease activity, while the α form is 
proteolytically inactive [67]. Interestingly, in OA, the level of β-trypatase in the synovial fluid 
increases to a greater extent than in RA, and this positively correlates with the level of histamine, 
which may indicate anaphylactic degranulation of MCs [68]. However, tryptase activity in the 
synovial fluid has been noted to still be higher in RA than in OA, although tryptase is equally 
elevated in the synovial membrane [69]. Apparently, in OA, the greater amount of tryptase is 
compensated by a decrease in its activity.  

Interestingly, the expression of protease-activated receptor (PAR)-2 on the MCs in OA is very 
low, that is, tryptase does not additionally activate MCs, stimulating them in the synthesis of 
pro-inflammatory mediators, such as IL-8 [69]. However, in OA, PAR-2 expression is increased in 
chondrocytes, apparently after activation by pro-inflammatory cytokines IL-1β, TNFα, and 
transforming growth factor β (TGFβ) [70]. In turn, this increases cartilage degradation, premature 
aging, and chondrocyte death [71]. The use of the PAR-2 antagonist AZ3451 or monoclonal 
antibodies prevents this effect and reduces the severity of OA in animals [71,72]. In addition, PAR-2 
is present on osteoblasts and osteoclasts of subchondral bone, and its activation leads to an imbalance 
in osteogenesis and bone resorption [73]. Inhibition of tryptase itself by APC366 has been shown to 
significantly reduce cartilage damage, osteophyte formation, and synovitis in experimental OA [8]. 

The enzymes secreted by MCs also include arylsulfatases, carboxypeptidase A, kinogenases, 
MMPs, peroxidases, and phospholipases, which actively degrade the extracellular matrix. In general, 
MCs are not a unique source of these enzymes, as they are also produced by synovial membrane 
cells, chondrocytes themselves, blood cells, etc. At the same time, therapy aimed at suppressing the 
activity of proteases has therapeutic potential in OA (discussed in more detail in [74,75]). 
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3.4. Polypeptides 

As part of MCs granules, various polypeptides involved in the regulation of the inflammatory 
response are stored. In general, these polypeptides are not a unique product of MCs and are 
synthesized by many other types; however, the pathophysiological effect of these mediators cannot 
be ignored. It has been shown that the concentration of CRH [76], endothelin-1 [77], and 
bradykinin [78] increases in the synovial fluid of patients with OA. Endothelin-1 has a catabolic 
effect on cartilage, increasing the secretion of MMP-1 and -13, and NO by articular chondrocytes 
and synoviocytes [79–81], and blockade of the ETB receptor alleviates the OA-like cartilage 
phenotype [82]. Bradykinin is a pro-inflammatory mediator and induces the secretion of PGE2, IL-6, 
and IL-8 by synoviocytes and chondrocytes, and blockade of its B2 receptor by Icatibant and 
Fasitibant has a therapeutic effect in OA [78,83]. 

Some of the MCs peptide mediators may be protective in OA. Somatostatin and its chimeric 
peptide with a growth hormone fragment have therapeutic potential in OA, with the latter even 
reducing cartilage degradation to a greater extent than hyaluronic acid [84,85]. Urocortin is able to 
inhibit the induced apoptosis of chondrocytes, and the mechanism seems to be related to the influence 
on Ca2+ influx and regulation of the mechanosensitive channel by the Piezo1 channel [86,87]. 
Vasoactive intestinal peptide, which is also produced by nerve endings, plays a role in the 
pathogenesis of pain in OA. On the one hand, there are data showing the pro-inflammatory effect of 
VIP, which consists of sensitizing nerve endings, as well as stimulating the production of 
pro-inflammatory cytokines, but on the other hand, its modulating effect on the CRH system, 
particularly on increasing the expression of urocortin, shows its anti-inflammatory side [88]. 
Interestingly, the MCs tryptase and chymase can cause degradation of VIP and substance P, which 
makes the system of interaction between various MCs mediators even more complex [89]. 

4. De novo synthesized mediators 

When activated, MCs, like many other immune cells, also begin to synthesize and secrete 
various inflammatory mediators, such as cytokines, chemokines, growth factors, arachidonic acid 
metabolites, and nitric oxide. The role of most of these in the development of OA deserves a separate 
detailed consideration; herein, we briefly consider their main functions. 

4.1. Cytokines 

The most powerful inducers of cartilage degradation are the members of the IL-1 family IL-1α 
and IL-1β. In OA, IL-1 stimulates the synthesis of MMPs and inhibits the synthesis of type 2 
collagen and proteoglycans by chondrocytes, providing a catabolic effect, and stimulates the 
secretion of IL-6 and TNFα, providing a pro-inflammatory effect. The use of recombinant interleukin 1 
receptor antagonist (IL-1RA), a protein of the IL-1 family that has an inhibitory effect on IL-1α and 
IL-1β signaling, has shown a pronounced protective effect in animal models, although it has failed in 
clinical trials [90,91]. 

The second most important cytokine involved in the pathogenesis of OA is TNFα. Its catabolic 
and pro-inflammatory effects are well known [92,93]. The use of various approaches for TNFα 
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inhibition may improve the state of patients with OA, as well as improve the results of other 
therapies [94]. 

In cartilage, MCs are one of the main sources of IL-17, although the production of the cytokine 
itself increases to a greater extent in RA [95]. Nevertheless, the pro-inflammatory effects of IL-17 
have been described [96], partly due to its tandem action with IL-1 [97]. 

IL-6 is usually referred to as a pro-inflammatory cytokine; however, its role in OA is not 
actually so clear. On the one hand, an increase in its amount in synovial fluid in OA and its 
concomitant catabolic effects are clearly shown [98], but on the other hand, it is able to inhibit other 
pro-inflammatory agents, which partly determines its protective effect (for detail, see [99]). 
Nevertheless, the blockade of IL-6 itself or its receptor with antibodies may be a promising strategy 
for the treatment of OA [99]. 

Interferon γ (IFNγ) can suppress the synthesis of MMPs by chondrocytes [100], as well as 
reduce the IL-1β-stimulated production of IL-8 and IL-10 [101]. However, synergistically with IL-1, 
IFNγ enhances the production of IL-6, NO, and PGE2, which can be attributed to the 
pro-inflammatory effect of the cytokine, which makes its role in the pathogenesis of OA also 
ambiguous [101]. 

IL-3 is an anti-inflammatory MCs mediator, although it is also secreted extensively by T cells 
and monocytes/macrophages. In OA, IL-3 is able to reduce the secretion of MMPs by chondrocytes 
and, in an in vivo model of OA, reduce cartilage and subchondral bone degeneration [102]. The 
anti-inflammatory cytokines IL-4 and IL-10, secreted by a wide variety of immune cells, also have 
chondroprotective and analgesic effects [103]. IL-13, which is also produced in large amounts by 
T-helpers, reduces the secretion of IL-1β and TNFα in the synovial membrane [104] and can also 
presumably reduce the expression level of adamalysin metalloproteinase 15 (ADAM15) [105]. 

4.2. Growth factors 

In addition to a wide range of cytokines, MCs secrete various growth factors that are 
responsible for the regulation of the inflammatory process and tissue remodeling. The action of 
growth factors such as SCF, which is responsible for mast cell recruitment, and NGF, which mediates 
pain, have been described above. 

Granulocyte–macrophage colony-stimulating factor (GM-CSF) appears to play a significant 
role in the pathogenesis of OA, particularly in pain. GM-CSF blockade with monoclonal antibodies 
reduces pain and cartilage degradation in experimental OA, although therapy should be continual in 
the later developmental stages [106,107]. The mechanism of pain development during GM-CSF 
stimulation is not associated with a direct effect on neurons, but with an effect on macrophages, 
which release factors that activate nociception [108]. 

The concentration of basic FGF (FGF2) increases in the plasma and synovial fluid of patients 
with OA and positively correlates with the degree of cartilage damage, as well as with the number of 
MCs in the synovial tissue [109–111]. FGF2 is able to activate the synthesis of MMP-13 by 
chondrocytes, which leads to the degradation of the cartilage extracellular matrix [112]. On the 
contrary, exogenous FGF2 is used to repair joint tissues, especially in the focal defect model, where 
it is able to increase the expression of collagen-2 and aggrecan, although it strongly promotes fibrosis, 
which makes it unpromising for the treatment of articular cartilage diseases [113–115]. It is assumed 
that the difference in the effects of FGF depends on the balance between the expression of its two 
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receptors: FGFR1 seems to mediate catabolic activity, and FGFR3 is responsible for anabolic 
prochondrogenic effects [116]. 

Another important growth factor secreted by MCs is vascular endothelial growth factor (VEGF). 
In general, its most important effects include stimulation of the secretion of IL-1, IL-6, and MMPs, 
which have a catabolic effect, as well as stimulation of vascular growth, which promotes 
osteogenesis and osteophyte formation [117]. Inhibition of VEGF by monoclonal antibodies is 
considered a potential therapy for OA [118]. 

4.3. Phospholipid metabolites 

One of the most important signaling molecules activated during inflammation is phospholipase 
A2 (PLA2) and activation of the downstream metabolism of arachidonic acid. As a result of 
cyclooxygenase-2 (COX-2) activity, prostaglandins and thromboxanes are formed, and as a result of 
lipoxygenase activity, leukotrienes (LT) are formed [119]. This pathway is characteristic of many cell 
types, including MCs that predominantly secrete LTB4, LTC4, and PGD2 [120]. 

LTB4 and its metabolite LTC4 have not been shown to be clearly involved in the pathogenesis 
of OA in vivo, although some of its pro-inflammatory properties, consisting of increased neutrophilic 
inflammation, have been described for RA [121,122]. Targeted therapy directed against LTB4 has not 
shown much effectiveness in RA [121], and in OA, no significant effect of LTB4 on chondrocytes 
has been observed [123]. Experiments with synovial membrane explants have shown that LTB4 is 
able to stimulate the synthesis of IL-1β and TNFα [124]. 

PGD2 is synthesized by MCs in greater amounts in RA than in OA; however, in both cases, it 
has a pro-inflammatory effect, partly mediated by neutrophil recruitment [125], as well as 
costimulation of the production of COX-2 by chondrocytes [126]. The role of PGD2 in the 
pathogenesis of pain induced by NGF and substance P has been described above. On the contrary, 
when acting on chondrocytes themselves, PGD2 can reduce IL-1-induced MMP-1 and MMP-13 
expression [127] and NO synthesis [128]. Moreover, deletion of the DP1 receptor leads to a 
worsening of OA [129]. This difference in effects seems to be determined by the concentration of 
PGD2 [128]. 

In general, COX-2 blockers (non-steroidal anti-inflammatory drugs) reduce pain and have a 
chondroprotective effect [130], while steroid drugs that block PLA2 activity seem to be effective 
only for a short period of time [131]. 

4.4. Nitric oxide (NO) 

During inflammation in the joint, NO synthesis is triggered by both the chondrocytes 
themselves and the cells of the synovial membrane, including MCs. Inhibition of inducible NO 
synthase (iNOS) leads to a decrease in the synthesis of MMPs, IL-1β, and COX-2 [132]. Moreover, 
the effects of NO include a decrease in the synthesis of collagen-2 and proteoglycans and an increase 
in the synthesis of MMP-9 by chondrocytes, and can also stimulate apoptosis, largely due to the 
combination with superoxide anions and the formation of peroxynitrite (for more detail, see [133]). 
Recent data confirm that NO blockade is able to reduce COX-2 and MMP-3 expression and increase 
collagen-2 and aggrecan expression in chondrocytes, as well as prevent cartilage degradation in 
experimental OA [134]. 
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5. Conclusions 

MCs play a significant role in the pathogenesis of OA. It is worth noting that in addition to 
regulating the progression of the disease itself, MCs appear to be largely responsible for the initiation 
of inflammation in trauma and the onset of pain. MCs-targeted therapy, especially affecting the 
individual links in mast cell activity, may be promising for the treatment of OA (Figure 1). Moreover, 
new therapies can be directed at different parts of the MCs response, and can be different in time, 
simulating the dynamics of the inflammatory response development. Various nanoparticles, 
microspheres, hydrogels, liposomes, etc. can be suitable for this [135,136]. Thus, it is possible to 
develop drug systems that differentially regulate only the activity of MSs and thereby affect other 
links of the inflammatory response. 

 

Figure 1. Pharmacological approaches for MCs secretory activity regulation in 
osteoarthritis (indicated by red font and arrows). IgE: immunoglobulin E; DAMP: 
damage-associated molecular patterns; NGF: nerve growth factor; mAb: monoclonal 
antibodies; TLRs: Toll-like receptors; NLRP: nucleotide-binding oligomerization domain, 
leucine rich repeat and pyrin domain containing protein 3; RAGE: receptor for advanced 
glycation end-products; TrkA: tropomyosin receptor kinase A; MRGPRX2: Mas-related 
G-protein-coupled receptor 2; NK1R: neurokinin-1 receptor; VIP: vasoactive intestinal 
peptide; GM-CSF: granulocyte–macrophage colony-stimulating factor; VEGF: vascular 
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endothelial growth factor; IL: interleukin; COX: cyclooxygenase; NSAIDs: non-steroidal 
anti-inflammatory drugs; TNF: tumor necrosis factor; PGE: prostaglandin E. 
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