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Abstract: The intestinal epithelium consists of a barrier one cell thick found along the length of the 

gastrointestinal tract composed of many cell subtypes such as absorptive enterocytes and secretory 

Paneth cells, Goblet cells and enteroendocrine cells. Primarily known as a cell layer used to absorb 

nutrients from the products of digestion and as a protective barrier from infection, this has changed 

in recent years with numerous discoveries indicating its importance in priming and tolerising 

immune cells. Toll-like receptors are a family of pathogen recognition receptors that are widely 

expressed in human cells including the intestinal epithelium and are known primarily as initiators of 

inflammatory responses. However, recent evidence suggest that they may have a variety of roles and 

are involved in cross-talk with a variety of cell types. This review discusses TLR signalling pathways 

in the context of the intestinal epithelial microenvironment, namely innate and adaptive immune cells 

as well as microorganisms that resident in the lumen of the gut. TLR signalling is not only involved 

in defence against such microorganisms but also in communicating with the underlying immune cells. 

This review describes the many mechanisms by which such communication is executed. It also 

highlights potential sources of variation in such signalling in the general population in particular the 

effects of genetic variation, diversity of the microbiota, concomitant disease, diet and age.  
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1. The gastrointestinal epithelium 

The gastrointestinal epithelium is continually replacing itself while at the same time digesting 

and absorbing food, producing antimicrobial molecules, mucus and communicating with resident 

microorganisms. The epithelium replaces itself every 4–5 days; it maintains its own stem cell niche 

at the base of the crypts of Lieberkuhn [1,2]. These stem cells are responsible for generating 

absorptive cells called enterocytes, responsible for the transport of digested food metabolites from 

the lumen to the blood circulation and secretory cell types such as Paneth cells, Goblet cells and 

enteroendocrine cells [3]. The lumen of the GI tract is home (either transiently or more permanently) 

to trillions of bacteria, fungi and viruses. Most of these microorganisms are not immediately harmful 

to the host with some intimately involved in host food and xenobiotic metabolism as well as vitamin 

production. Others produce molecules such as bacteriocins capable of destroying pathogenic bacteria. 

Many of these microorganisms are in constant communication with host cells directly or indirectly, 

sometimes releasing effector molecules, other times involving direct cell-to-cell interactions or 

phagocytosis [4,5].  

 

Figure 1. Apical and basolateral communication of intestinal epithelial cells via TLR 

induced signalling. Apical TLR signalling via microbial interaction in the lumen is 

responsible for a number of defence mechanisms including A. tight junction (TJs) protein 

expression; B. Mucus production; C. Antimicrobial peptide production; D. Polymeric 

Immunoglobulin A Receptor (pIgAR) expression. Basolateral release of cytokines and 

chemokines results in signalling with distinct populations of innate and adaptive immune 

cells (indicated in figure) in the lamina propria. 

On the basolateral (serosal) side of the epithelial cell layer, there is a substantial number and 

diversity of immune cells in direct contact with the epithelium. These include antigen presenting 

cells such as dendritic cells and macrophages [6]. There is also a substantial population of 

intraepithelial lymphocytes [7] as well as cells located in the underlying lamina propria [8,9] or 
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discrete follicles such as Peyer’s patches [10] that contain innate, innate lymphoid and lymphoid 

populations [11] (Figure 1). In addition, there are leukocytes that traffic to the intestine where they 

undergo antigen induced activation and priming [12]. These cells react to threats and defend the host 

when needed but not to overreact to innocuous antigens present in food, for example. How all of 

these cells (host and non-host) communicate has not been fully elucidated yet but there have been a 

number of studies that suggest Toll-like receptors are central to this, in particular in the intestinal 

epithelium [13–15].  

2. Toll-like receptors 

Toll-like receptors (TLRs) are a family of pattern recognition receptors [16] and are a key part 

of the innate immune response. TLRs are capable of recognising pathogen associated molecular 

patterns [16] present in microorganisms as well as danger associated molecular patterns (DAMPs) 

released from host cells. PAMPs from microorganism include lipoproteins and lipopolysaccharides 

(LPS) from the surface of bacterial cells as well as single- and double-stranded nucleic acids from 

bacteria and viruses. TLRs are present at the cell surface as well as intracellularly in endosomes to 

deal with different modes of extracellular and intracellular infection. There are ten TLR family 

members in humans (TLR1-10). TLRs 1, 2, 4, 5 & 6 are localised on the cell surface and thought to 

respond to bacterial molecular patterns whereas TLRs 3, 7 & 8 are endosomal and deal with viral 

infections mostly [17]. Encounters with PAMPs results in receptor dimerization and initiates a 

signalling cascade which culminates in the activation of transcription factors such as nuclear factor 

kappa light chain enhancer of activated B cells (NFκB) and/or interferon regulatory factor 3 (IRF3) [18] 

leading to the synthesis and release of cytokines (e.g interleukin 6) and type I interferons (e.g. 

interferon α/β).  

Most TLRs activate a myeloid differentiation primary response 88 (MyD88)-dependent 

pathway with TLR3 activating a MyD88-independent pathway. TLR4 can activate both pathways. 

TLR expression seems to be present in most human cells although the expression profile and their 

localisation differs between tissues. In the intestinal epithelium, TLRs can localise to the apical 

and/or basolateral surface depending on the family member and cell type [13]. This is thought to 

influence immune responses particularly when there is a breach of epithelial integrity. The regulation 

of TLR expression appears to be tightly controlled with restriction of intracellular localisation and 

negative regulators playing an important role [17]. Loss and gain of function mutations in TLR 

family members can enhance or reduce susceptibility to certain chronic inflammatory conditions 

indicating their importance [19]. This review discusses the role of TLR signalling in intestinal 

epithelial-immune cell cross talk. 

3. TLR signalling in intestinal immune defence 

Within the intestinal epithelium, the primary role of TLRs is to recognise danger and to warn 

neighbouring cells of potential invaders as well as convey to them the contents of the luminal 

environment. However, we now know that TLR signalling can regulate not only innate and adaptive 

immunity but also metabolism, proliferation, repair and cell death [20]. This is achieved through the 
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synthesis of multiple different proteins after TLR signalling that are capable of interacting with 

multiple cell types. This review will discuss some of the mechanisms by which this is achieved with 

specific examples described below.  

As mentioned above, the intestinal epithelium is primarily a barrier to invading bacteria and 

viruses. The major mechanisms used by intestinal epithelial cells to protect the host include 

maintenance of tight junctions, mucus production, antimicrobial release and facilitative antibody 

transport (Table 1). Although it is only one cell thick, this barrier manages to exclude food and 

microorganism through the use of tight junction proteins that bind neighbouring cells together very 

tightly. Such proteins include zonula occludens 1 (ZO-1), ZO-2 and claudins. These proteins block 

the passage of most bacteria between epithelial cells. The regulation of such proteins can vary 

between homeostasis and infection. Homeostatic TLR activation by commensal luminal bacteria (in 

particular TLR2 and TLR4) results in a reorganisation of such proteins in a mechanism dependent on 

protein kinase C, leading to an increase in transepithelial resistance and an increase in IEC survival 

thus strengthening the barrier [10,21–24]. Connexin 43 is also a key protein involved in gap 

junctional intercellular communication and has been implicated in a number of barrier diseases 

including enterocolitis and cancer. TLR2 signalling increases the expression of connexin 43 and 

prevents the occurrence of spontaneous colonic inflammation [25]. TLR2 signalling has also been 

implicated in maintaining the integrity of the underlying enteric nervous system as well as in 

neurochemical coding. As a consequence, this seems to regulate inflammation in the intestine. A 

possible reason for this may be that in the absence of TLR2 there is an alteration in intestinal motility 

and this an alteration in the transit of bacteria through the gut [26]. In the case of infection, it seems 

that TLR4 is also implicated but this time in increasing the epithelial permeability in response to 

lipopolysaccharide [27]. The response may therefore depend on the species of bacteria involved. 

Table 1. TLR-induced defence mechanisms in intestinal epithelial cells. 

Defence mechanism TLR(s) implicated References 

1. Tight junction protein expression 

ZO 1 & Connexin 43  in IECs 

TLR2 10, 21–25 

2. Mucus production 

TFF3 & mucin 2  in Goblet cells 

TLR2 28–31 

 

3. Antimicrobial peptide/enzyme production 

RegIIIγ, RELMβ, CRP-ductin, cathelicidin, β-defensin  in 

Paneth cells 

TLR2 & 4 32–36 

4. Facilitative antibody transport 

sIgAR  in IECs 

TLR3 & TLR4 42, 43 

A second mechanism that the epithelium uses to prevent infection is producing mucus, which is 

a specific responsibility of Goblet cells. Mucus is composed of glycoproteins and trefoil factor 3 

(TFF3). TFF3 was shown to be regulated by TLR2 stimulation via a PI3K/Akt dependent mechanism 

and that the absence of such signalling can enhance susceptibility to colitis [28,29]. TLR ligands and 

commensal bacteria have also been implicated in the mechanism for mucin 2 production in Goblet 

cells recently [30,31]. A third mechanism used is the production of antimicrobial peptides and 
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enzymes by Paneth cells in particular. These proteins include the C-type lectin regenerating islet-

derived protein IIIγ (RegIIIγ), that binds bacterial peptidoglycan; resistin-like molecule β (RELMβ), 

a modulator of macrophage and T cell responses and also promotes the secretion of mucin 2; CRP-

ductin, which agglutinates Gram-positive and Gram-negative bacteria, cathelicidin and β-defensin. 

Their production is dependent on TLR signalling and induction of degranulation [32–36]. Some of 

these peptides such as cathelicidins have themselves been reported to regulate TLR activity [37]. 

During infection with Salmonella tymphimurium, it has been shown that the TLR adaptor MyD88 is 

necessary for the induction of mucus proteins Muc2 and TFF3 from Goblet cells as well as the 

antimicrobial proteins RegIIIγ and RELMβ. MyD88 knockout mice suffer accelerated tissue damage 

and colitis following infection [38]. In a Citrobacter infection model, IEC MyD88 signalling was 

shown to promote barrier function as well as the induction of RegIIIγ amongst many other genes and 

this was thought to contribute to host resistance to infection [39]. 

The fourth major protective mechanism is facilitative antibody transport. Plasma cells induced 

by commensal bacteria-loaded DCs in the underlying lamina propria (LP) [8] produce large 

quantities of polyreactive soluble IgA (sIgA) molecules that can bind many components of different 

microbial species in the lumen [40]. By binding to such bacteria, it can prevent them from coming 

into contact with the epithelium. Recently, IgA was shown to regulate the composition and metabolic 

function of gut microbiota, this is thought to promote colonic homeostasis [41]. The transport of 

dimeric sIgA from the LP requires the polymeric immunoglobulin receptor (pIgR), which is found 

on the basolateral surface of intestinal epithelial cells. From here, the sIgA is actively trancytosed 

into the lumen where it can interact with a subset of commensal and pathogens alike. The expression 

of the pIgR is regulated by TLR3 and TLR4 stimulation [42,43].  

While it seems that TLR signalling predominates in enterocytes, Paneth and Goblet cells, there 

is also some evidence that enteroendocrine cells express functional TLRs [44] and that TLR 

signalling may induce enteroendocrine cells (a subset of epithelial cells – close to 1% of the total) to 

secrete hormones that may induce muscular contraction in the intestine [45] as well as specific 

chemokines such as CXCL1 [46]. It has also been demonstrated recently that these cells increase 

expression of PYY, a hormone central to the control of food intake and gut motility, in response to a 

host of TLR ligands. This study also demonstrated that these responses could be enhanced further in 

the presence of butyrate (metabolites of commensal bacteria) [47]. The mechanisms mentioned 

above limit the ability of bacteria to come in contact with either the epithelium or the underlying 

cells in the lamina propria and in some cases assist in their removal from the lumen. In addition, such 

mechanisms seem to aid in the selection of microbes for colonisation. Many commensals have 

evolved mechanisms to bypass many of these defences such as the ability to digest mucus but 

without the virulence factors associated with pathogens. While certain mechanisms aid in preventing 

microbes from breaching the epithelial barrier, there are also mechanisms of tolerance which prevent 

an overreaction to commensal microbes. For example, it has been reported that a tolerance to 

endotoxin in IECs is developed shortly after birth and this may be dependent on the mode of  

delivery [48].  
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4. TLR signalling in immune cell crosstalk 

In addition to mechanisms involved in limiting microbial access to the epithelium, TLR 

signalling is also directly involved in alerting neighbouring and distant immune cells to potential 

dangers. Most of the mechanisms listed above such as antimicrobial secretion, tight junctions and 

mucus production deal with the apical surface, communication with immune cells is mostly on the 

basolateral side of the epithelium in the lamina propria. Examples of intestinal epithelial-immune cell 

cross talk includes the recruitment of phagocytes, facilitating antigen uptake, inducing the expression 

of integrins and other adhesion molecules, tolerising antigen presenting cells and switching 

phenotypes of lymphocytes [49]. 

Table 2. Effects of TLR-induced signalling to immune cells in the lamina propria. 

Target cell Protein(s) affected Outcome References 

Neutrophils IL8  recruitment 50–52 

 IL6  degranulation 53 

Dendritic cells CCL20  recruitment 55 

 CCL20  extension 64, 65 

 TGFβ & TLSP  tolerance 66–68 

 Retinoic acid  tolerance 67 

Endothelial cells ICAM1 & VCAM1  extravasation 56 

Macrophages FcγRII  phagocytosis 58 

 TNFα, IL12, IL6  Th1 phenotype 59 

 IL10 homeostasis 60 

 MIP2  infiltration 52 

Intraepithelial Lymphocytes  IL-15 TCRαβCD8αα population 75, 76 

 Occludin  dendrite projection 77 

 RegIIIγ  antimicrobial response 79 

 IL23/IL22  antimicrobial response 80 

Regulatory T cells TGFβ  inflammation 82 

B cells BAFF class switch recombination 86 

 TLSP/APRIL class switch recombination 87, 88 

The primary cell targets of epithelial TLR signalling include neutrophils, macrophages, 

dendritic cells and B and T lymphocytes (Table 2). TLR signalling in the epithelium is thought to 

facilitate immune cell recruitment, extravasation and maturation depending on the nature of the 

interaction and often dependent on engagement with commensals or pathogens. Following 

engagement with TLR ligands, epithelial cells can release large amount of the chemokine IL8 known 

to induce neutrophil infiltration into the mucosa [50–52]. It has been shown that in the absence of 

TLR signalling, there is a delayed recruitment of neutrophils to the colon leading to increased 

bacterial colonization in a Citrobacter rodentium infection model [53]. In addition, IL6 release from 

the epithelial cells on engagement with Salmonella tymphimurium is thought to stimulate/degranulate 

neutrophils in proximity in a calcium dependent manner [54]. TLR5 stimulation by pathogenic 
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bacterial strains such as Salmonella but not commensal strains have been shown to mediate the 

migration of dendritic cells via CCL20 release from epithelial cells [55]. The release of these specific 

cytokines from the epithelium has also been shown to indirectly increase the expression of adhesion 

molecules ICAM1 and VCAM1 on endothelial cell walls that facilitate the extravasation of 

leukocytes [56] as well as increasing expression of ICAM1 on epithelial cells and facilitate 

neutrophil adhesion [57]. 

In addition to cell recruitment and facilitating extravasation, epithelial TLR signalling has been 

shown to prime or activate key cell populations in advance of a required response. TLR2 and TLR4 

engagement can mediate phagocytosis and translocation of bacteria across the epithelium as well as 

induce an increase in intestinal barrier permeability, which may facilitate antigen presentation for 

priming the immune cells in the LP [10,58]. TLR4 deficient mice have increased bacterial 

translocation (in particular Escherichia coli) to the mesenteric lymph nodes) compared to their wild-

type littermates [52]. 

TLR engagement can influence the polarization of immune responses particularly for 

monocytes and macrophages in the vicinity of the epithelium. For example, there is an increase in the 

production of Th1 responses on ligation with TLR4 and TLR9 with release of TNFα, IFNγ, IL12 and 

IL6. This can also modulate the phenotype of neighbouring T cells and monocytes in a co-culture 

system [59]. TLR4 signalling has also been shown to generate crosstalk between IECs and 

macrophages leading to increased expression of IL10 in IECs, which is important in maintaining 

intestinal homeostasis [60]. TLR8-mediated signalling in IECs has been shown to prime dendritic 

cells, monocytes and T cells for antiviral responses [61]. In addition, during inflammatory states 

IECs have been shown to establish gap junction intercellular communication with 

monocyte/macrophage cells by augmenting the expression of specific protein such as connexins [62]. 

TLR4 signalling has also been shown to influence macrophage infiltration as well as macrophage 

inflammatory protein 2 (MIP2) expression in the colon in a DSS model of colitis in mice [52]. 

Professional antigen presenting cells are in close proximity to the epithelium [63]. TLR 

signalling has been suggested to promote dendritic cell (DC) extension into the lumen for sampling 

of the small intestine upon engagement with Salmonella species [64,65]. Another mechanism 

described to prime these cells involves the release of transforming growth factor (TGFβ) and thymic 

stromal lymphopoietin (TLSP) from epithelial cells in response to engagement with a variety of 

different commensal bacterial strains via TLRs. Data from studies in co-culture systems suggest that 

such signalling can drive dendritic cells away from Th1 signalling and towards a more tolerogenic 

phenotype [66–68]. It has also been reported that Muc2 derived from IECs may able to imprint DCs 

with anti-inflammatory properties potentially contributing to tolerance of commensal microbes [69]. 

Other contributors to this mechanism include retinoic acid signalling in DCs, which requires TLR 

signalling [70–72]. It seems that lamina propria DCs may respond differently to various molecular 

patterns engaging TLRs and can be quite distinct in their responses and maturation compared to 

peripheral DCs [73]. This may be partly explained by different levels of TLR expression in these 

subsets as well as responsiveness to IL10 [74]. 

Crosstalk between IECs and intestinal intra-epithelial lymphocytes (IELs) is also dependent on 

TLR4 recognition of Gram-negative commensal bacteria involving the release of the T cell growth 

factor IL15 [75,76]. These cells, which mostly consist of T cell receptor (TCR)γδ
+
 and TCRαβ

+
 T 
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cells, are thought to migrate dynamically within the epithelium. They are able to project dendrites 

into the luminal space via a mechanism dependent on occludin which is used for the interaction 

between IECs and the lymphocytes [77]. This process may limit the ability of pathogens (such as 

Salmonella typhimurium and Toxoplasma gondii) to cross the epithelium and thus limits systemic 

disease [78]. IELs can direct an antimicrobial response (via RegIII release) in response to the 

microbiota in the small intestine which is dependent on TLR signalling in the epithelium [79]. These 

cells in coordination with IECs are able to change their behaviour depending on the food or microbes 

present by altering their motility, metabolism and antimicrobial gene expression in a TLR-dependent 

manner [80].  

Regulatory T cells (Tregs) are a subpopulation of T cells (that express CD4, Foxp3 and CD25) 

that play a key role in regulating immune responses to infection and in autoimmunity. 

Fusobacterium nucleatum is a major contributor to periodontal disease and has also been detected in 

patients with inflammatory bowel diseases (IBD). TLR2/4 signalling has recently been shown to 

induce Tregs and to attenuate the inflammation associated with Fusobacterium infection in IECs [81]. 

It has been shown recently that commensal bacteria can play a role in regulating this particular 

population of T cells. Commensal Clostridium species have been shown to induce Foxp3
+
 IL10 

releasing Tregs in the LP of the colon and this is dependent on signals from IECs, particularly TGFβ. 

This has been shown to reduce the incidence of colitis in mice [82]. Cross talk between IECs and 

Tregs are critical in maintaining homeostasis. Studies using mice deficient in Foxp3 highlight the 

importance of TLR signalling in Treg induced homeostasis in the gut by restraining tonic microbial-

dependent proinflammatory signals in IECs [83]. In contrast, segmented filamentous bacteria [84] 

colonisation of the small intestine appears to induce Th17 T cells in the LP possibly by serum 

amyloid A and is protective of Citrobacter infection in mice [84]. IEC and IEL cross talk is also 

evident during Salmonella infection, whereby IECs release IL23 in a TLR-dependent manner in 

response to infection. This in turn is thought to stimulate IL22 release from IELs, which can then 

stimulate Paneth cells to release the bactericidal protein angiogenin 4 into the lumen [85]. 

In addition to interacting with antigen presenting cells and T cells, TLR signalling in epithelial 

cells in response to viral infection for example may be able to influence B cell phenotypes and class 

switching. Data from tonsillar epithelial cells suggest such interactions involve epithelial TLSP 

triggering the release of B-cell activating factor (BAFF) [86] from dendritic cells in response to viral 

RNA and inducing the expression of cytidine deaminase resulting in class switch recombination 

(CSR) in B cells [86]. In IECs, it was demonstrated that commensal bacteria recruit and trigger LP B 

cell IgA2 CSR by releasing a cytokine called a proliferation inducing ligand (APRIL) from DCs in a 

TLR-dependent manner also via TLSP. This mechanism was shown to be T cell independent [87,88]. 

Recently, TLR5 activity in the IEC has been shown to be necessary to induce effective antibody 

responses to a seasonal influenza vaccine. More specifically, it seems TLR5 signalling combined 

with the microbiota impact on primary and secondary B cell responses [89]. Recently, it was shown 

that Gram-negative commensal gut bacteria also induce antigen-specific IgG under steady state 

conditions. This requires TLR4 signalling and is thought to have a protective role in preventing 

systemic infections by opsonising pathogens [8]. 

As well as alerting immune cells to potential dangers, TLR signalling has been reported to be 

involved in the maintenance of gut homeostasis as well as repair. A seminal study by Medzhitov and 
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colleagues reported that TLR-mediated recognition of commensals in the colon regulated the 

production of tissue protective factors and TLR signalling protects from mortality caused by 

intestinal epithelial injury [9]. Recent examples include a key role for TLR1 in the intestinal 

epithelium. A deficiency in TLR1 was associated with mucosal-associated bacteria, gut permeability 

and a reduction in wound healing as well as systemic bacteria and an elevated innate immune 

response [90]. In another report, TLR5 expression in IECs but not DCs was identified as being 

necessary for homeostasis as mice deficient in IEC TLR5 developed low-grade inflammation, an 

altered microbiota and increased susceptibility to colitis [91]. TLR9 signalling has also been reported 

to maintain homeostasis and even protect in certain cases of colitis by conferring intracellular 

tolerance to subsequent TLR challenges [92]. TLR signalling also influences the development of 

certain discrete cell populations in the epithelium. For example, TLR4 may regulate the development 

of mucus producing Goblet cells via Notch signalling in the small intestine [93]. TLR signalling has 

been linked with regulation in the microbiota composition in particular the numbers of mucus-

associated and opportunistic bacteria [94]. Taken together, these findings suggest that TLR signalling 

in the intestinal epithelium is involved in many diverse activities necessary for survival and 

immunological defence. 

5. TLR regulation and variation 

While there is considerable evidence to suggest that TLR signalling plays an important role in 

immune cell crosstalk, there are a number of questions that arise from the studies cited above. Firstly, 

how translatable are such findings? The studies described above were mostly conducted with isolated 

populations or cell lines in vitro or using in vivo animal models where there is a higher degree of 

uniformity of conditions. For example, cell culture conditions are often kept standardised across 

many experiments and rodents are usually fed a very similar diet and housed in similar conditions 

within studies. Many of the biochemical findings described may be products of this uniformity. 

However, this may not be the case in the human population. There has already been a number of 

reports that indicate that there is variation in the genetic sequences that code for TLRs and these can 

influence individual susceptibility to infection and inflammation [19]. There is also evidence that 

TLR expression levels are not uniform and that there is also considerable regional variation in not 

only immune cell populations but the diversity of the microbiota that can induce some of these 

events [4,95,96]. It is important therefore to consider what factors are likely to induce such 

differences and how this might explain variation in the general population. Factors such as genetics, 

concomitant disease, microbiota diversity/density, diet as well as age are plausible sources of 

variation within the wider population.  

Another question which arises from studies cited above is how uniform is TLR expression in 

the GI epithelium and will there be TLR signalling variation? A very recent study examined the 

temporal and spatial expression patterns of a subset TLRs in the mouse GI tract. This revealed a 

distinct pattern of TLR expression in the small intestine and the colon intestinal epithelium. Most 

notably, the authors reported the restricted expression of TLR5 to Paneth cells in the small intestine 

and that TLR signalling induced the expression of a distinct subset of defence genes that did not 

include antimicrobial peptides. These instead were induced indirectly via cytokine signalling in 
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proximal immune cells [97]. Studies with cell lines have revealed that intestinal epithelial cell TLR 

expression may be relatively low rendering cells unresponsive to TLR ligands, in particular TLR4 [98].  

For many of the cell-based in vitro models cited above, there isn’t the same degree of cell 

polarization that is found in vivo. Cell localization of protein is a key determinant of TLR signalling. 

As mentioned above, TLRs can be expressed at the cell surface or intracellularly. For intestinal 

epithelial cells, this is complicated further by the positioning of cell surfaces at the apical (luminal) 

and basolateral (serosal) sides. TLR localization is thought to be crucial in determining the extent 

and type of inflammatory response. Previous studies have demonstrated differential cytokine 

responses depending on whether receptor signalling occurs from the apical or basolateral side of the 

epithelium ([99]. This can be determined by chaperone proteins such as UNC93B1 for TLRs 3, 7, 8 

& 9, for example [17]. In addition, the polarity of intestinal epithelial cells is an important 

determinant for some TLRs such as TLR9. It appears the apical and basolateral TLR9 signalling 

execute different transcriptional responses [92]. Some TLRs do not signal on their own and require 

accessory proteins to complete their duties. Expression of accessory proteins in intestinal epithelial 

cells such as CD14 and MD2 and LPS binding protein in the periphery have a central role in 

determining TLR4 responses, in particular [17]. 

When considering differences in TLR responses, it is crucial to consider regional differences 

(some controlled by TLR responses and other which influence them) between the duodenum, 

jejunum, ileum, caecum and the colon. Such differences include variations in structure (length of or 

absence of villi), cell types (e.g presence/absence of Paneth cells), cell density (e.g DCs and 

IELs/Tregs), mucus thickness (one versus two layers), concentrations of specific nutrients/metabolites 

(e.g. vitamin A), microbial density and diversity (which increases towards the colon), production of 

microbial metabolites (e.g. SCFAs/indoles), presence of follicle associated epithelium (e.g. Peyer’s 

patches/cryptopatches). Since TLR signalling in the intestinal epithelium is so dependent on the 

interactions with both immune and bacterial cells, such responses can vary along this tract given this 

variation. It has been suggested that this variation may influence individual susceptibility to chronic 

diseases such as allergy and inflammatory bowel diseases (IBD) [95,96]. 

A question which is not often considered when examining TLR signalling, is the role of 

disease/existing inflammation. Concomitant diseases often influence the trajectory of each other. In 

particular, inflammation is increasingly described as a risk factor in many disease states. This may be 

explained by its influence on key signalling pathways. TLR expression has been reported to be 

altered in inflammatory conditions such as IBD, in particular TLR3 and TLR4 [100]. Specific 

cytokines have been shown to augment or reduce TLR expression and activity [101]. It seems that 

Th1 and Th2 cytokines have the opposite effects on TLR3 and TLR4 expression. Th1 cytokines 

increase their expression in IECs, while Th2 cytokines decrease their expression [102]. In particular, 

interferon  augments TLR4 expression and signalling in IEC cell lines in response to 

lipopolysaccharide (LPS) [103].  

Following extensive research carried out recently on the microbiome, a key question that now 

arises is how these populations affect TLR signalling across human populations showing diversity. 

Microbiota diversity and density in participants are increasingly reported in studies of a wide variety 

of disease states. In particular, alterations in the symbiotic relationship between the microbiota and 

IECs are associated with many diseases of the GI tract. It has been suggested, that these alterations 
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may manifest at the molecular level and specifically at the level of TLR expression and signalling. 

As outlined above, interactions between the microbiota and TLRs are essential for maintaining 

intestinal homeostasis but a recent study has demonstrated that the circadian clock may influence this. 

This may be explained by the fact that microbiota have been reported to regulate the expression of 

key circadian clock and nuclear receptor genes in IECs (as well as regulating plasma corticosterone 

levels). Studies have suggested this could be a key regulator of TLR expression in these cells [104]. 

There have also been reports that suggest individual bacterial species may differentially regulate 

TLR expression itself. A recent report demonstrated that individual species of Bifidobacterium could 

down-regulate the expression of both TLR2 and TLR4. In contrast, endotoxin from Enteropathogenic 

E. coli (EPEC) increased expression of both and dramatically decreased transepithelial resistance 

(TEER) [105]. 

How the intestinal cell populations interact with their environment is key to homeostasis. 

Certain molecules produced or metabolised in the luminal microenvironment are thought to influence 

expression of genes by epigenetic mechanisms. It has been suggested that TLR expression and 

signalling may be regulated by such mechanisms. Inhibitors of DNA methyltransferase (DNMTi) 

and histone deacetylases (HDACi) have been shown to inhibit TLR signalling (reviewed in [16]). 

Microbiota are large producers of short chain fatty acids (particularly those that are resident in the 

colon). Some of which including butyrate, are known to have HDACi activity [4]. Short chain fatty 

acids such as butyrate and propionate have been shown to inhibit TLR signalling in intestinal 

macrophages, dendritic cells and epithelial cells in vitro in response to TLR4 and TLR5 ligands [106,107].  

Diet is an important contributor to the composition and diversity of the human gut microbiota. 

This may in part be due to the selection of species that produce specific molecules from digestion 

that modulate immune homeostasis such as indoles, aryl hydrocarbon (AHR) ligands and SCFAs [4,5]. 

Specific foodstuffs are thought to influence subsets of immune cells and certain signalling pathways. 

In particular, it has been shown that human breast milk can have distinctive effects on different TLR 

signalling pathways. A study using IEC cell lines showed that human milk enhanced IL8 responses 

to both the TLR4 ligand LPS and the TLR5 ligand flagellin but reduced the responses for TLR2 

ligand peptidoglycan and the TLR3 ligand Poly I:C [108]. Bacterial metabolites such as indole 3-

propionic acid [109] which is a ligand for the pregnane X receptor [109] regulates mucosal integrity 

by modulating TLR4 expression and signalling [109]. This metabolite has also been shown to 

attenuate inflammation, by interfering with cytokine signalling [110].  

Finally, age is an important factor in determining responses in particular the early postnatal 

period. Previous studies have shown that there is an acquisition of tolerance to endotoxin (as 

mediated via TLR4) in the early postnatal period due to a decrease in TLR4 and its co-receptor MD2 

as well as signalling protein IRAK1 within the first four weeks of life [48]. A similar situation 

appears with TLR5 expression gradually decreasing during this time window [97]. 

6. Conclusions 

The studies described in this review indicate the many roles that intestinal epithelial cells have 

besides from nutrient absorption. They also indicate the key role Toll-like receptors play in their 

survival and the numerous interactions these cells have within their microenvironment. Although 
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many reports have described various mechanisms of how TLR signalling contributes to the defence 

of the host, we are still uncertain as to the sources and implications of variation in the population. 

Future studies should focus on this aspect as to date, we have relied on uniform systems involving 

cells in culture or genetically similar rodents. It is also not clear at present how this information can 

used for pharmacological benefit. A future challenge will be to translate these findings into 

developing therapeutics for inflammatory diseases. 
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