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Abstract:  Breast cancer remains a significant public health issue, being a leading cause of
cancer-related mortality among women globally. Timely diagnosis and efficient treatment are crucial
for enhancing patient outcomes, reducing healthcare burdens and advancing community health. This
systematic review, following the PRISMA guidelines, aims to comprehensively synthesize the recent
advancements in computer-aided diagnosis and treatment for breast cancer. The study covers the
latest developments in image analysis and processing, machine learning and deep learning algorithms,
multimodal fusion techniques and radiation therapy planning and simulation. The results of the
review suggest that machine learning, augmented and virtual reality and data mining are the three
major research hotspots in breast cancer management. Moreover, this paper discusses the challenges
and opportunities for future research in this field. The conclusion highlights the importance of
computer-aided techniques in the management of breast cancer and summarizes the key findings of
the review.
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1. Introduction

Breast cancer, a malignancy that originates from the mammary gland, is one of the root causes of
cancer-related fatalities among female populations worldwide [1]. The etiology of breast cancer is
multifactorial and encompasses a complex interplay of genetic, epigenetic and environmental factors
[2]. The early detection and effective treatment of breast cancer is paramount for enhancing the disease
prognosis. Regular breast cancer screening, such as mammography, as well as ultrasound and magnetic
resonance imaging (MRI), can increase the likelihood of diagnosing breast cancer at an early stage
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[3, 4]. Moreover, prompt and appropriate treatment can impede the advancement of the disease and
curtail the likelihood of metastasis. Effective treatment of breast cancer requires a multidisciplinary
approach that encompasses a range of therapeutic modalities, including surgery, radiation therapy,
chemotherapy, immunotherapy and targeted therapy, as shown in Figure 1 [5-7]. The choice of
treatment depends on several factors, including the stage and classification of breast cancer, as well as
the patient’s overall health and personal preferences. In recent years, there has been an increasing trend
towards the integration of computer-aided techniques in the field of breast cancer, with the purpose of
improving the accuracy and efficiency of diagnosis and treatment [8, 9].
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Figure 1. Overview of therapeutic modalities for breast cancer.

Computer technology has been integrated throughout the entire process of breast cancer diagnosis
and treatment, as depicted in Figure 2. Computer-aided techniques have revolutionized the field of
breast cancer management, offering an array of benefits that include improved diagnostic accuracy,
treatment planning and simulation, and reduced treatment-related side effects [10-12]. These
techniques leverage advanced image analysis and processing algorithms, as well as machine learning
and deep learning algorithms, to provide a more sophisticated and accurate methodology in diagnosing
and treating breast cancer [13—16]. As shown in Figure 3, computer-aided diagnosis involves the use
of computer algorithms to analyze medical images, such as mammography, ultrasound, and magnetic
resonance imaging (MRI), to enhance the accuracy and efficiency of breast cancer diagnosis [17].
Image analysis and processing techniques can be employed to identify the location, size and shape of
lesions, while machine learning and deep learning algorithms can be drilled to recognize pathological
features in images [18]. Multimodal fusion techniques that integrate different imaging modalities can
also improve diagnostic performance [19-21]. Computer-aided treatment utilizes computer technology
to optimize various aspects of breast cancer treatment. Radiation therapy planning and simulation
can be performed using computer algorithms to determine the optimal radiation dose distribution to
healthy tissues [22]. Computer-aided surgery guidance and navigation can aid in surgical planning
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and execution, as well as in the evaluation of surgical outcomes [23-25]. Computer-aided treatment
monitoring and evaluation can be used to track the effectiveness of treatments and to predict patient
outcomes. Precision medicine and molecular prognostics can be leveraged to evaluate disease

progression and treatment efficacy, ultimately guiding the selection of the most appropriate treatment
plan [26].
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Figure 2. The computer technologies concerned with breast cancer diagnosis.
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Figure 3. Diagram illustrating the integration of computer technology in the entire process
of breast cancer management.

In recent years, several reviews have discussed the integration of technology in breast cancer
diagnosis or treatment. In 2018, N I Yassin et al. [9] conducted a systematic review of the machine
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learning techniques for breast cancer computer-aided diagnosis, highlighting their application in
images. Similarly, A Kajala and V Jain [27] also explored the application of machine learning in
breast cancer diagnosis, demonstrating the efficiency and effectiveness of computer-aided technologies.
Differently, focused on the role of artificial intelligence in the interpretation of breast cancer on
MRI [28]. However, the latest examination concentrating on the broad-ranging implications of
computer-aided diagnosis and treatment for breast cancer remains limited. This systematic review
furnishes an all-encompassing overview of the present status of computer-aided techniques in breast
cancer management, and serves as a valuable resource for researchers and healthcare professionals
working in this field. Through a thorough literature search and evaluation according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, this paper offers
insights into recent advancements in computer-aided diagnosis and treatment for breast cancer. It
highlights the various techniques that are being used, including image analysis and processing,
machine learning algorithms, multimodal fusion, and radiation therapy planning and simulation, to
improve diagnostic accuracy and optimize treatment planning and simulation, as well as to reduce
treatment-related side effects. Furthermore, this review discusses the challenges and future directions
of computer-aided diagnosis and treatment in breast cancer management, offering insights into
potential avenues for further research and development in the field.

The subsequent sections of this systematic review article are organized as follows: In Section
2, a thorough description of the methodology utilized in conducting the review is provided. The
recent advancements in computer-aided diagnosis in breast cancer management are comprehensively
reviewed in Section 3. Section 4 explores the advancements in computer-aided treatment for breast
cancer management. The benefits and future directions of computer-aided techniques in breast cancer
management are analyzed in Section 5. The review is concluded in Section 6, where a summary of the
key outcomes is provided, and recommendations for future research are given.

2. Materials and methods

2.1. Search strategy

In line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines, this systematic review was carried out to assess recent advancements in the realm of
computer-aided diagnosis and treatment in breast cancer management. A comprehensive search
of six databases, including Cochrane Library, Scopus, MEDLINE, Web of Science, PubMed and
EMBASE, was conducted to identify relevant studies published between January 15, 2018 and January
15, 2023. The search was limited to articles and was guided by a well-defined search strategy that
utilized appropriate MeSH terms and keywords, such as “computer,” “breast cancer,” “diagnosis,’
and “treatment.” This approach was implemented to ensure the validity and reliability of the studies
involved in the review.

2.2. Study selection

The eligibility criteria employed in this systematic review included the following: (1) original
research articles, (2) studies written in the English language and (3) studies assessing the application
of computer technology in breast cancer management. Studies failing to meet these criteria were
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excluded, including: (1) studies with non-relevant objectives, (2) case reports and (3) studies that
described advancements without examining their impact on breast cancer.

2.3. Risk-of-bias assessment

The quality of the incorporated studies was assessed through a systematic evaluation of their
risk of bias. The Cochrane Risk of Bias tool was utilized for randomized controlled trials, while
the Newcastle-Ottawa Scale was employed for observational studies. The quality was carried out
independently by two reviewers, with any discrepancies addressed through consultation with a third
reviewer to ensure consistency and reliability of the results.

2.4. Heterogeneity and sensitivity analysis

Heterogeneity among the selected studies was quantified using the 12 statistic. Studies with I? values
above 50% were considered to have substantial heterogeneity. Sensitivity analysis was conducted
to assess the robustness of the review findings. This involved excluding one study at a time and
assessing its impact on the overall results. This step ensured that no single study disproportionately
influenced the overall conclusions of the review. In total, 694 records were identified from searches
in all databases, and 17 additional records were identified through additional sources; a total of 58
entries were incorporated into the study. The PRISMA flowchart of the search process is presented in
Figure 4.

694 potentially eligible studies 17 potentially eligible studies identified
identified by database search through additional sources

A4

153 duplicates removed

Y

558 identified for screening

404 records excluded after title and
abstract review

Y

Y

154 full-text articles assessed for eligibility

96 records excluded:

26 had non-relevant study aims

7 were review articles

3 described advancements that did
v not examine impact on breast cancer
2 unable to retrieve

v

58 studies included in final synthesis

Figure 4. PRISMA flowchart of the search process.
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Table 1. Overview of representative studies that used datasets for breast cancer diagnosis.

Authors Year Dataset Methods Performance results (%)
S Charan et al. [29] 2018 Mammograms-MIAS dataset CNN ACC =65
AUC(1) = 83, ACC(1) =74,

L Tsochatzidis et al. [30] 2019 DDSM-400; CBIS-DDSM CNNs AUC(2) = 78, ACC(2) = 74
L Shen et al. [31] 2019 CBIS-DDSM CNN AUC = 88

. ACC =99.43, AUC = 99.22,
W M Salama and M H Aly [32] 2021 BreaKHis databas End-to-end fully CNNs Sen = 99.12, Pre = 98.99
U Budak et al. [33] 2019 BreaKHis dataset CNN and Bi-LSTM ACC =91.90
H Aljuaid et al. [34] 2022 BrakeHis dataset DNNS and transfer learning  ACC = 97.81

3. Advancements in computer-aided diagnosis.

The recent advancements in computer-aided diagnosis for breast cancer management have been
significant. The use of computer technology has revolutionized the way breast cancer is diagnosed,
improving the accuracy and efficiency of the diagnostic process. Through image analysis and
processing, machine learning algorithms and multimodal fusion, computer-aided techniques have made
it possible to detect breast cancer at earlier stages, leading to improved patient outcomes and reduced
healthcare costs. In particular, datasets play a crucial role in the development and optimization of
Al models for breast cancer diagnosis. These datasets contain a vast amount of breast cancer image
data and corresponding diagnostic labels, which can be used to train and optimize Al models. Table
1 presents representative studies that used datasets for breast cancer diagnosis. These advancements
in computer-aided diagnosis have paved the way for a more precise and effective approach to breast
cancer management.

3.1. Image analysis and processing techniques

Image processing techniques can analyze mammogram, ultrasound images and magnetic resonance
imaging, helping radiologists determine the location, size and shape of lesions.

Mammogram is the most commonly used imaging technique for detecting breast cancer, and the
hybrid feature selection approach proposed in the study uses image processing techniques to enhance
its accuracy in diagnosing breast tumors. A proposed hybrid feature selection approach combines a
support vector machine recursive feature elimination with correlation bias reduction algorithm and
a similarity-based learning algorithm called Q for benign-malignant classification. The system’s
performance, as demonstrated by its accuracy (98.16%), sensitivity (98.63%), specificity (97.80%)
and computational time (2.2 s), surpasses that of existing computer-aided diagnosis systems [35]. M
Mehmood et al. [36] improved the accuracy of breast tumor diagnosis by utilizing image processing
techniques. The mammograms were preprocessed employing contrast-limited adaptive histogram
equalization and isolated through threshold detection and morphological operations. The extracted
texture, shape and gray-level co-occurrence matrix characteristics were classified by support vector
machine (SVM) while adaptive neuro fuzzy inference system (ANFIS) was deployed for differentiation
between ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS). The results showed high
accuracy of 98.95% and 98.01% for standard and nonstandard mammograms, respectively, through
cubic support vector machines (CSVM) and promising results in terms of mean square error (MSE)
of 0.01866, 0.18397, and 0.19640 for DCIS and LCIS differentiation during the phases of training,
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examination and validation through ANFIS. However, there are still detection metrics that proved less
useful. For example, an evolutionary approach was developed for identifying and categorizing breast
cancer utilizing machine learning and image processing [37]. AlexNet was employed to extract features
from the data with an accuracy of 89.00%.

The use of Al-assisted computational techniques and image processing in mammography images
leads to improved accuracy and efficiency in breast cancer diagnosis [38]. Q Liu et al. [39] proposed
a robust image segmentation method that accounts for an accuracy of 92.9% and has potential in
independent variables through interval analysis and the use of the Laplacian of Gaussian filter. S
Magsood et al. [40] presented a deep learning system that leverages a modified contrast enhancement
method and alienable texture convolutional neural network to ascertain breast cancer in mammogram
images, achieving an average accuracy of 97.49%, and its framework is as shown in Figure 5. These
results indicate the potential of deep learning algorithms to improve mammography screening tools
and diminish the incidence of false positive and false negative outcomes. The use of computational
techniques and image processing with Al was emphasized as crucial to improving diagnosis accuracy
and efficiency in [41]. This study also highlights mammography as the primary exam for early detection
and the beneficial impact of technology advancements in the field.
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Figure 5. Framework of the proposed approach for breast cancer detection and classification
[40].

In terms of other computer-aided image analysis technology, Pavithra et al. developed a CAD
system for the detection and categorization of breast cancer utilizing breast ultrasound (BUS) imaging
[42]. The system comprised four stages: pre-processing, segmentation, feature extraction and
classification. The pre-processing step utilized SRAD to eliminate speckle noise and employed active
contour-based segmentation to identify the ROI. The extracted texture features were then classified
into Normal, Benign or Malignant categories using K-nearest neighbors (KNN), decision tree or
random forest classifiers, and their accuracy was compared. Additionally, a computational thermal
model of breast cancer was developed grounded on high-resolution infrared images, 3D breast surface
geometries and internal tumor definition obtained from a breast cancer patient [43]. The model was
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calibrated to the patient’s clinical data and evaluated the thermal peculiarities of the patient’s triple
negative breast cancer with high metabolic heat generation rates. The experimental results were precise
to the patient’s distinctive molecular subtype of breast cancer, lesion size and stage, thus rendering their
potential applicability to analogous aggressive instances.

3.2. Machine learning and deep learning algorithms

Image analysis and processing involves the examination of images to extract meaningful
information and insights from them. Machine learning algorithms, including deep learning algorithms,
can automate the image analysis process by training algorithms to recognize patterns and make
predictions based on input data.

The possibility of employing deep learning methodologies, notably convolutional neural networks
(CNNs), for detecting breast cancer in mammogram images was underscored in [29, 44]. The
study used the mammograms-MIAS dataset and showed promising results in classifying normal
and abnormal breast images. Further optimization of CNN architectures is expected to enhance
the accuracy of breast cancer detection, with proper segmentation being crucial for efficient feature
extraction and classification. An innovative automated computer-aided diagnosis system was presented
for breast cancer diagnosis, characterized by high precision and minimal computational demands. The
use of deep convolutional neural networks in computer-aided diagnosis of breast cancer was also
examined in [30], evaluating their performance on two mammographic datasets through fine-tuning
pre-trained networks and training from scratch.

Several studies have aimed to increase the accuracy of breast cancer detection utilizing deep learning
algorithms and image processing techniques in mammography images. In [31], an “end-to-end”
deep learning algorithm was developed and demonstrated superior performance compared to previous
methods, with per-image AUC scores of 0.88 on the Digital Database for Screening Mammography
(DDSM) and 0.98 on the INbreast database (see Figure 6). This study highlights the potential of deep
learning methods in enhancing clinical tools and reducing false positive and false negative results in
mammography-based breast cancer detection. The research of S Chaudhury et al. [45] proposed a
framework for breast cancer detection in mammography images, incorporating the contrast limited
adaptive histogram equalization (CLAHE) approach and categorization through fuzzy SVM, Bayesian
classifier, and random forest. In [32], a novel framework that combined various segmentation and
classification models, including MobileNetV2, InceptionV3, DenseNet121, VGG16 and ResNet50,
was introduced, achieving top results on the DDSM dataset with 98.87% accuracy and a computational
time of 1.2134 s.

Studies have been conducted with the aim of formulating computer-assisted models for diagnosing
breast cancer utilizing ultrasound images. In [46], a convolutional neural network (CNN) was utilized
to develop a computer-assisted model for breast cancer diagnosis using ultrasound images. The study
analyzed 5000 images and found that the highest-performing model was InceptionV3, with an AUC of
0.905. This model outperformed the diagnostic accuracy of sonographers, demonstrating statistically
significant improvement with an AUC of 0.913, indicating the high accuracy of the CNN-based
prediction model in breast cancer diagnosis. In [47], a machine learning method was developed for
early detection and diagnosis of breast cancer using ultrasound images, whose architecture is as shown
in Figure 7. The study employed various classification techniques, including K-nearest neighbor,
support vector machine, decision tree and Naive Bayes, as well as a convolutional neural network
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(CNN) for direct classification of breast cancer based on ultrasound images. The outcomes showed an
accuracy of 99.8% for the training set and 88.5% sensitivity in diagnosis validation.
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Figure 6. Converting a patch classifier to an end-to-end trainable whole image classifier
using an all convolutional design [31].
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Figure 7. The architecture provided by CNN for classifying or diagnosing tumor type and
disease[47].

In 2022, S Bourouis et al. [48] developed a computer-assisted diagnosis system that utilizes a
combination of the grey wolf optimization (GWQO) algorithm and a wavelet neural network (WNN)
for detecting abnormalities in breast ultrasound images. The system involves preprocessing of the
images, extraction of morphological and texture features and classification using the GWO-tuned
WNN, achieving an accuracy of 98%. A mobile phone-based system was also presented by X Qi
et al. [49] to enhance the precision of breast cancer diagnosis through ultrasonography images. This
system, consisting of three subsystems for reducing noise, classifying images and detecting anomalies,
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was trained and evaluated on over 18,000 images and 2,400 ultrasound reports. The utilization of deep
convolutional neural networks and generative adversarial networks resulted in performance comparable
to that of human experts.

Efforts have been made to improve the accuracy of detecting and diagnosing breast lesions in
magnetic resonance imaging (MRI) and dynamic contrast-enhanced MRI (DCE-MRI) using machine
learning systems. In [50], a machine learning system was evaluated for its ability to discriminate
between malignant and benign breast lesions using MRI data from a single institution. The system
merged radiomic features with a support vector machine to produce a lesion signature and achieved
an AUC value of 0.89 and 99.5% sensitivity, with 9.6% fewer suggested biopsies compared to actual
clinical decisions. A Tahmassebi et al. [51] assessed the use of machine learning with multiparametric
MRI (mpMRI) to predict pathological complete response (pCR) and survival outcomes in breast cancer
patients receiving neoadjuvant chemotherapy (NAC). The results indicated that machine learning
with mpMRI is a stable and accurate predictor of pCR and survival outcomes, with the XGBoost
classifier achieving the highest accuracy. In [52], an Al system was developed and evaluated for
detecting and diagnosing lesions in DCE breast MRI. The system, trained using RetinaNet, showed
improved diagnostic performance compared to radiologists with a sensitivity of 0.926, specificity
of 0.828 and an AUC of 0.925. The system also enhanced the diagnostic performance of human
readers, leading to a significant increase in AUC when used as a tool. U Budak et al. [33] put forth
a new end-to-end model on the basis of bidirectional long short-term memory (Bi-LSTM) and fully
convolutional network (FCN) for the early diagnosis of breast cancer. The model extracted high-level
features from high-resolution images and its accuracy was evaluated using the publicly available
BreaKHis database, with the results demonstrating improved accuracy compared to previous methods.
Later, J Zheng et al. [53] introduced a novel DLA-EABA algorithm that combined deep learning
and advanced computational techniques to detect breast cancer. By integrating machine learning
approaches with feature selection and extraction techniques, the study achieved high accuracy in breast
cancer diagnosis using various imaging modalities, including mammography, ultrasound, MRI and
digital breast tomosynthesis. The deep learning framework, which consisted of convolutional layers
LSTM, max-pooling layers, and a completely connected layer with a softmax layer, achieved promising
results with an accuracy of 97.2%, sensitivity of 98.3%, and specificity of 96.5%. More recently, H
Aljuaid et al. [34] presented a computer-aided diagnosis method that combined deep neural networks
and transfer learning on a public dataset to classify breast cancer. The method achieved high accuracy
results in both binary (malignant/benign) and multi-class classification, with an average accuracy of
99.7% for binary classification and 97.81% for multi-class classification using ResNet.

3.3. Fusion of multiple modalities

The accuracy of classification for pathology images has been profoundly enhanced by means of deep
learning algorithms, however, relying solely on a single modality of pathology images still falls short of
meeting the needs of clinical practices in terms of accuracy for breast cancer classification. Therefore,
combining information from multiple imaging modalities is crucial in the diagnosis of breast cancer.

Researchers have made progress in raising the accuracy of breast cancer diagnosis through
multimodal ultrasound. By combining various types of ultrasound imaging and machine learning
techniques, high diagnostic performance comparable to human observers has been achieved, offering
a promising approach for the future. L R Sultan et al. [54] investigated the combination of grayscale
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and Doppler ultrasound images to differentiate between benign and malignant breast lesions, resulting
in an AUC of 0.96, sensitivity of 92% and specificity of 95% after pruning weakly learned cases. M
A Mohammed et al. [55] suggested a method for automating the characterization of breast cancer in
ultrasound images using multi-fractal dimensions and backpropagation neural networks, achieving a
precision rate of 82.04%, sensitivity of 79.39% and specificity of 84.75%. R Huang et al. [56] come
up with a novel framework, AW3M, characterized by four types of sonography in a multi-stream CNN
model, incorporating self-supervised consistency loss and optimal weight learning via reinforcement
learning approaches, as well as a recovery block intended to address absent modalities during testing.
The results showed that AW3M outperforms existing methods and can handle missing data, making it
a promising approach for breast cancer diagnosis.

The accuracy of breast cancer diagnosis was improved through the implementation of a multimodal
fusion-based computer-aided diagnosis system that incorporated MRI and mammography. R Mokni et
al. in [20] proposed a computer-aided diagnosis system that fused information from dynamic contrast
enhanced magnetic resonance imaging (DCE-MRI) and digital mammographic images. The system
utilized the GLIP local feature descriptor and canonical correlation analysis (CCA) to emphasize the
relationship between the two modalities, resulting in high diagnostic performance with an AUC of
99.10% using the radial basis function neural network classifier. R Yan et al. in [57] proposed a richer
fusion network for the classification of benign and malignant breast cancer based on multimodal data,
including pathological images and structured data from clinical electronic medical records (Figure 8).
The method used a denoising autoencoder to boost the dimensionality of structured data and extract
a multi-tiered feature representation of the pathological image. The proposed method outperformed
previous methods with an average classification accuracy of 92.9% and has potential for practical use
in clinical breast cancer diagnosis.
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Figure 8. A simple brief introduction to pathological diagnosis workflow in the hospital [57].

4. Advancements in computer-aided treatment

After a comprehensive and systematic diagnosis, an effective and personalized treatment plan needs
to be developed. The recent advancements in computer-aided treatment for breast cancer management
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encompass a range of techniques, including planning and simulation in radiation therapy, surgical
guidance and navigation, monitoring and assessment of treatment response and integration with
precision medicine. These techniques represent a significant step forward in the management of breast
cancer, enabling more effective and personalized treatment options. In computer-aided breast cancer
treatment, datasets play a crucial role in facilitating medical professionals to make more informed
decisions. These datasets typically consist of large collections of breast cancer-related data. Table 2
highlights the different types of data that were utilized to assist breast cancer treatment.

Table 2. Overview of representative studies that used datasets for breast cancer treatment.

Authors Year Dataset Methods Performance results (%)
H Duanmu et al. [58] 2020 ISPY1 Clinical Trial dataset CNN networks ?lgj (_: ; 880 Sen = 68,
M Byra et al. [59] 2020 ImageNet dataset Transfer learning AUC =79.7
L L DeBoeretal. [60] 2018 Real-time DRS data Support vector machine ACC=93, MCC=87

. L. . AUC(1) =91 AUC(2) =90,
S A Kulkarni et al. [61] 2021 3D volumetric image dataset ROC analysis AUC(3) = 94
V Chaurasia et al. [62] 2018 Wisconsin Breast Cancer datasets RBF Network & ACC =96.77

Cox regression Kaplan—-Meier

. . AUC =74
survival analysis

A Osz et al. [63] 2021 proteome-level breast cancer dataset

4.1. Planning and simulation in radiotherapy and chemotherapy

Significant advancements have been made in the field of computational radiology and radiology
simulation for the purpose of planning and simulating radiotherapy and chemotherapy for breast
cancer patients. These advancements include the ability to predict patient responses to novel adjuvant
therapies, ultimately leading to enhanced treatment outcomes.

The development of computer technology has enabled the efficient analysis of large and complex
datasets through the use of bivariate and multivariable regression calculations and modeling. In a
study by J C Hong et al. [64], the authors aimed to evaluate the mean heart dose (MHD) of adjuvant
radiation therapy (RT) for breast cancer and the approximated risk of RT-associated cardiotoxicity in
female populations. The study found that MHD varied based on the RT technique and was affected
by patient positioning and breathing during RT. The total risk of cardiotoxicity was moderate, with 3.5
excess events per 1000 patients, and varied based on the RT technique employed. In another study by O
Sager et al. [65], the effectiveness of adaptive radiotherapy (ART) was assessed through rescheduling
the tumor bed boost using repetitive CT simulations after whole breast irradiation (WBI) for patients
with seroma. The study included 48 patients, and two RT therapeutic regimes were formulated for each
patient to track changes in seroma and boost target volume. The results proved a significant reduction in
seroma volume and critical organ doses with ART, suggesting the benefits of ART in reducing seroma
and critical organ doses for patients undergoing WBI. These findings have important implications for
the optimization of RT treatment planning and the improvement of patient outcomes.

In radiotherapy, the high doses of radiation can potentially cause damage to the heart and blood
vessels, making it crucial to carefully monitor patients receiving radiotherapy for breast cancer and
take measures to minimize the risk of cardiac toxicity. In this regard, J W Jung et al. [66] developed
a novel automated methodology for segmenting the cardiac substructures in radiotherapy CT images.
The findings of the study indicate that the variance in doses for simulated breast radiotherapy between
automatic and manual contours was minimal. The use of more than ten atlases did not significantly
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improve performance, and manual guide points did not significantly enhance the method’s efficacy. In
radiation oncology, the current standard treatment approach involves prescribing protocols based on the
strength of general results of clinical tests, which lacks individuation and fails to account for patients’
individual responses. The integration of mathematical models into radiation oncology has the potential
to improve treatment evaluation and lead to enhanced patient outcomes through individualized adaptive
radiation therapy (RT) [67]. By using mathematical models to simulate a patient’s tumor growth and
forecast treatment response, dynamic biomarkers can be developed for RT, enabling individualized
treatment for patients.

Machine learning algorithms combining imaging data molecular data, and demographic data have
been used to predict breast cancer patients’ response to neoadjuvant chemotherapy. H Duanmu et
al. [58] employed a convolutional neural network with a novel approach that combined 3D MRI
imaging data, molecular data and demographic data to forecast the probability of pathological complete
response to neoadjuvant chemotherapy in breast cancer patients, achieving high accuracy and AUC
values that outperformed models using imaging data only or conventional concatenation models. M
Byra et al. [59] suggested a promising deep learning approach using ultrasound imaging, utilizing
transfer learning with convolutional neural networks and comparing the results with a traditional
method established on handwrought morphological features. The study results showed promising
performance, with the best model achieving an AUC of 0.847 in the comparison of ultrasound
images before and after treatment. In addition, L Yang et al. [68] developed a prediction model
using a combination of gene expression and a machine learning algorithm, which showed significant
differences in pCR rates between sensitive and insensitive groups, with the Naive Bayes algorithm
being found to have the highest predictive value. The model had a sensitivity of 84.5 and specificity of
62%, and the 2D feature visualizations for training are as illustrated in Figure 9.

The field of surgical guidance and navigation for breast cancer has witnessed significant
advancements through the integration of computer technology, including the utilization of augmented
reality, virtual reality and image-guided techniques. These innovations have facilitated more precise
and efficient surgical procedures, ultimately resulting in improved patient outcomes.

Augmented reality (AR) technology has become increasingly popular in breast cancer surgeries,
providing precise and efficient outcomes as demonstrated in several studies. L Lan et al. [69] developed
a fiber optoacoustic guide (FOG) with AR for precise and efficient breast cancer surgery, as illustrated
in Figure 10. The FOG was implanted in the tumor and transmitted acoustic waves, which were
captured by ultrasound sensors to provide real-time visual feedback to the surgeon via AR, allowing
for accurate and quick tumor removal with minimal interference. The successful implementation of
this technology in a cadaver study demonstrated the potential for reduced re-operation rates and shorter
surgery times. Advancements in 3D spatial technology and AR, powered by high-tech computer
science, have rapidly progressed breast cancer imaging and led to the creation of less invasive medical
procedures. P F Gouveia et al. [70] presented the first use of digital, non-invasive AR for breast cancer
surgery, with a 57-year-old woman undergoing breast surgery using AR for localization, as presented
in Figure 11. The method was compared with traditional carbon tattooing, with the surgeon using a
Hololens headset for visualization. The experiment showed a successful overlap of previous marks
and visualization of the tumor. B Allison et al. [71] presented Breast3D, a mammographic image
analysis system that utilizes extended reality (XR) technology to reconstruct CT and MRI scan data for
breast cancer diagnosis and surgical planning. Breast3D provides a promising solution for XR within
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diagnostics of 3D mammographic modalities, which has been underutilized in the past. Moreover, H
H Chan et al. [72] developed a new AR surgical positioning system that enhances visualization of
concealed anatomy during surgery by projecting virtual images onto the operative site, demonstrating
the clinical adaptability and pinpoint precision of the AR surgical navigation system with accuracy
tested to be <1mm using a phantom (Figure 12).

Siamese 1 | o Responders |
- Non-responders

Figure 9. Visualizations of feature distribution with the t-SNE algorithm. The Siamese
models were trained using features extracted from the Inception-ResNet-V2 (no fine-tuning)
based on US image pairs. Each pair contained images of the same tumor collected before
and after the neoadjuvant chemotherapy [68].

4.2. Surgical guidance and navigation

Virtual reality (VR) technology has been applied in various aspects of breast cancer surgery,
including non-invasive localization of occult breast cancer, reducing psychological distress in patients
during chemotherapy, and improving pain, range of motion, muscle strength, functionality and
nervousness of movement in post-surgery patients. A retrospective study evaluated a novel virtual
localization technique for occult breast cancer, which is a proof-of-concept for a non-invasive tool [73].
The method involved preoperative MRI and intraoperative 3D optical scanning, and was compared
with traditional radioisotopic localization. Results showed successful tumor localization with a mean
cutaneous distance of 1.4 cm in patients with low breast volume and 2.8 cm in those with large
breast volume. Similarly, a study in Italy compared the effects of VR and music therapy (MT) on
reducing psychological distress in breast cancer patients during chemotherapy [74]. Both VR and MT
were found to be effective in reducing anxiety and improving mood, with VR being more effective in
alleviating anxiety, depression and fatigue compared to MT. The objective of the study by O Feyzioglu
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et al. [75] was to compare the impact of Kinect-based VR therapy and standardized physiotherapy on
various parameters, including pain, sphere of motion, muscle strength, functionality and nervousness of
movement in women who underwent breast cancer surgery. Results showed significant improvements
in all areas for both groups, with the standardized physiotherapy group showing more improvement
in functionality and the Kinect-based VR therapy group displaying greater improvement in fear of
movement.

14 Tablet-AR

Figure 10. Using a fiber optoacoustic guide and an augmented reality (AR) system to locate
the tumor and guide for fast and precise tumor removal [69].

Doctors can use computer-generated 3D image models to evaluate the position, size and shape
of breast cancer before surgery, which provides guidance for the planning and execution of the
surgery. An innovative approach using multimodality 3D whole-tumor imaging data has been
developed to analyze angiogenic heterogeneity in breast tumor xenografts [76]. Computer-generated
3D image models were used to visualize the spatial heterogeneity of whole-tumor hemodynamics and
intravascular oxygenation, which provided guidance for surgeries. The approach contributed to the
understanding of the abnormal organization and hemodynamics of the tumor microvasculature, thus
enhancing inter- and intra-tumor heterogeneity. This hybrid image-based modeling framework served
as a foundation for a ”cancer atlas” that could be applied to the study of other tissues and diseases.
Research was also conducted to assess the efficacy of Micro-CT in analyzing breast cancer specimens
[77]. The researchers found that Micro-CT images closely matched the size and shape of cancers seen
at dissection and revealed additional information on cancer location not seen in traditional pathology
methods. Additionally, Micro-CT was able to identify margin-positive cancers with higher accuracy
and provided full 3D images of the specimens in minutes. In [78], patchy polymeric photoacoustic
contrast agents and photoacoustic computed tomography were integrated to develop a non-invasive
method for detecting intratumor heterogeneity in breast cancer. The technology utilized specific agents
to distinguish between different receptor types in tumors and was validated through fluorescence and
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photoacoustic measurements and tissue pathology analysis. The system has the potential to provide
real-time, specific detection of intratumor heterogeneity in non-metastatic tumors.

| SBPE)

Figure 11. In action: surgeon wearing Hololens headset at the surgical theater [70].

Computer technology has enabled real-time imaging during breast cancer surgery, helping surgeons
accurately locate the tumor. However, distinguishing between healthy and cancerous tissue at the
resection margin remains a challenge. To address this, a study assessed the use of diffuse reflectance
spectroscopy (DRS) for real-time tissue description during breast cancer surgery [60]. An optical
biopsy needle with integrated optical fibers was used to obtain DRS data of normal tissue and tumor
tissue in 27 patients. The results showed that malignant tissue could be accurately distinguished
from healthy tissue, with a Matthews Correlation Coeflicient of 0.93 and 0.87, respectively. In a
similar vein, S A Kulkarni et al. [61] compared the accuracy of tomosynthesis (DBT), 2D specimen
radiography (SR), tomosynthesis (DBT) and full-3D volumetric specimen imager (VSI) in determining
the margin status of breast lumpectomy specimens. The pathology results indicated that VSI improved
the correlation between the main lumpectomy specimen margin status and surgical pathology, with an
area under the curve (AUC) of 0.91 to 0.94, higher than the AUC values of SR and DBT.

4.3. Monitoring and assessment of treatment response

The integration of computer technology in monitoring and assessing treatment response in breast
cancer has seen significant advancements. The use of medical data mining and analysis techniques,
along with the ability to predict the likelihood of recurrence, has enhanced the accuracy and
effectiveness of treatment evaluations, achieving better patient outcomes.

Medical data mining and analysis techniques have shown promising accuracy in predicting breast
cancer recurrence, with various algorithms including Naive Bayes, RBF Network, J48 and C5.0
being applied. V Chaurasia et al. [62] developed models for predicting breast cancer survivability
using data mining algorithms, with Naive Bayes achieving the best performance at 97.36% accuracy,
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accompanied by RBF Network and J48. In Iran, A Mosayebi et al. [79] utilized data mining techniques
to predict breast cancer recurrence, finding that the C5.0 algorithm was the most effective in predicting
recurrence in the first to third years, with the most important factors being LN involvement rate, Her2
value, tumor size and free or closed tumor margin. Furthermore, S Simsek et al. [80] presented a
hybrid data mining methodology that showed the importance of considering changing variables over
time in predicting breast cancer survival, as specific variables change in importance over time and a
purely data-driven approach can lead to extremely parsimonious models, providing useful information
for medical practitioners to improve cancer care.
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Figure 12. Prototype augment reality surgical navigation platform consists of optical
tracking system and tracked pico-projector [72].

Data analysis techniques play a crucial role in investigating the relationship between
tumor-infiltrating lymphocytes (TILs) and breast cancer treatment response and predicting patient
survival outcomes. C Denkert et al. [81] conducted a study to evaluate the relationship between TILs
and neoadjuvant chemotherapy response in primary breast cancer patients. The study demonstrated
that higher TIL concentration was correlated with improved response to chemotherapy across all
molecular subtypes, but a negative prognostic factor for survival in luminal-HER2-negative subtype.
These findings suggest the potential for immune-modulating therapies in breast cancer treatment, but
further research is needed to understand the interplay between the immune system and distinct forms
of endocrine therapy in luminal breast cancer. W D Lindsay et al. [82] compared the effectiveness
of statistical models, such as random forests and logistic regression, in predicting treatment failure
and adverse events in breast cancer patients using electronic medical record (EMR) data. Their results
indicated that ensemble methods, such as random forests, outperformed single-model methods, such
as decision trees and logistic regression, in predicting outcomes, with the patient’s medical history
being the most significant factor in predicting treatment outcomes. Notably, A Osz et al. [63] executed
an investigation to compare the expression of four protein biomarkers in breast cancer patients using
immunohistochemistry and proteome-level technologies, with the aim of identifying new prognostic
biomarkers (Figure 13). The study analyzed data from four disconnected cohorts of 1229 breast
cancer patients and found a remarkable association between the levels of biomarkers determined
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by immunohistochemistry and proteomic methods. Additional candidate proteins were validated as
prognostic biomarkers, and a web tool was expanded to integrate the proteomic data examined in this
study.

A) B) Location GO ID % P value
Liu 2014 DeMarchi 2015 Cyloplasm GO.0005737 | 36.3 | 4E-104
Nucleus GO:0005634 | 32.2 2E-21
Cytosol GO:0005829 | 276 | 1E-179
Exosome GO:0070062 | 25.6 | 5E-231
Nucleoplasm GO:0005654 | 21.0 GE-82
Membrane GO:0016020 | 18.8 | 1E-128
Mitochondrion G0:0005739 | 10.3 3E-44
Extracellular space GO:0005615 7.5 5E-02
Nucleolus GO:0005730 | 6.8 6E-33
Golgi apparatus GO:0005794 [ 59 1E-12
Endoplasmic reticulum GO:0005783 5.6 2E-11
Endoplasmic reticulum membrane | GO:0005789 | 5.5 1E-07
Perinuclear region of cytoplasm GO:0048471 50 1E-25
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Figure 13. Proteins measured in multiple studies and their cellular localizations. (A)
Number of proteins represented in one, two, three or four datasets, (B) proportion of proteins
present in various cellular components and (C) graphical representation of cellular origin
of the analyzed proteins, where font size is relative to the proportion of proteins from that
compartment [63].

4.4. Precision medicine and molecular prognosis

Precision medicine, also known as personalized medicine, is a medical approach that utilizes
genetic and molecular information about an individual to inform medical decision-making, including
disease diagnosis and treatment. Precision medicine takes into account an individual’s unique genetic
and molecular profile, as well as their personal and environmental factors, to develop targeted,
individualized treatment plans. This approach aims to improve the accuracy and effectiveness of
healthcare by reducing guesswork and increasing the chance of success in treating disease.

Precision medicine holds great potential for personalized and effective breast cancer treatment,
through the use of mathematical modeling and machine learning (ML) to consolidate biomarker
changes and improve risk prediction accuracy. In their work, M T McKenna et al. [83] emphasize the
need for a mathematical modeling toolkit in medical oncology to optimize patient treatment selection
and schedules, given the current lack of an efficient method to consolidate biomarker changes into a
comprehensive understanding of treatment response. They suggest that mathematical modeling can
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enhance the application of anticancer therapeutics in precision medicine, using breast cancer as an
example of how modeling has already shaped current treatment approaches. C Ming et al. [84] evaluate
machine learning algorithms against two established breast cancer risk prediction models, BCRAT and
BOADICEA, and demonstrate that ML methods outperform these standard models in discriminatory
accuracy, with predictive accuracy reaching up to 90% in Swiss clinic-based samples and 88%
in US population-based samples. The enhanced accuracy of ML has important implications for
personalized medicine, enabling better prevention strategies and individualized clinical management.
F Acconcia’s [85] recent work explores the a-character of computer technology in breast cancer
treatment, specifically focusing on the molecular classification of pharmacological treatments, such
as anti-estrogen therapy and anti-cancer drugs. The study also assesses the potential of repurposing
existing drugs for breast cancer treatment, and examines the Na/K ATPase isoform as a biomarker for
ERa-positive breast cancer treatment. The study outcomes indicate that cardiac glycosides could be
administered in conjunction with other anti-cancer drugs for more effective treatment of ERa-positive
breast cancer.

Molecular prognosis is a method of predicting cancer progression and survival by analyzing
molecular signatures within cancer cells. Molecular prognosis can help doctors better evaluate the
severity of cancer, select more appropriate treatment options and predict patient outcomes. Molecular
prognosis is generally performed by analyzing genetic mutations, protein expression and signaling
pathway activity in tumor samples to assess the biological characteristics and trends of cancer.

Personalized circulating tumor DNA (ctDNA) profiling has emerged as an effective tool for
detecting breast cancer recurrence, allowing for high accuracy in residual disease detection and aiding
in clinical decision making for breast cancer patients in China. R C Coombes et al. [86] demonstrated
the use of ctDNA profiling in detecting breast cancer recurrence, detecting ctDNA in 89% of relapsing
patients and finding it absent in all non-relapsing patients. This ctDNA analysis provides a subtle
and detailed approach to disease supervision with a lead time of up to 2 years. B R McDonald et al.
[87] discussed a new method for detecting residual cancer DNA in plasma, targeted digital sequencing
(TARDIS), which overcomes the limitations of current methods in detecting residual disease after
treatment in non-metastatic cancer patients. TARDIS demonstrated a high degree of precision in
evaluating molecular response and residual disease in the course of neoadjuvant therapy in 80 plasma
samples from 33 women diagnosed with stage I to III breast cancer. By improving ctDNA detection
by 100 times, personalized ctDNA tracking has become a promising tool to tailor clinical management
strategies for patients with curable cancer. A multidimensional model was developed using extreme
gradient boosting, which was assessed for its ability to predict disease progression, cancer-specific
mortality and all-cause mortality [88]. The model showed high discriminatory power and good
calibration, and performed similarly to or better than the PREDICT model in different subgroups,
making it a useful tool for predicting prognosis and making clinical decisions for patients with breast
cancer in China.

5. Discussion

Breast cancer poses a number of diagnostic and treatment challenges, in part because of its
variable appearance and the subjectivity involved in interpreting medical images [89]. The accurate
identification and diagnosis of breast cancer, particularly in its early stages, can be difficult due to

AIMS Public Health Volume 10, Issue 4, 867-895.



886

the various forms it can present. The interpretation of diagnostic images, such as mammograms and
ultrasounds, can also be influenced by a doctor’s experience, training and personal biases, leading to
potential inaccuracies in diagnoses. Furthermore, the treatment of breast cancer can be complex, with a
range of options available, including surgery, radiation therapy and chemotherapy [90]. A doctor must
consider a variety of factors, such as the phase and type of cancer, the patient’s age and overall health
and the underlying side effects of treatment, when designing a tailored treatment plan [91]. These
considerations require a high level of expertise and experience, as well as the ability to effectively
communicate with patients and provide them with support and guidance.

Breast cancer diagnosis and treatment have undergone significant changes with the integration of
computer-aided technologies [1, 92, 93]. Through a systematic review of the relevant literature, we
identified three main areas of interest: machine learning, augmented and virtual reality, and data mining
[29, 70, 74, 80]. Machine learning offers improved precision and consistency through the automatic
analysis of vast amounts of medical data and images [29, 30]. Advanced algorithms in machine
learning can enhance diagnostic accuracy and early detection of breast cancer, thus prolonging patient
survival [31]. Augmented and virtual reality provide a more interactive and immersive experience
for both patients and medical professionals, and can be utilized for surgical guidance and navigation,
education and training, as well as preoperative planning and simulation [70-73]. Data mining and
analysis can also be utilized to predict breast cancer recurrence and forecast patient survival outcomes,
thereby assisting medical professionals in making informed treatment decisions and improving patient
outcomes [62, 79]. The integration of these cutting-edge technologies has the potential to revolutionize
breast cancer management by offering more personalized and effective care for patients.

However, while the introduction of these technologies holds potential, their wider integration into
the healthcare system presents public health challenges. The costs associated with the adoption
and maintenance of these technologies can pose significant barriers, especially in low-resource
settings [94]. Furthermore, the infrastructure required, from robust computing systems to specialized
equipment, might not be readily available everywhere. Additionally, there remains a learning curve
for physicians in accepting and adapting to these technologies [9]. The perceived reliability of
computer-aided systems, potential malfunctions and the shift from traditional methods could lead to
resistance among some healthcare professionals. As we emphasize the potential of these technologies,
it’s crucial to address these challenges and seek solutions for broader, equitable adoption.

The future of the field of computer-aided diagnosis and treatment in breast cancer management
holds much promise. Further advancements in technology and data analysis have the potential to
greatly improve the accuracy, efficiency and personalization of breast cancer diagnosis and treatment.
As such, the future of research in this field should prioritize the refinement and improvement of existing
technologies, as well as exploring new and innovative approaches to diagnosis and treatment. Precision
medicine, which takes into account a patient’s unique characteristics and medical history, is a promising
trend that deserves increased attention [83—85]. By leveraging the latest technological advancements,
researchers can continue to make strides towards the goal of providing more targeted and effective
treatments for patients, leading to improved outcomes and reduced burden of breast cancer. Therefore,
the future of breast cancer diagnosis and treatment is poised to be shaped by the continued growth and
integration of precision medicine and computer-aided technologies. With a focus on individualized
and targeted approaches, there is much reason for optimism in this field.

This systematic review sheds light on the recent advancements in the field of computer-aided
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diagnosis and treatment in breast cancer management. From a practical standpoint, these advancements
have far-reaching implications. By incorporating machine learning and data mining into the diagnostic
process, medical practitioners can make well-informed decisions based on a more comprehensive and
accurate understanding of the patient’s condition. Furthermore, the use of augmented reality and
virtual reality can enhance surgical planning and navigation, thus potentially lowering the risk of
complications and enhancing patient outcomes. However, it’s paramount that these advancements are
assessed from a public health perspective, taking into account their cost, accessibility and acceptability
among healthcare professionals. To sum up, the recent advancements in computer-aided diagnosis and
treatment in breast cancer management have the potential to significantly enhance the accuracy and
efficiency of breast cancer diagnosis and treatment, and provide new and innovative ways to tackle this
complex and challenging disease.

6. Conclusions

In conclusion, the systematic review of recent advancements in the field of computer-aided
diagnosis and treatment in breast cancer management underscores the crucial role of technology
in healthcare. With the integration of machine learning, augmented reality and virtual reality, and
data mining, medical professionals are now able to make more informed decisions and provide more
accurate diagnoses. These advancements have the potential to enhance diagnostic accuracy, facilitate
earlier detection of breast cancer and streamline treatment processes. In addition, the focus on precision
medicine in this field offers a promising trend, as it enables the customization of treatment plans
based on a patient’s unique characteristics and medical history. This approach has the potential to
significantly improve patient outcomes and quality of life. This systematic review underscores the
importance of continued investment in technology and research in the field of computer-aided diagnosis
and treatment in breast cancer management, which can lead to substantial advancements in the accuracy
and efficiency of breast cancer diagnosis and treatment.
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