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Abstract: Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disease that 
occurs secondary to repetitive mild traumatic brain injury. Current clinical diagnosis relies on 
symptomatology and structural imaging findings which often vary widely among those with the 
disease. The gold standard of diagnosis is post-mortem pathological examination. In this review article, 
we provide a brief introduction to CTE, current diagnostic workup and the promising research on 
imaging and fluid biomarker diagnostic techniques. For imaging, we discuss quantitative structural 
analyses, DTI, fMRI, MRS, SWI and PET CT. For fluid biomarkers, we discuss p-tau, TREM2, 
CCL11, NfL and GFAP. 
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1. Introduction  

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease secondary to repetitive 
mild traumatic brain injury (mTBI), including concussions and sub-concussive impacts, resulting in 
long-term issues with cognition, behavior and mood [1–7]. CTE was initially recognized in boxers 
who developed symptoms like ataxia, memory loss and personality change, and it was coined as the 
“punch drunk” syndrome or “dementia pugilistica” [1,3,4,8–10]. Over time, it became evident that 
CTE also affected military personnel, domestic violence victims and those participating in contact 
sports like football, ice hockey, professional wrestling, rugby, soccer and boxing [1–4,8]. 
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Neurodegeneration and symptoms in CTE progress even in the absence of further traumatic 
insults [2,6,11,12]. mTBI is thought to trigger an inflammatory cascade and lead to blood brain barrier 
permeability, axonal injury and micro-hemorrhages [13–16]. As a result, there is deposition of 
pathogenic proteins, including the pathogenic cis-isoform of p-tau, which, through the process termed 
cistauosis, catalyzes conversion of normal into pathogenic tau [2,17–21]. As such, CTE develops in 
pathological stages with worsening depositions of p-tau, neurofibrillary tangles and brain atrophy in 
similar but distinct fashions as other neurodegenerative diseases like Alzheimer’s disease [2].  

The current gold standard diagnosis for CTE is post-mortem pathological examination. Trauma 
encephalopathy syndrome was proposed to help diagnose patients with CTE. This criterion consists of 
a history of repetitive brain injury, persistent symptoms over a year and an absence of comorbidities 
that may also account for the symptoms. Also present should be a cognitive, behavioral or mood 
impairment in the presence of progressive decline over more than a year, impulsivity or  
headaches [2,22–24]. However, patients with CTE present differently and there is no consensus on a 
single, best set of clinical or research diagnostic criteria [2,5,6,25]. Therefore, there is increasing 
investigation of adjunctive non-invasive diagnostic modalities. In this paper, we review the recent 
advances in the use of neuroimaging and fluid biomarkers for early CTE detection. 

1.1. Diagnostic Imaging 

1.1.1. Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI) produces images by analyzing tissue characteristics using 
magnetic fields and radio waves. It is the current imaging modality of choice due to its improved soft 
tissue differentiation, ability to detect diffuse axonal injury and lack of ionizing radiation compared to 
computed tomography (CT). The gross, macroscopic structural changes with CTE include cerebral 
atrophy that is most severe in the frontotemporal lobes, vermis, thalamus, mamillary bodies and 
hypothalamus. There is also ventricular enlargement, thinning of the corpus callosum and 
depigmentation of the substantia nigra and locus coeruleus. Though it is not a consistent feature of 
CTE, neuropathologic change (CTE-NC), i.e., the presence of cavum septum pellucidum in imaging, 
is associated with CTE. Microhemorrhages representing diffuse axonal injury may also be  
present [26–30]. These structural findings are not specific to CTE, however [30]. Therefore, there has 
been increasing research on the use of alternative, more advanced imaging methods as tools to identify 
and understand the progression of CTE in vivo. 

2. Investigational imaging modalities 

2.1. Quantitative Structural Analyses  

Methods of quantitative brain volume analyses, like assessing cortical thickness in other 
neurodegenerative diseases, have provided useful for diagnosis and prognosis [31–34]. A study 
showed that hippocampal volume in football athletes was inversely correlated with the presence of 
concussions and amount of football played [35]. These findings, however, may not be specific to CTE 
considering the volume loss seen in other neurodegenerative diseases [36]. Furthermore, the inclusion 
criteria consisted of sport participation within the last year in those aged between 18–26. Therefore, it 



521 

AIMS Neuroscience                                                                Volume 9, Issue 4, 519–535. 

did not necessarily include or correlate with the presence of neuropsychiatric symptoms associated 
with CTE [16].  

2.2. Diffusion Tensor Imaging 

Diffusion tensor imaging (DTI) is an MRI technique that examines the longitudinal diffusion of 
water through axons to evaluate the orientation and integrity of white matter tracts. A fractional 
anisotropy (FA) close to 1 means that diffusion occurs along one axis and is otherwise restricted. Axial 
diffusivity (AD) and radial diffusivity (RD) are similar measures that reflect the magnitude of diffusion 
running parallel and perpendicular to white matter tracts, respectively [37,38]. As such, decreased FA, 
decreased AD and increased RA would be expected in CTE due to decreased white matter integrity. 
These findings have been demonstrated in mTBI, and even had prognostic value [39–47]. A post-
mortem tissue DTI analysis of patients with confirmed CTE-NC by Holleran et al. demonstrated 
associations between decreased FA and reduced white matter integrity [38]. A DTI analysis by Herweh 
et al. that evaluated male amateur boxers demonstrated associations between decreased FA and 
neuropsychological outcomes [48]. A study by Kraus et al. showed that study subjects who were 
included on the basis of having a history of mTBI (22 subjects) or moderate to severe TBI (17 subjects) 
had decreased FA and RD. The study also suggested that DTI can help to determine the relationship 
between TBI and cognitive differences and distinguish the spectrum and severity of TBI [49]. Another 
study showed decreased FA and no changes in the RD and FA in patients who were football players 
with sub-concussive impacts, with return to baseline after they abstained from play. Further studies 
are needed to assess the utility of RD and AD in patients specifically with CTE [50]. 

2.3. Functional MRI 

Functional MRI (fMRI) is also known as blood oxygen level-dependent MRI. Neuronal activation 
in specific brain areas results in an increased oxyhemoglobin-to-deoxyhemoglobin ratio secondary to 
increased local blood flow, resulting in changes in magnetic susceptibility that are detected by fMRI 
when a specific task is performed [51]. This method is heavily used in behavioral and physiologic 
research, as it correlates well with neuronal activity. A theoretical limitation is that the results may be 
confounded in patients with CTE who already have reduced and altered cerebral blood flow. This 
modality is yet to be investigated in CTE. A few studies have, however, demonstrated altered brain 
activation patterns in the fMRI results of living patients with acute and repetitive mTBI [52–62]. The 
correlation between fMRI and altered brain activation patterns in those with mTBI may overwhelm 
the theoretical limitation. Furthermore, arterial spin imaging MRI, a type of fMRI, has shown to 
represent aberrant cerebral blood flow in those with mTBI [63].   

2.4. Magnetic Resonance Spectroscopy 

Magnetic resonance spectroscopy measures concentrations of metabolites within the brain based 
on the chemical shift of their protons, which is determined by the proton’s chemical environment. This 
modality is useful for CTE when considering the pathological changes, including neuroinflammation, 
in the acute and chronic stages of the disease. In fact, a study investigating male USA National Football 
League (NFL) players between 40–69 with self-reported neuropsychiatric symptoms were found to 
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have decreased cellular energy metabolism, as evidenced by lower creatinine in the parietal white 
matter. Neuro-inflammatory metabolites like glutamate, glutathione and myo-inositol also correlated 
with their behavioral and mood symptoms [64]. Several other studies have demonstrated metabolite 
abnormalities in patients with a history of repeated head impacts, including decreases in NAA, 
NAA/Cho and NAA/Cr, as well as increases in Cho, ml, glutamine, choline, fucose and  
phenylalanine [65–70]. 

2.5. Susceptibility Weighted Imaging 

Susceptibility weighted imaging (SWI) takes advantage of different responses, or susceptibilities, 
to molecules within a magnetic field. These susceptibilities are measured as phase shifts and 
superimposed on an MRI, highlighting local susceptibility changes. In the setting of TBI, it can be 
used to reveal hemorrhagic contusions or diffuse axonal injury. SWI abnormalities, including 
microhemorrhages, have been demonstrated in contact sport participants, active duty military members 
and those with concussive-like symptoms and a history of repetitive mTBI [71–74]. Considering that 
it has shown utility in predicting neuropsychiatric outcomes for those with acute mTBI, its use should 
be considered in predicting the likelihood of the development of CTE [75,76]. Neurodegenerative 
disorders often have characteristic features and positions of cerebral microbleeds [77,78]. Research 
investigating the distribution and features of cerebral microbleeds in CTE to make a specific diagnosis 
would be beneficial.  

2.6. Position Emission Tomography 

Position emission tomography (PET) CT, which employs the use of radioisotopic biomarkers, has 
been garnering interest for elucidating elevated tau, beta-amyloid, neurofibrillary tangles and other 
neuroinflammatory proteins [79]. For example, FDDNP binds to the neurofibrillary tangles and 
proteins that are associated with CTE. As such, it has been employed in the diagnosis of CTE [79,80]. 
However, FDDNP has also been shown to bind to beta-amyloid and hyperphosphorylated tau and is 
therefore limited in specificity when discriminating against other neurological degenerative diseases, 
such as Alzheimer’s disease [79]. 

The development of biomarkers specific for the hyperphosphorylated tau proteins associated with 
CTE, such as [18F]AV-1451 (flortaucipir), are of interest and have been recently studied. [18F]AV-
1451 binds to the paired helical tau deposition associated with Alzheimer’s disease, and studies are 
being conducted to investigate its utility for visualizing tau deposition patterns that are associated with 
CTE, such as those in the medial temporal lobe, brain stem and diencephalon [81]. One such study 
involved [18F]AV-1451-PET scans from 26 former NFL players aged between 40–69 with reported 
neuropsychiatric symptoms; the researchers observed a statistically significant increase in the mean 
standard reuptake of [18F]AV-1451 in the bilateral superior frontal, bilateral medial temporal and left 
parietal regions as compared to the controls [82]. Another study followed a retired NFL player who 
underwent an MRI and [18F]AV-1451 PET scan, which revealed uptake in the bilateral medial 
temporal lobes and parietal regions 4 years before a post-mortem diagnosis of stage-4 CTE [83]. These 
studies, which are confined to small sample sizes and the single case report, illustrate the need for 
further investigation to validate [18F]AV-1451 as an optimal radiotracer for in vivo PET scans to 
diagnose CTE. Other developing PET tracers of interest that bind to tau proteins include 
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[11C]PBB3[84], THK-5105[85], THK-5117[86], THK-5351[87] and T807[88]. [18F]florbetapir and 
[11C]PiB PET measure amyloid beta plaques [89,90]. The characteristics of selected biomarkers are 
reviewed in Table 1. Studies have also investigated the use of [11C]flumazenil and [18F]flumazenil, 
which bind to the GABAA system in patients with a history of repeated head injury [91]. Lastly, the 
translocator protein (TSPO) and copper have also been targeted with several radiotracers to assess 
inflammation [91]. Several studies have also investigated the use of [18F]FDG for patients with a 
history of mTBI, generally showing decreased brain glucose metabolism in the cerebellum, vermis, 
pons, temporal lobe, prefrontal cortex and limbic system [91]. Though cortical uptake regions vary, 
studies have generally consistently demonstrated uptake in the temporal lobes, limbic system, 
midbrain, hippocampi and amygdalae [2,79,91]. The need for further research into PET biomarkers 
for hyperphosphorylated tau proteins specifically associated with CTE and tasked with reducing off-
target binding is warranted.  

Table 1. PET CT biomarkers. 

Biomarker Specificity 

FDDNP Affinity for intracellular neurofibrillary tangles but has been found to be “non-selective” due 
to its binding with extracellular β-amyloid and tau, which is a feature of Alzheimer's disease 
and not necessarily CTE [17,79,91]

[18F]AV-1451 
(flortaucipir) 

Affinity for hyperphosphorylated tau proteins. However, there is a possibility of false 
negatives, as there is also high binding affinity for paired helical tau filaments in 
Alzheimer’s disease and not CTE [91,92]. 

[11C]PBB3 Affinity for Alzheimer’s disease tau pathology but has mixed reviews over its ability to 
identify paired helical tau filaments in CTE [93,94] 

THK-5105 High binding affinity to tau protein aggregates and tau-rich Alzheimer disease, but it has 
reported to have a high background signal in PET images, which could affect its utility. 
Also, it has not been investigated for tau proteins seen in CTE-related pathology [86,95]. 

THK-5117  Affinity for Alzheimer’s disease-related tau protein in the medial temporal lobe in port-
mortem patients, but not yet investigated for the CTE-related tau deposits [96].  

THK-5351 Showed affinity with increased t-tau levels in the parahippocampal gyrus, but not 
investigated for CTE-associated tau patterns to date [97].

3. Fluid biomarkers 

3.1. p-Tau 

CTE is characterized by an accumulation of differentiated cis p-tau proteins in the vasculature of 
sulcal depths with large groups of astrocytic tangles, neurofibrillary tangles and neurites [17]. These 
abnormal, non-functional p-tau clusters develop within axons [17,98]. High values of p-tau are also 
found in single-event TBI and other neurodegenerative diseases, and therefore cannot serve as the sole 
means of diagnosis of CTE [99,100]. However, it can serve as a biomarker when considered in the 
overall clinical setting with accompanying imaging findings from developing diagnostic tools, like 
PET. 
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3.2. TREM2 

A promising biomarker that is not as widely employed for tau is the inflammatory marker 
triggering receptor expressed on myeloid cells 2 (TREM2), a triggering receptor found in several 
myeloid lineage cells such as peripheral macrophages, dendritic cells and microglial cells in the central 
nervous system (CNS) [101]. TREM2 is also expressed in the microglia of the brain, regulating 
microglial activation and playing a multi-faceted role in its immune response [102,103]. Animal 
studies have shown that TREM2 is upregulated in the early stages following injury, making it a 
potential biomarker for TBI and other head injuries [104]. When microglia in the brain are activated, 
following injury, cleavage of TREM2 by proteases follows. These proteases release soluble TREM2 
(sTREM2), indicating that injury has occurred. A study highlighted the relationship between sTREM2 
levels in cerebrospinal fluid (CSF) and t-tau concentrations in 68 former NFL players aged 40–69 with 
self-reported neuropsychiatric symptoms (compared to healthy controls), ultimately finding a positive 
correlation between the two [102]. The presence of TREM2 variants increases the likelihood of 
developing Alzheimer’s disease by 2–4 times [105,106]. Therefore, elevated levels of sTREM2 are 
non-specific. Because upregulation of TREM2 begins early and persists over time [104], it could prove 
to be a key inflammatory marker used for the diagnosis of CTE in the appropriate clinical context.  

3.3. CCL11 

A biomarker with potential for pre-mortem CTE diagnosis is the chemokine C-C motif chemokine 
ligand 11 (CCL11). Chemokines are proteins that play a central role and facilitate biochemical and 
cellular events in the immune response. They upregulate leukocytes and act as secondary pro-
inflammatory mediators [107,108]. CCL11 is a chemoattractant of eosinophils in the peripheral 
immune system and has recently been shown to also penetrate the blood brain barrier [107]. A study 
showed that the brain of mice secreted CCL11 as a response to the inflammation of astrocytes, 
pericytes and microglia [109]. A key study showed an increase in the plasma blood levels of CCL11 
to correlate with a decrease in learning, memory and neurogenesis in the brains of mice [110]. It has 
been proposed that the main reason for CCL11’s involvement in neurological decline is its ability to 
increase the microglial production of reactive oxygen species and promote excitotoxic neuronal  
death [111]. A study indicated that CCL11 is released in the CSF from the choroid plexus in the brain, 
suggesting direct effects on the brain [112]. This is also associated with an increase in the ratio of 
cytokine interleukin (IL)-4 and interferon (IFN)-γ in the choroid plexus and CSF. Prior research has 
shown the physiological importance of CCL11 to neurological function, but it may be a useful 
biomarker for CTE considering its ability to distinguish it among other neurodegenerative diseases. A 
collection of studies showed that plasma CCL11 increased in patients with Alzheimer’s disease and 
Huntington’s disease, while it decreased in amyotrophic lateral sclerosis and secondary progressive 
multiple sclerosis [113–115]. Using ELISA, a post-mortem study of 23 former football players with 
neuropathologically diagnosed CTE and 50 subjects with neuropathologically diagnosed Alzheimer’s 
disease showed a statistically significant increase in the CCL11 levels in the dorsolateral frontal cortex 
of CTE subjects compared to the Alzheimer’s disease and control subjects [116]. Another study with 
subjects aged 25–33 showed significant increases in CCL11 in the CSF of retired football players 
relative to swimmers with no TBI history and a sedentary control group. Analysis of the IL-4-to-IFN-
γ ratio also showed significant increase in the football players compared to the others in the study.  
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Lastly, CCL11 levels showed a strong positive correlation with the number of years of football  
played [107]. There is a lot of promise that CCL11 can provide CTE diagnosis for patients pre-mortem. 
More comprehensive research can be done to analyze the relationship of CCL11 levels with the IL-4-
to-IFN-γ ratio found in the CSF of different types of neurodegenerative diseases in pre- and post-
mortem brains to build a more accurate predictive model for diagnosis. 

3.4. NFL 

Another biomarker widely employed in TBI is neurofilament-L (NfL). NfL comes from the 
intermediate filament protein family and is part of the neuronal cytoskeleton [117]. It can serve as an 
indicator of CNS axonal damage. NfL is released into the CSF [117]. A meta-analysis with a sample 
size of 1118 patients showed that NfL CSF, serum and plasma levels were significantly higher in 
patients with TBI compared to the control patients without prior TBI [117]. Another study showed that 
patients with Alzheimer’s disease, Guillain-Barré-syndrome and amyotrophic lateral sclerosis had 
increased levels of serum NfL compared to a control without CNS damage [118]. These studies suggest 
that NfL could be used to also conduct future research toward CTE diagnosis.  

3.5. Glial fibrillary acidic protein 

Glial fibrillary acidic protein (GFAP) is a cytoskeletal monomeric filament protein located in the 
astroglial cells of gray and white matter [119]. A study showed that levels of GFAP, tau and NfL were 
all higher in the group of 277 patients suspected with mTBI, with GFAP yielding high discriminatory 
power in differentiating these patients from the 49 healthy controls, with an area under the curve (AUC) 
of 0.93 [120]. In the same study, GFAP similarly served as a strong predictor of mTBI when examining 
MRI abnormalities, with an AUC of 0.83 [120]. Another study of GFAP’s ability to predict CT 
abnormalities showed an AUC of 0.88 when examining 215 patients (83% with mTBI; mean age 42.5 
± 18.0) [121]. Further analysis could be done using pre-mortem CTE subjects and comparing GFAP 
levels in those patients to a control to assess whether this translates to specifically diagnosing CTE 
over other diseases as a result of a TBI. The characteristics of the biomarkers are summarized in Table 
2.  

Table 2. Blood biomarkers for the diagnosis of CTE. 

Biomarker Description Significance Advantages Limitations

p-tau Hyperphosphorylated tau 
protein found in the cortical 
vasculature within the sulcal 
depths [17]. 

-Repetitive head injury causes 
the conversion of typical tau 
protein to p-tau [2]. 
-P-tau is indicative of axonal 
functional decline and will 
deposit in predictable patterns 
and high concentrations 
following brain injury 
[17,122,123].

-Consistent and 
sensitive results 
considering large 
concentrations 
following injury [123]. 
-A blood sample is less 
invasive than lumbar 
puncture [124]. 

Other 
neurodegenerative 
diseases also express 
high concentrations 
of p-tau [123]. 

Continued on next page 
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Biomarker Description Significance Advantages Limitations

TREM2 Triggering receptor found in 
myeloid lineage cells that 
regulates CNS microglial 
activation [101]. 

-Cleavage of TREM2 by 
proteases following head 
injury produces sTREM2 
-Increased sTREM2 levels in 
the CSF are indicative of 
increased protease activity, 
likely due to trauma [102]. 
 

Early upregulation of 
TREM2 following head 
injury may eventually 
lead to its diagnostic 
use in potential CTE 
cases in vivo [102,104]. 

-Invasive sample 
collection with 
lumbar puncture 
[102]. 
-TREM2 variants can 
impair the function 
of receptors due to 
poor signaling, 
ultimately leading to 
decreased sTREM 
levels [125].

CCL11 -Chemokine that serves as a 
mediator in inflammatory 
cascades [107,108]. 
-Penetrates the blood brain 
barrier [107]. 
-Secreted into CSF by 
choroid plexus in the brain 
[112]. 

-Increases microglial 
production of reactive oxygen 
species and promotes 
excitotoxic neuronal death 
[111]. 
-Reflective of 
neuroinflammatory processes 
[111]. 

-Potential ability to 
differentiate between 
CTE and other 
neurodegenerative 
diseases [116]. 
-Possible correlation 
with number of 
repeated head impacts 
[107].

-Its main role in the 
CNS is unclear, as it 
is a chemoattractant 
of eosinophils in the 
peripheral immune 
system [112]. 

NfL Part of the Intermediate 
filament protein family and 
of the neuronal cytoskeleton 
[117]. 

-Can be measured, as axonal 
damage induces its release 
into the CSF [117]. 

-Released in a delayed 
fashion and may be 
correlated with 
cognitive decline in 
patients with chronic 
TBI [126]. 
-Specific to CTE [116].   

-Conflicting data 
regarding its validity 
in accurately 
diagnosing CTE 
[117]. 

GFAP Cytoskeletal monomeric 
filament protein in the 
brain’s astroglial cells [119]. 

-Reflective of astroglial 
injury and released acutely 
following TBI [116].

-Better predictor of 
mTBI than NfL and p-
tau [120].

-Utility in CTE 
specifically unknown 
[120,121].

4. Conclusion 

In conclusion, the current clinical diagnosis of CTE relies on clinical symptomatology and 
structural imaging findings. While there is extensive research on imaging and fluid biomarkers in 
relation to TBI, there is comparatively limited research on CTE. Particularly, the referenced studies 
are often small and investigate mTBI, TBI or repetitive head injury and do not study CTE directly. 
Investigating CTE directly is especially difficult considering the lack of consensus on pre-mortem 
diagnostic criteria. The studies also frequently include patients based on a history of sport participation 
alone, self-reported history of TBI or self-reported neuropsychiatric symptoms. The studied 
biomarkers are also often elevated in other neurodegenerative disorders, and there is relatively limited 
research on the use of biomarkers to differentiate CTE from other neurodegenerative disorders. Lastly, 
many of the fluid biomarkers are also elevated following a single TBI event, and there is not an imaging 
or fluid biomarker approved solely for CTE. We look forward to further research on the early 
promising imaging modalities and fluid biomarkers to potentially assist in the diagnosis of CTE and 
in differentiation of it from other neurodegenerative diseases.  
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