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Abstract: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in adults 

involving non-demyelinating motor disorders. About 90% of ALS cases are sporadic, while 10–12% 

of cases are due to some genetic reasons. Mutations in superoxide dismutase 1 (SOD1), TAR, c9orf72 
(chromosome 9 open reading frame 72) and VAPB genes are commonly found in ALS patients. 

Therefore, the mechanism of ALS development involves oxidative stress, endoplasmic reticulum 

stress, glutamate excitotoxicity and aggregation of proteins, neuro-inflammation and defective RNA 
function. Cholesterol and LDL/HDL levels are also associated with ALS development. As a result, 

sterols could be a suitable biomarker for this ailment. The main mechanisms of ALS development 

are reticulum stress, neuroinflammation and RNA metabolism. The multi-nature development of 
ALS makes it more challenging to pinpoint a treatment.   
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Abbreviations: AD: Alzheimer’s Disease; Ataxin-2: ATXN2 Gene-Product; ALS: Amyotrophic 

Lateral Sclerosis; HSP: Hereditary spastic paralysis; AMPA: α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid; LDL: Low Density Lipoprotein; AOA2: Ataxia with Oculomotor Apraxia 
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Type 2; MMP-2: Metalloproteinase-2; fALS: Familial ALS; MMP-9: Metalloproteinase-9; sALS: 

Sporadic ALS; NfL: Neurofilament Light Chain; APOE: Apolipoprotein E; NMDA: α-Amino-3-
Hydroxy-5-Methyl-4-Isoxazole-propionic Acid; Ataxin-2: ATXN2 Gene-Product; PD: Parkinson’s 

Disease; CCR2: C-C Chemokine Receptor Type 2; pNfH: Phosphorylated Neurofilament Heavy 

Chain; c9orf72: Chromosome 9 Open Reading Frame 72; Optn: Optineurin; CMT type 4 J: 
Charcot-Marie-Tooth disease type 4; OX40: CD134 (TNFRSF4); CRP: C-Reactive Protein; PLS: 

Primary lateral sclerosis; CSF: Cerebrospinal Fluid; RBP: RNA-binding protein; DFT: 

Frontotemporal Dementia; RNA: Ribonucleic acid; ELISA: Enzyme-Linked Immunosorbent Assay; 
ROS: Reactive Oxygen Species; EMMPRIN: Extracellular Matrix Metalloproteinase Inducer; 

SCAR1: Spinocerebellar Ataxia, Autosomal Recessive 1; FDA: U.S. Food and Drug 

Administration; SMA: Spinal muscular atrophy; FIG 4: FIG4 Phosphoinositide 5-Phosphatase; 
SOD: Superoxide Dismutase 1; FTD: Frontotemporal disorder; TDP-43: TAR DNA-Binding 

Protein 43; FTLD: Frontotemporal lobar degeneration; TARDBP: TAR DNA Binding Protein; 

FUS: Fused in Sarcoma; TNF-: Tumor Necrosis Factor-𝛼; GM-CSF: Granulocyte Macrophage 
Colony Stimulating Factor; VAPB: Vesicle-associated Membrane Protein-associated Protein B; 

HDL: High-density lipoprotein; VCP: Valosin Containing Protein; HMGB1: High Density 

Lipoprotein; WASP: Wiskott–Aldrich syndrome protein; APOE: Apolipoprotein E; wr-CRP: Wide 
Range C-Reactive Protein 

1. Introduction  

ALS, like Parkinson’s disease (PD) and Alzheimer’s Disease (AD), is known as a non-

demyelinating neurodegenerative disease, first described by Dr. Jean-Martin Charcot in 1869 [1] 
This disease is associated with selective and progressive loss of corticosteroid motor neurons and 

spinal and bulbar motor neurons. As a result, the symptoms of ALS are muscle cramps, weakness, 

hyporeflexia and ultimately frontotemporal dementia (DFT), and it eventually leads to death.  
A study showed that ALS affects 223,000 people worldwide, and this number may increase by 

69% in next 20 years [2]. Therefore, having an understanding and knowledge of early biomarkers 

and patient follow-ups may improve the prognosis of ALS.  

2. Etiology 

The etiology of ALS remains an enigma, but several genetic, environmental and pathologic 

clues hold some promise. One finding is that 5% to 10% of patients seem to have inherited ALS in 

an autosomal dominant pattern. Some of them—2% of the total ALS patients—carry a mutation of a 
gene on chromosome 21 (Cu, Zn superoxide dismutase [SOD1]) that normally assists in detoxifying 

superoxide free radicals [3]. ALS is mostly sporadic, however, familial ALS is linked to monogenic 

causes, such as mutations in C9orf72, SOD1, or other genes [4,5]. Besides, in a study it was shown 

that tobacco use can also increase the ALS risk by almost four‐fold. Other environmental factors 
such as heavy metals, ambient aromatic hydrocarbons, pesticides and cyanotoxins, as well as head 

injury, also appear to be a risk factor for ALS [6–8]. It therefore appears that genetic as well as 
environmental factors together or separately may cause the ALS disease [9–12]. 
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3. Biomarkers 

In fact, there are no such reliable biomarkers of ALS, to date [13]. However, mutations in 

phosphorylated neurofilament heavy chain (pNfH) were found to be linked to ALS  

development [14]. In fact, cerebrospinal fluid (CSF) and blood from victims with ALS and other 
neurodegenerative diseases showed elevated levels of NFs [14–20]. Neurofilament levels actually 

rise in the blood and CSF ahead of the appearance of disease symptoms in people carrying a 

mutation in the SOD1 gene [21]. Levels of both neurofilament light chain (NfL) and phosphorylated 
neurofilament heavy chain (pNfH) are elevated with poor prognosis in ALS patients [17,22–24]. 

However, both nonclinical studies with transgenic rodents and clinical studies with familial ALS 

patients indicate that neuroinflammation and immune dysregulation are related to the pathogenesis 
and heterogeneity of the ALS disease [6,25]. 

Further, activated astrocytes, microglia and monocytes were detected in the motor cortex of 

ALS patients [26]. Similarly, levels of ferritin, creatine kinase, interleukins, and TNF-, in plasma of 
ALS patients were elevated compared to controls, pointing towards the T-cell-affected neuro-

muscular pathology in ALS [27]. In addition, C-reactive protein (CRP), an inflammation marker is 

also elevated in the serum of Pre-ALS and correlates with rapid progression of the disease [28]. 
Table 1 displays the different biomarkers that are related to different phenotypic abnormalities found 

in ALS. 

Table 1. Biomarkers of ALS. 

Blood Markers Related to Inflammation Related to Metabolic 
Dysfunction 

Related to 
Neurodegeneration 

Elevated in ALS patients:  
 Metalloproteinase-9 

(MMP-9) [29]  
 Extracellular matrix 

metalloproteinase inducer 
(EMMPRIN) [30]  

 

Increased circulating levels of: 
 Eosinophil-derived 

neurotoxin  
 Granzyme A and B 
 High mobility group box 1 

(HMGB1) auto-antibody 
 Interleukin-6 
 Interferon-𝛾 
 Monocyte chemoattractant 

protein-1 (MCP-1) 
 Tumor necrosis factor-𝛼 

(TNF)  
 Wide range C-reactive 

protein (wr-CRP) [31–42]  

 Motor neuron 
pathology 

 Defects in energy 
homeostasis  

 Weight loss 
 Hypermetabolism, and 
 Hyperlipidemia [43]  
 

 

 

 

  Loss of motor neurons 
[43]  

 

Continued on next page 
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Blood Markers Related to Inflammation Related to Metabolic 
Dysfunction 

Related to 
Neurodegeneration 

  Increased levels of: 
 MMP-2, another 

metalloproteinase, 
correlated with the 
severity of the disease 
[30,44]  

 

Decreased levels of:  
 Granulocyte macrophage 

colony stimulating factor 
(GM-CSF)  

 OX40  
 Soluble receptor for 

advanced glycation end 
products, and  

 Soluble tumor necrosis 
factor-related apoptosis-
inducing ligand [45–48]  

An increase in:  
 Low- to high-density 

lipoprotein cholesterol 
ratio  

 This increased ratio 
correlated with the 
survival of ALS 
patients [49]  

 

Increased amounts of:  

 Pro-apoptotic interleukin-
1𝛽 converting enzymes  
(Caspase-1 and Caspase-
9) [50,51] 
 

Low level of: 
 Propeptide of type I 

procollagen, which is an 
index of collagen 
biosynthesis. 

Increased concentrations of:  
 Interferon-𝛾, MCP-1, TNF-𝛼, 

and GM-CSF in ALS [52,53]  
 Granzyme B, HMGB1 

autoantibody, and wr-CRP 
[37,54,55]  

 APOE concentrations 
correlated with both the 
rate of deterioration of 
the patients and their 
survival times [56]  
 

 Increased concentration of 
cystatin C, which is a 
cysteine protease inhibitor 
involved in apoptotic 
neuronal cell death [57]  

 Increased level of lead 
  in the CSF [58,50]  

  Decreased expression of C-C 
chemokine receptor type 2 
(CCR2) in monocytes of ALS 
patients [34,60]  

 Increased levels in 
ALS: The circulating 
concentration of N-
acetylaspartate [61]  

 High levels of 
neurofilament light chain in 
the serum and CSF of ALS 
patients [62,63]  

 Mutations in TAR DNA-
binding protein 43 (TDP-
43) cause an accumulation 
of TDP-43 in the 
cytoplasm of circulating 
lymphomonocytes from 
ALS patients [64–67] 

 Decreased expression of 
human leukocyte antigen by 
ALS monocytes [60]  

 

  Increased expression of 
phosphorylated 
neurofilament heavy chain 
(pNfH) in ALS patients 
[68,69]  

 Binding of mutant 
C9orf72 to trimethylated 
histones was detected in 
ALS mononuclear cells 
[70]  

 

 Increased amount of: 
Natural killer T lymphocytes 
[69]  
 Neutrophil-to-lymphocyte 

ratio [55] and, 
  Decrease in the number of 

regulatory T cells [60,71]

  Increased expression of 
phosphorylated 
neurofilament heavy chain 
(pNfH) in CSF of ALS 
patients [72,73]  

4. Genetic factors in ALS 

More than 20 genes have been described for familial ALS (fALS) cases. However, those gene 

products are very different in their functions and make it difficult to find a clue for the onset of ALS 

disease. In most cases, the cause of sALS is not known, but it generally starts at an older age [9–11]. 
Several fALS genes such as SOD, TDP-43, FUS and C9ORF72 have also been reported in sALS 

cases [74]. 

Other Rare Occurring Mutant Genes in fALS: 

 A missense mutation in the D-amino acid oxidase (DAO) gene has been reported in several 
families with ALS disease [75]. DAO mutations decrease the cell viability, increase the ubiquitinated 

aggregates and enhance the apoptosis of primary motor neurons in culture [75,76]. 

 In one case, a genetic subtype ALS7 is found to be linked to chromosome 20ptel-p13 and 
shows the signs of onset of fALS [10]. 

Tables 2 and 3 display the responsible genes involved for fALS and sALS disease, respectively. 
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Table 2. Responsible Gene Factors for the Onset of fALS Disease. 

Genetic Factors fALS 

SOD1 (Superoxide dismutase 1) Mutation of the SOD1 gene found in ALS interrupts the cellular detoxification and 
results in free radical toxicity and cell death [77]. Mutations in SOD1 have been 
reported in ~20% of fALS and in ~1-4% of sALS [10,78]. 

TARDBP (TAR DNA binding 
protein)  

TDP-43 gene product binds to DNA and RNA and thus participates in the 
transcription and splicing of RNA. Mutation of TDP-43 was found in ALS cases 
[79–81]. 

FUS (Fused in sarcoma)  FUS is a DNA- and RNA-binding protein, and it is involved in mRNA transport 
to neuronal dendrites. Mutation of this gene are found in ALS [82–85]. 

C9ORF72 (Chromosome 9 
open reading frame 72)  

The repeat expansions of the c9orf72 gene are found in the pathogenesis of ALS 
[86]. 

VAPB (Vesicle-associated 
membrane protein-associated 
protein B) 

An aggregated loss-of-function mutant of VAPB predisposes motor neurons to ER 
stress-related death in ALS [87]. 

NEK1 
Discovered in 2016, mutations in NEK1 are present in both sporadic and familial 
forms of ALS. Together, NEK1 is associated with 3% of all ALS cases [88]. 

UBQLN2 
 

Ubiquilin-2 (UBQLN2) resides on the X chromosome. Mutations in the gene 
interfere may lead to the accumulation of harmful material within the cell. Both 
men and women may develop ALS due to ubiquilin-2 mutations [89] 

KIF5A 
 

KIF5A, or kinesin family member 5A, involved in transport of protein cargo in the 
cell. Mutations contributing to familial ALS appear to be inherited in an 
autosomal dominant fashion [88]. 

VCP (valosin-containing 
protein) 

VCP is a hexameric type II ATPase of the AAA family involved in multiple 
cellular functions. Immunohistochemical study of VCP in the skin from patients 
with ALS and controls reveals that the proportion of VCP-positive cells in the 
epidermis in ALS is higher than that in controls [90]. 

ALS2 (alsin) It promotes neurite outgrowth in cell cultures through activation of the small 
GTPase Rac1 [91]. Alsin knock-out mice showed increased vulnerability to 
oxidative stress, that causes motor neuron degeneration [92,93]. 

SETX (senataxin) SETX mutations-caused motor neuron degeneration may result from the aberrant 
RNA processing [94]. 

ANG (angiogenin) ANG mediates neovascularization and promotes neurite outgrowth during early 
embryonic development. Mutations in ANG gene cause an onset of the classic 
signs of ALS [95]. 

OPTN (optineurin) OPTN is co-localized with FUS, TDP43 and SOD1 in inclusion bodies of sALS 
and fALS [96]. 

SPG (spatacsin) SPG is the most common form of recessive fALS with juvenile onset [97,98]. The 
accumulation of spatacsin in non-myelinated axons suggesting axonal transport 
disturbance [99]. 

FIG 4 [phosphoinositide 5-
phosphatase that regulates 
PI(3,5)P2] 

FIG 4 is a signaling lipid that helps in retrograde trafficking of endosomal vesicles 
to the trans-Golgi network [100]. Mutations in FIG 4 result in neurodegeneration 
in sensory and autonomic ganglia, motor cortex and striatum [100–102]. 

SIGMAR1 (SIGMA Non Opiod 
Intracellular Receptor1) 

The SIGMAR1 protein functions as a subunit of the ligand regulated potassium 
channel, which can bind to neurosteroids, psychostimulants, and 
dextrobenzomorphans [103]. A mutation in SIGMAR1 gene established a 
connection between familial ALS with FTD to chromosome 9p13.2-21.3 
[104,105]. 

DCTN1 (Dynactin) 
 

Mutations have been identified in DCTN1 gene in sALS, fALS and ALS-FTD 
families [106].  DCTN1 mutations cause neurodegeneration by impairing axonal 
transport in motor neurons [107,108].
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Table 3. Responsible Gene Factors for the Onset of sALS Disease. 

Genetic Factors sALS 

APEX1 (Apurinic endonuclease) 

 

APEX1 participates in the process of DNA repair and DNA binding of 
transcription factors and plays a protective role against oxidative stress, and the 
mutants lose redox activity and fail to stimulate cell proliferation [109]  

CHMP2B (Charged multivesicular 
body protein 2B) 

CHMP2B mutations lead to dendritic retraction and autophagosomal 
aggregation in cortical neurons and in hippocampal neurons, implying that 
CHMP2B is needed for dendritic spine growth and maturation [110, 111]. 

NEFL (Neurofilaments) 

 

NEFL is required for neurofilament assembly. Mutations in it are known to 
cause a form of hereditary, sensory and motor neuropathy [112]. Homozygosity 
for the short repeat allele is associated with sALS [113]. Deletions and 
insertions in the C-terminal KSP repeats of NEFL are noted in some sALS 
patients [114].  

PON (paraoxonases) 
 

PON proteins are involved in the detoxification of organophosphate pesticides, 
neurotoxins and aromatic esters. Mutation in this gene causes neurotoxicity 
[115]. Seven mutations in the PON genes have been found in patients with 
fALS and sALS [116]. 

PRPH (Peripherin) 

 

PRPH acts as a cytoskeletal protein, is present in the neurons of the peripheral 
nervous system and helps in axonal regeneration [117]. Overexpression of 
wild-type PRPH in transgenic mice develops a selective, large scale late-onset 
motor neuron degeneration characterized by intermediate filament inclusions 
[118]. Two homozygous missense mutations have been identified in PRPH 
gene which may contribute to the ALS pathogenesis [119]. 

NEK1 
 

Discovered in 2016, mutations in NEK1 are present in both sporadic and 
familial forms of ALS. Together, NEK1 is associated with 3% of all ALS cases 
[88]. 

ATXN2 (Ataxin-2) 

 

ATXN2 form a RNA-dependent complex with TDP-43 and leads to enhanced 
dislocation of TDP-43 into the cytoplasm in the spinal cord motor neurons in 
ALS patients [120]. 

PGRN (Progranulin) 

 

It is a glycoprotein, linked to tumorigenesis and activated microglia in several 
neurodegenerative diseases [121]. To date, only a single study links PGRN 
mutations to ALS [122]. 

VEGF 

 

VEGF can cause the late-onset motor neuron degeneration similar to ALS 
[123]. Spinal cords of ALS patients show reduced expression of VEGF and its 
receptor [124]. Certain SNPs in the VEGF gene are associated with the lower 
level of VEGF expression and higher risk of ALS, suggesting a link between 
VEGF levels and ALS susceptibility [125]. 

SMN-1, SMN-2 (Survival motor 
neuron)  

 

SMN has an important function in mRNA metabolism. The impaired assembly 
and function of the spliceosome formed by SMN and associated protein could 
cause motor neuron degeneration [126,127] Homozygous deletion mutations in 
SMN genes are not found in ALS but an abnormal copy numbers in SMN1 
could increase the risk for ALS [128].

5. Molecular mechanisms of amyotrophic lateral sclerosis 

The common ALS genes, listed in Fig. 1, define three primary actions in ALS pathophysiology:  

 Protein conformational instability and its degradation: Loss of antioxidant defense (SOD 
1 function) causes the accumulation of free radicals and generates oxidative stress [78,88]. 
Aggregation of proteins, SOD1 [present only in the fALS] [77,129], TDP-43 [130],  
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FUS [131,132], Optineurin (Optn), Ataxin-2 and Ubiquilin-2 [129] are involved in causing 

ALS.  

 Impaired trafficking of RNA: Mutation of multiple ALS genes showed disturbances in 
RNA-binding proteins, RNA synthesis, its function and metabolism.  Mutations in the TDP-

43, FUS and C9orf72 genes develop stress granules in the cytoplasm, toxicity to neurons and 
disturbance of the splicing activity [133]. 

 Altered axonal and cytoskeletal biology: Cytoskeletal dynamics are altered in ALS. 
Mutations in profilin-1 are likely to impair energy-dependent extension of filamentous actin 
and elongation of growth cones, a process that is enhanced by a reduction in signaling from 

ephrin A4. Tubulin mutations compromise the structure of microtubules. Mutations in 

dynactin are predicted to impair retrograde transport along the microtubule backbone. 
All those above disturbances culminate to multiple secondary, downstream pathologic 

processes, including activation of endoplasmic reticulum (ER) stress and autophagy, proteasomal as 

well as mitochondrial dysfunction, disturbed axonal transport, altered dendritic morphology and 
excitotoxicity.   

 Reticulum stress: It is induced by the accumulation of abnormal proteins due to mutations of 
SOD1 in ALS [134,135]. 

 Structure and Functioning of Mitochondria: Alterations in the vacuolization and 
mitochondrial swelling decreases in the activity of the respiratory chain and causes  

ALS [136]. 
 Glutamate Excitotoxicity: Glutamate is a powerful neurotransmitter, synthesized at the 

presynaptic terminal and is diffused to activate post-synaptic neuron AMPA (α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-methyl-D-aspartate). In ALS 
patients, glutamate levels were abnormally high in their plasma compared to healthy subjects. 

This phenomenon may cause neuronal toxicity and cell death in ALS [137–139]. 

 Neuroinflammation: As the disease progresses, microglial cells acquire an M1 phenotype 
and secrete ROS, pro-inflammatory cytokines and neurotoxic molecules, and ultimately 

promote motor neuron death [140,141]. 

Therefore the proposed pathogenic mechanisms may include either protein aggregation, 
oxidative stress, mitochondrial dysfunction, glutamate receptor-mediated excitotoxicity or 

neuroinflammation [2,4,5,9,10]. In Fig. 1, we have shown by a schematic diagram how and where 

the genes are involved in ALS pathology. 
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Figure 1. A Schematic Diagram of ALS Pathology. 

Conformational instability and aggregation of proteins, impaired trafficking of RNA and altered 

axonal and cytoskeletal dynamics are the primary ones of all the responsible genes mutations These 
result on multiple secondary, downstream pathologic processes such as activation of endoplasmic 

reticulum (ER) stress and autophagy, proteasomal excitotoxicity, altered mitochondrial function, 

disturbed axonal transport, altered dendritic morphology, and neuroinflammation. 

6. Management oof ALS cases 

The diverse pathophysiology in ALS limits the treatment strategies for the management of the 

disease and therefore demands the cohort treatment through neurologists, pneumologists, 

physiotherapists, nutritionists, etc. FDA (U.S. Food and Drug Administration) has approved, so far, 
only two drugs to be applied for the treatment of ALS patients. One is Riluzole, one of whose action 

is to inhibit the release of glutamic acid from neurons, in vivo, and thus blocks the postsynaptic 

effects [142]. It may be partly due to inactivation of voltage-dependent sodium channels on 
glutamatergic nerve terminals, as well as activation of a G-protein-dependent signal transduction 

process or noncompetitive blockade of N-methyl-D-aspartate (NMDA) receptors [142]. In vivo, 

riluzole actually showed neuroprotective, anticonvulsant, and sedative properties. It improves 
survival by a couple of months, only [143–148], whereas another drug, Edaravone, which is a free 

radical scavenger, reduces oxidative stress and inhibits neuronal death in animal models [149]. In 

clinical trial, this drug, Edaravone, showed promising results in decreasing the death rate ofan ALS 
ALS patient by 35–40% and leading to approval in the United States in 2017 [150]. 
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Very recently (Sept. 2022) the U.S. Food and Drug Administration approved Relyvrio (sodium 

phenylbutyrate/taurursodiol) to treat patients with fatal ALS disease despite of uncertainty about its 
effectiveness (https://www.cnn.com/2022/09/29/health/als-drug-relyvrio). Relyvrio targets both 

endoplasmic reticulum (ER) and mitochondria of motor neurons in ALS patients. Vitamin E 

(tocopherols and tocotrienols) as an antioxidant can slow down the onset, and also the progression of 
ALS disease [151]. 

7. Discussion 

ALS is a neurodegenerative disease that starts due to defective function or non-function of 

motor neurons in the spinal cord and in the brain. Symptomatically the disease is characterized by 
progressive muscular atrophy, slow speech, paralysis, swallowing disturbances and respiration 

problems [152]. In most cases, death occurs typically 3–5 years after the diagnosis of the disease as 

the failure of the respiratory system becomes prominent, although in some cases survival could be 
longer [153]. From a genetic point of view, the majority of ALS cases are sporadic (sALS), and 

approximately 10% of cases can be considered familial (fALS). ALS is a complex disorder, and the 

biological mechanisms are still not completely understood as it involves different pathways including 
abnormal RNA metabolism, altered mitochondrial function and regulation of oxidative balance, 

modulation of neuronal excitability, axonal transport, control of the inflammatory response and 

protein folding and degradation, in the disease pathogenesis [154,155]. 
In ALS, as in other neurodegenerative diseases, there is an urgent need for sensitive, reliable 

diagnostic and disease-progression biomarkers for early detection and treatment of the disease. 

Peripheral blood inflammatory cytokines as they are increased in other neuro-degenerative disease, 
cannot be considered as a specific diagnostic marker for ALS.  

Many anti-inflammatory molecules have been used against ALS over the past 3 years with some 

success, but a cure is still far away. The limitations of sample collections for diagnostic marker 
studies are as follows: 

 (1) Collection of disease samples and controls should be with the same demographic 
characteristics  

 (2) The collection of samples at different days rather than at a single time point on any single 
day should be better as biomarkers of disease progression. 

 (3) The sensitivity of the used technique, other than ELISA, should be considered to detect 
the minimal concentrations of the molecule suspected for the disease.  

Plasma cytokines are elevated in ALS patients and are still considered as a disease marker for 

progression and for disease severity [156], however, more knowledge are needed to investigate a 
possible role of some other inflammatory cytokines those could be used for diagnosis of the disease 

as well its prognosis. However, blood biomarkers might not reflect the motor neuron defects as those 

present in the CSF [157]. In fact, the blood-brain barrier could inhibit the crossing of disease 
biomarkers towards the systemic compartment. Since frequent collection of CSF is hazardous we 

have to rely on blood samples as an ideal source of biomarkers.  
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8. Conclusion 

The genetic spectrum of fALS and sALS is heterogeneous. Several genes in ALS are known to 

cause many other neurodegenerative diseases, such as alsin with primary lateral sclerosis (PLS), and 

infantile onset ascending hereditary spastic paralysis (IAHSP), senataxin with SCAR1 or AOA2, 
spatacsin with HSP, VAPB with SMA, FIG 4 with CMT type 4 J, OPTN with primary open angle 

glaucoma. In addition, ALS and FTLD are similar to each other from their clinical as well as 

pathological points of view. A number of autosomal-dominant genes have also been described for 
ALS or FTD such as VCP, and TARDBP. The presence of two neurodegenerative phenotypes within 

the same family and even within the same individual naturally raises questions about the genetic and 

environmental interaction on the disease initiation. 
Using linkage analysis, candidate gene studies and genome wide association studies, about 1/3 

fALS and a small number of sALS have been revealed the disease-caused genes. However, despite 

all those analyses, the cause of major sALS cases remains unknown. Emphasis should be given on 
gene-environment interactions and crosslink in ALS, as the majority (90%) of the cases are sporadic 

in origin. The identification of novel genes and their modifiers may advance this research and may 

enable us to find a new treatment for ALS, in the near future.  
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