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It is useful to evaluate alternative methods for quantifying shape attributes to see which best 
predicts human judgments of shape similarity. Any insights that might be garnered would contribute 
to our understanding of visual mechanisms, and would also have potential applications in artificial 
intelligence—more specifically in machine vision. This brief commentary provides a recap of recent 
work from my laboratory that was directed to the attention of the artificial intelligence community [1] 
but which should also be of interest to those who study biological vision. It compared two 
computational methods for scaling similarity of two-dimensional shapes, followed by an experiment 
that determined the degree to which the scale values predicted human judgments of similarity. The 
results are at odds with a classic concept that proximity of neighboring contours is a prime factor in 
the perception of shape similarity. 

Procrustes analysis was one of the methods used to assess shape similarity. Procrustes analysis 
is a statistical method for comparing shape pairs that normalizes distances of boundary markers 
relative to their centroids, centers the shapes on their centroids, and then derives the minimum 
Euclidean distance among all pairs of markers. It has strong mathematical roots [2–5], and has been 
applied in various engineering and scientific fields, including classification of rock formations [6], 
and classification of facial features [7]. In biology it is known as geometric morphometrics [8,9]. A 
comprehensive overview of alternative implementations is provided by Dryden & Mardia [10]. 

For comparing 2D shapes formed as outline boundaries, one must discretize the perimeter to 
provide an equal number of location markers, as illustrated in Figure 1. The analysis requires an 
iterative assessment of spans between marker pairs at all perimeter locations. One arbitrarily chooses 
a marker from each shape, assesses the span between them, then steps to the next adjacent pair to 
assess that span, then the next, and so forth until all pairs have been evaluated. The mean of these 
spans is calculated, and that becomes a candidate similarity value. Passing through all of the pairs is 
not sufficient, however, for the starting pair that were chosen might not provide the minimum mean 
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value. So one returns to the starting point on one shape, pairs with the marker position on the other 
shape that is one step away from what was previously used, and repeats the loop around the 
boundary to derive another candidate mean value. This iterative process continues until all 
combinations of marker locations have been measured, after which the lowest mean value is chosen 
as reflecting the degree to which the two shapes are similar. A comprehensive Procrustes analysis 
could include adjustments for rotation and size, but here those steps were not applied because the 
size and orientation of target shapes remained unaltered for human judgments of similarity. 

The second method for scaling similarity is based on the novel concept that shape encoding has 
evolutionary roots in motion processing by the retina or optic tectum. Motion of the object or eye can 
register the encounter of contours in the image, and waves within a neural network might be used to 
register stationary contours. One can model the concept with polling waves that pass across a shape, 
providing a successive count of the number of boundary markers that are encountered. These counts 
provide bin values of a histogram. 

Greene & Patel [11] used polling waves that passed across each shape in the horizontal and 
vertical directions, and combined these in tandem into a single histogram. To adjust for differences 
in shape size, the raw histograms were re-binned and normalized to provide a 20-bin “summary 
histogram” for each shape. Similarity values were derived using a sum of squared differences 
calculation for each of the summary histograms. The scan registration and comparison steps are 
illustrated in the lower panels of Figure 1. 

An inventory of 480 unknown shapes were used for scaling of similarity, as this avoids 
complications that might be provided from long-term memory. Each shape consisted of an outline 
boundary formed by a continuous string of discrete dots (see Figure 1). Procrustes similarity values 
were derived from the pairs that were approximately the same size (then adjusted to have equal dot 
counts), and these were ranked and appear as the purple-colored sigmoid in Figure 2A. That panel 
also plots the scan similarity value that corresponds to each of the ranked Procrustes values, which 
appear as the widely scattered pattern of green tokens. Panel B shows the reverse, wherein the green 
sigmoid provides the ranked scan-similarity values and the Procrustes values are widely scattered 
purple tokens. A lack of correspondence for the two similarity measures is suggested by the plots 
themselves, and this was confirmed by finding the correlation of the ranked values to be −0.14. This 
small negative correlation indicates that the two methods are assessing different shape attributes. 

An assessment of the degree to which the scale values predicted human judgments of similarity 
was conducted using a match-recognition protocol [12]. The basic task uses an inventory of 
unknown shapes, each formed as a continuous string of discrete dots, like the examples shown in 
Figure 1. Each shape is briefly displayed as a target only once. This is quickly followed by display of 
a comparison shape that is a low-density version of the target or a low-density version of a different 
shape. The respondent judges whether the comparison display matches the target, or not, by saying 
“same” or “different.” 
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Figure 1. The upper panels of the figure illustrate the Procrustes method. Panels A and B 
show two shapes that have an equal number of boundary markers (dots). The centroid for 
each shape is shown with a plus sign. Panel C shows the shapes superimposed, and 
centered on the centroids. The arrows represent spans between the boundary markers, as 
required by the Precrustes method. The mean across all corresponding markers around 
the boundary would be calculated, and this process repeated with stepped pairing to 
determine the minimum mean span. This value provides an assessment of the similarity 
of the two shapes, the smaller the value, the greater the similarity. Panels D and E 
illustrate the scan method for summarizing the two shapes. Each shape is scanned with 
both a horizontal and vertical sweep by polling waves, though in each panel only a partial 
scan in one direction is illustrated. A polling wave provides a successive count of the 
number of boundary markers being encountered, and these values are further processed 
to provide a histogram that serves as the shape summary (as shown below each shape). 
Panel F shows comparison of the shape summaries using a sum-of-squared differences 
calculation, the resulting value providing a measure of shape similarity. A smaller value 
is provided by greater overlap of the histograms (green), with a smaller value indicating 
greater similarity of the shape summaries. 
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Figure 2. In panel A the pairs have been ranked according to the size of the Procrustes 
similarity values, wherein the sigmoid function (purple) provides a Procrustes scale of 
shape similarity. The corresponding scan similarity for each of the pairs is shown with 
green tokens. Panel B shows the reverse. The size of a given Procrustes value appears to 
be unrelated to the size of the corresponding scan value, and this was confirmed by a lack 
of correlation (see text). Panels C and D show binomial regression models and 
confidence intervals for perceptual judgments in a match-recognition task. The size of 
the Procrustes values did not predict the probability that the shape pairs would be seen as 
similar, but the scan values provided significant prediction of similarity judgments. 

The use of low-density comparison shapes is required to prevent perfect performance, which 
would the outcome if the full complement of boundary markers were provided by the comparison 
displays. The judgment can be described as “match recognition” though it is clear that the low-
density version of the target is not identical to the target. It is more accurate to say that the 
respondent is judging the similarity of the shapes that were provided by the target and comparison 
displays, and that works well for assessing which of the similarity scales provides the best prediction 
of human shape judgment. This can be done by assessing whether the size of the scale value predicts 
the probability that respondents will judge a given pair combination to be the “same” or see them as 
“different.” So here the comparison shape is never a low-density version of the target, per se, but the 
degree to which a respondent judges a pair member as being the same as the target reflects the 
similarity of the two shapes. 

A random sample of 320 pairs was chosen from the ranked combinations, and 20 respondents 
judged whether a given pair displayed the same shape. The Procrustes and scan methods had 
provided similarity scale values for each of the pairs, so the question was how well those values 
predicted the probability of “same” judgments. This was assessed with binomial regressions, which 
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are shown in the lower panels of Figure 2. It is clear from panel C that the Procrustes scale values do 
not predict the probability that the pairs would be seen as similar, and the correlation of the two 
measures was essentially zero. The binomial regression for the scan-similarity values against 
probability of same judgments (panel D) was significant at p < 0.0001, and the correlation of the two 
values was 0.40. 

It is somewhat surprising to see that the Procrustes method does not predict human perception 
of similarity. The concept that similarity would be determined by the relative proximity of adjacent 
locations around the boundary is intuitively appealing, and the calculation of spans provides an 
appropriate implementation of that concept. The critical failure may be that the method is 
intrinsically local. Biological vision may draw more heavily on the global relationships that are 
present in a given shape, this being the view advocated by Gestalt theorists. The scan method 
converts the relative positioning of boundary markers into bin counts, wherein the markers at various 
locations along the boundary are included at different locations within the summary histogram. A 
given bin reflects not only how many boundary markers were encountered by a scan wave, but also 
the location of that portion of the boundary relative to the full span of the shape. Finding that the 
scan-similarity measures correlate with human judgments of similarity provides support for the 
proposition that 2D shapes are summarized using scan waves that convert the shape into a 1D 
message that can be more readily transmitted and stored as an information packet. 

Scan encoding is based on movement of the polling wave. A number of laboratories have 
proposed that motion is involved in the encoding of contrast information, especially that provided by 
contours. Greene [13] suggested that spreading waves generated by retinal polyaxonal amacrine cells 
may be involved in the encoding of shape information. Gollisch & Meister [14] proposed that retinal 
ganglion cells are synchronously activated by local contrast at the end of saccadic eye movements. 
Ahissari & Arieli [15] as well as Rucci & Victor [16] argue that the drift that occurs between 
fixations can contribute to contour detection.  

There are numerous alternative ways that scan waves might be used to encode boundary marker 
locations, and the findings described above do not provide firm evidence that the visual system 
makes use of scan encoding. However, new concepts for shape encoding are needed [17], and these 
results suggest that the scan concept should be further investigated. 
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