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Abstract: Obesity and its related complications have become a pressing public health issue, requiring 

personalized nutritional and lifestyle interventions. Nutrigenetic diets utilize genetic information to 

tailor dietary recommendations based on an individual's genetic variations. This case-control study 

aimed to evaluate the impact of a nutrigenetic diet on weight loss and clinical parameters. Three groups 

were included: obese individuals following a nutrigenetic diet (n = 27), obese individuals following a 

generic diet (n = 23), and a control group of individuals with a normal body mass index (BMI) (n = 19). 

Based on polygenic risk scoring, personalized diet plans were developed that considered various 

genetic traits such as the impact of high amounts of protein on weight loss, the impact of low amounts 

of carbohydrates on weight loss, the risk of a high body fat percentage, the impact of a calorie 

restriction on weight loss, lactose intolerance, and gluten intolerance. By assessing a subject's risk 

scores, a personalized diet was created. Measurements taken at baseline and after four months included 

weight, BMI, body fat, lean mass, fasting blood sugar levels, total cholesterol, triglycerides, thyroid-

stimulating hormone (TSH), triiodothyronine (T3), thyroxine (T4), and uric acid. Results showed 

significant differences favouring the nutrigenetic group in weight (p < 0.001), BMI (p < 0.001), and 

body fat percentage (p = 0.05) when compared to the control and the generic diet groups. Additionally, 

the nutrigenetic group exhibited significant improvements in triglycerides (p = 0.003). Moreover, the 

within-group effect among nutrigenetic subjects showed a significant weight reduction (p < 0.001), BMI 

(p < 0.001), body fat percentage (p < 0.001), fat mass (p < 0.001), fasting blood sugar level (p = 0.019), 

and uric acid (p = 0.042). These findings suggest that a nutrigenetic diet may yield more effective 
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weight loss and improved clinical parameters compared to a generic diet. 
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1. Introduction 

In a world where obesity has become an escalating concern, recent studies and guidelines have 

shed light on its prevalence and impact on the Indian population [1]. According to the World Health 

Organization (WHO) guidelines for the Asian population, obesity is defined as having a body mass index 

(BMI) equal to or exceeding 25 kg/m2, while overweight falls within the range of 23.0–24.9 kg/m2 [2]. 

In India, the effects of obesity have significantly affected a staggering number of individuals, recently 

surpassing 135 million [1]. 

The prevalence rates of obesity and central obesity vary across different demographic factors, 

including age, sex, geographical environment, and socio-economic status. The Indian Council of 

Medical Research–India Diabetes (ICMR-INDIAB) study conducted in 2015 revealed crucial insights 

into the prevalence of obesity in India. The study reported obesity rates ranging from 11.8% to 31.3%, 

while central obesity rates ranged from 16.9% to 36.3% [1]. Such alarming figures pose significant 

challenges for the government in terms of healthcare provision and financial implications. 

Recognizing the urgency to address obesity-related issues, researchers have delved into the 

intricate relationship between genetic variations and the efficacy of specific diets in weight loss and 

metabolic improvements. For instance, the fat mass and obesity-associated protein (FTO) variants have 

gained attention. Studies have revealed that individuals who carry the risk allele (A allele) experience 

more favourable outcomes when following a high-protein diet, including weight loss, improved body 

composition, and positive changes in fat distribution [3]. 

In addition to FTO, numerous other genetic variants have been associated with obesity. The SH2B 

adaptor protein 1 (SH2B1), glutaminyl-peptide cyclo transferase-like protein (QPCTL), neuronal 

growth regulator (NEGR1), Homolog B, endoplasmic reticulum export factor (SEC16B), 

melanocortin 4 receptor gene (MC4R), potassium channel tetramerization domain containing 15 

(KCTD15), transmembrane protein 18 (TMEM18), nudix hydrolase 3 (NUDT3), transcription factor 

AP2-Beta (TFAP2B), and adrenergic receptor gene (ADRB3) have all been identified as genetic 

variants associated with obesity [4–12]. 

With the abundance of research highlighting the connection between genetic variants and obesity 

and the impact of macronutrients on our bodies, the concept of nutrigenetic diets has gained significant 

popularity [12]. This approach aims to optimize nutrition and promote better health outcomes by 

tailoring diets based on an individual's genetic predispositions and dietary needs [1,5]. 

The implementation of a nutrigenetic diet begins with genetic testing, where an individual's DNA 

is analyzed to identify either specific genetic variants or single nucleotide polymorphisms (SNPs) 

related to nutrition and metabolism. Then, these variants are studied to understand how the body 

processes nutrients such as carbohydrates, fats, vitamins, and minerals. Based on this information, 

personalized dietary recommendations are formulated based on the individual's genetic profile. For 

example, individuals with genetic variations affecting carbohydrate metabolism may be advised to 

follow a lower-carbohydrate diet to effectively manage blood sugar levels [13,14] 

Nutrigenetic diets typically include personalized meal plans that provide specific guidelines on 
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food categories and quantities, thereby considering the influence of genetic variations on nutrient 

metabolism. Continuous monitoring and feedback are essential to ensure the effectiveness of these 

diets. Follow-up genetic testing, blood tests, or other diagnostic measures may be employed to evaluate 

the impact of personalized dietary recommendations and make any necessary adjustments. 

2. Materials and methods 

2.1. Selection of SNP rsID 

To facilitate the selection of SNPs for our study, we conducted extensive secondary research and 

compiled a list of SNPs that exhibit potential correlations with weight loss. Our selection process 

ensured that the chosen SNPs demonstrated significant associations with their respective traits in at 

least two distinct populations and were supported by a minimum sample size of 1000 individuals 

(Supplementary Table 1). Through our secondary research, we identified specific reference SNP cluster 

IDs (rsIDs) linked to various factors influencing weight loss, including the impact of protein and 

carbohydrate intake, calorie restriction, body fat percentage, BMI, lactose intolerance, and gluten 

intolerance. Considering the impact of lactose and gluten intolerance on the digestive system and 

metabolism, we incorporated these genes into the formulation of our nutrigenetic diet. By considering 

the genetic risk associated with the aforementioned factors, we have developed individualized 

nutrigenetic diets for each subject (Supplementary Table 2). These diets have been tailored to align 

with the specific genetic profiles of the subjects, taking their unique genetic predispositions for the 

factors influencing weight loss into account. Upon identifying the relevant rsIDs, we conducted genetic 

risk scoring to assess the risk.  

2.2. Study subjects and sample collection 

For the case-control study, we divided the participants into three distinct groups. The first group 

consisted of individuals classified as obese who followed a nutrigenetic diet. The second group 

comprised obese individuals who adhered to a generic diet. Lastly, the control group included non-

obese individuals. To ensure homogeneity among the obese subjects, specific inclusion criteria were 

established. These criteria mandated that subjects be 18 years or older, display an interest in weight 

reduction, and have a BMI of 23 kg/m² or above. We selectively recruited individuals who expressed 

a keenness to adopt the nutrigenetic diet for the study. A separate group was formed for those not 

interested in the nutrigenetic approach, and they followed a generic diet. The control group consisted 

of non-obese individuals with a BMI below 23 kg/m². Additionally, we recruited subjects who were 

willing to provide pre- and post-clinical laboratory data from laboratories accredited by the National 

Accreditation Board for Testing and Calibration Laboratories (NABL). The blood samples collected 

by the respective diagnostic laboratories were sent to a genetic laboratory for further analysis. DNA 

extraction was performed on the collected samples, followed by genotyping using an Illumina 

microarray Infinium GSA V3 Chip, specifically designed to detect and analyze specific SNPs selected 

for the study (Figure 1). 

To prioritize the ethical aspects of our research, we obtained informed consent from all subjects, 

thus ensuring their full understanding and agreement to the utilization of their data for research 

purposes. Our study was conducted in adherence to the guidelines and regulations set forth by the 
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Answergenomics Ethical Review Committee Board. The authors, as well as the NABL Accredited 

Clinical Laboratories Healthians and Molley's Lab, affirm that there are no conflicts of interest. This 

study was conducted independently, without any external funding or competing interests that could 

potentially impact the research, analysis, or interpretation of the study’s findings. 

 

Figure 1. Overview of the methodology of the study. 

2.3. Genotype data generation and risk score categorization 

The first step in our study involved genotyping a set of SNPs using a genotyping array. This array 

includes the specific sets of genetic markers relevant to the traits under investigation without the need 

for genotype imputation. After receiving the RAW genetic data, we performed the genotype calling 

using GenomeStudio and ensured that all samples had 99.7% call rates. Quality checks, such as sex 

prediction and missing genotype, and sample checks were performed, and then the filtered data was 

saved in a tab-delimited Text file. 

We relied on existing literature and prior research to assign risk scores to each genotype for a 

marker. The risk assignment was based on the reported associations between specific genotypes and 

the traits of interest. For each marker, we used either an additive or dominant model of risk scoring, 

where specific genotypes were assigned a risk score based on their established impact on trait 

susceptibility. These risk scores were predetermined using prior knowledge and were specific to each 

marker. 
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To calculate personalized genetic risk scores for each trait, we employed a two-step process. First, 

we obtained beta values for each marker from previously conducted association studies or regression 

analyses. These beta values represented the effect size or weightage associated with each genotype of 

a marker for the given trait. 

Then, the risk score for an individual was computed by summing the product of the risk score for 

each genotype and the corresponding beta value across all markers relevant to the trait. Mathematically, 

the personalized genetic risk score for a trait (PGRS trait) was obtained using the following formula: 

PGRS trait = ∑(Risk score genotype ×  Beta value genotype) 

After calculating the risk score, we applied a normalization procedure to ensure consistency and 

comparability across different traits. This involved transforming the risk scores to a standardized scale. 

Then, the normalized risk scores were reported as the final output, thus representing an individual's genetic 

predisposition for the specific trait under investigation [15,16]. 

2.4. Trait risk categorization 

The process of categorizing the trait into high, medium, and low risk groups is based on a 

thorough analysis of genotype frequencies within the South Asian population. To begin, we collected 

the allelic frequencies associated with all the risks relevant to the trait of interest. These allelic 

frequencies served as a foundation for further calculations. 

Using the principles of the Hardy-Weinberg equilibrium, we then derived the genotype 

frequencies for each marker of the trait. This equilibrium enabled us to determine the expected 

proportions of homozygous dominant, recessive, and heterozygous genotypes based on the allelic 

frequencies obtained earlier. By applying this equilibrium, we gained insights into the distribution of 

genotypes within the population. 

Next, we established a connection between the genotypes and their corresponding risk scores by 

referring to the existing literature on the trait. Each genotype was assigned a specific risk score based 

on its association with the trait's manifestation or susceptibility. This step allowed us to link genetic 

information with potential risk levels. 

To capture the complexity of the trait and account for multiple markers simultaneously, we conducted 

permutations and combinations of all the markers involved. This process enabled us to obtain combined 

risk scores for the population, taking the various possible combinations of genotypes into account. 

Through this comprehensive analysis, we arrived at an estimated genotype frequency for specific 

combinations of markers within the South Asian population. By utilizing this estimated frequency as 

a reference point, we proceed to categorize the risk into three distinct groups: high, medium, and low. 

Additionally, we considered the prevalence of the trait to refine the categorization, thereby adjusting 

the risk levels to reflect the trait's overall impact within the population. 

2.5. Designing a personalized nutrigenetic diet 

Utilizing the principles of polygenic risk scoring, this study evaluated individual risk factors 

related to dietary traits, including protein metabolism, carbohydrate intake, body fat percentage, 

response to calorie restriction, lactose intolerance, and gluten intolerance. In a case analysis, the subject 
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exhibited a low risk for weight loss associated with high protein intake, a low risk in the context of 

low carbohydrate intake, a moderate risk for body fat percentage, a high susceptibility to calorie 

restriction, a significant risk for lactose intolerance, and a minimal risk for gluten intolerance. 

Leveraging these genetic risk assessments, a tailored nutritional regimen was formulated for the 

subject, emphasizing a “lactose-free diet with a high protein and low carbohydrate content”. 

Considering the subject's elevated risk profile for calorie restriction, the strategy involved maintaining 

their total daily energy expenditure (TDEE) without any caloric reduction. Participants were required 

to document their dietary intake to monitor adherence to the specified nutritional plan. Additionally, 

weekly telephonic follow-ups were implemented to provide motivational support and evaluate ongoing 

progress throughout the study period (Supplementary Table 2). 

2.6. Designing the generic diet 

In the generic diet group of our study, participants were provided with a balanced meal plan based 

on the dietary recommendations established by the Indian Council of Medical Research (ICMR). The 

ICMR guidelines serve as a standard for general dietary recommendations for adults in India. To 

promote weight loss, the meal plan aimed to achieve a reduction of 500 kcal from the participants' 

TDEE. 

The TDEE Formula is as follows: 

TDEE = 655.1 + (9.563 × weight in kilograms) + (1.85 × height in centimetres)

− (4.676 × age in years) × Physical Activity Level (PAL) 

Physical Activity Level (PAL): Sedentary: 1.2 (little to no exercise), Lightly active: 1.375 (light 

exercise or sports 1–3 days a week), Moderately active: 1.55 (moderate exercise or sports 3–5, Very 

active: 1.725 (hard exercise or sports 6-7 days a week), Super active: 1.9 (very hard exercise or daily 

physical labor)]. 

2.7. Statistical analysis 

The descriptive measures used in this study included medians and interquartile ranges (IQR) for 

continuous data, and frequencies and percentages (%) for categorical data. The normality of the 

continuous data was assessed using Q-Q plots and the Shapiro-Wilk test. Bivariate analyses were 

conducted using appropriate statistical tests based on the nature of the data. The Mann-Whitney U test 

and the Kruskal-Wallis test were used for independent samples, while either the Wilcoxon signed-rank 

test or the sign test (if the assumption of symmetrical distribution was violated) were used for paired 

samples. Effect sizes were calculated using the r-statistic, with values of 0.10 to <0.30 considered as 

small, 0.30 to <0.50 considered as medium, and ≥0.50 considered as large effects. 

For categorical variables, the Chi-square test was used, and Fisher's exact test was employed if 

any cell had an expected count less than five. To examine the factors influencing the post-test BMI 

results, a linear regression model was constructed. The dependent variables were the post-test BMI, 

while the independent variables included age, sex, post-test exercising habits, hydration, macronutrient 

distribution, and sleeping hours. The goodness of fit was assessed using the R-squared and adjusted 

R-squared statistical methods, and multi-collinearity was examined using the variance inflation factor 

(VIF). 
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Missing data were handled using the pair-wise deletion method under the assumption that it was 

missing completely at random (MCAR). Statistical significance was determined at a two-sided p-value 

of ≤ 0.05. Data analyses were performed using the IBM Statistical Package for the Social Sciences 

(SPSS) software, version 26.0. 

2.8. Ethics statement 

This study was approved by the Answergenomics Ethical Review Committee Board. We have 

obtained written consent from all the subjects. 

3. Results 

The study included a total of 69 subjects, with a median age of 36.0 years. In terms of sex, 52.2% 

of the subjects were males, while 47.8% were females. Of those study subjects, obese people who 

followed a nutrigenetic diet constituted 39.1%, obese people who followed a generic diet constituted 

33.3%, and people who had a normal BMI (control group) constituted 27.5%. The subjects 

represented various ethnicities, with the majority being South Indian 28.98%, and notably, a 

considerable portion of participants (28.98%) identified their ethnicity as 'Others' or 'Don't Know,' 

which was predominantly comprised of individuals born to inter-state parents. Regarding the 

macronutrient distribution, the mean percentages were calculated for carbohydrates, proteins, and fats. 

The participants' average carbohydrate percentage was 53.4%, the mean protein percentage was 15.3%, 

and the mean fat percentage was 31.3% (Table 1).  

Table 1. General Demographics of overall groups. 

General Demographics Overall (N = 69) 

Age 

Median (IQR) 36.0 (30.0–43.0) 

Sex 

Male 36 (52.2%) 

Female 33 (47.8%) 

Group 

Obese with Nutrigenetic diet 27 (39.1%) 

Obese with Generic diet 23 (33.3%) 

Normal BMI 19 (27.5%) 

Macronutrient distribution, mean (SD) 

Carbohydrates percentage 53.4 (3.9) 

Proteins percentage 15.3 (3.3) 

Fat percentage 31.3 (2.1) 

Ethnicity 

South Indian 28.98% (20) 

North Indian  24.63% (17) 

West Indian 17.39% (12) 

Others & Don’t Know 28.98% (20) 
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The bivariate analysis compared the characteristics between the generic diet group and the 

nutrigenetic diet group. There were no significant differences observed between the two groups for 

age (p = 0.33) or sex (p = 0.42). In terms of macronutrient distribution, there were no significant 

differences between the groups for carbohydrate percentage (p = 0.16), protein percentage (p = 0.53), 

or fat percentage (p = 0.61). These results suggest that the generic diet group and the nutrigenetic diet 

group had similar ages, sex distribution, and macronutrient distribution. Furthermore, the bivariate 

analysis of demographic data across different regions of India within the generic and nutrigenetic 

groups revealed no significant ethnic differences impacting our study outcomes. These results suggest 

a uniformity in the influence of ethnic diversity on the primary outcomes of our research, despite the 

sample's varied ethnic composition (Table 2). 

Table 2. Bivariate analysis of the Demographic data between the Generic, and the 

Nutrigenetic groups. 

The bivariate analysis compared the baseline characteristics between the control group, generic 

diet, and nutrigenetic diet groups. The nutrigenetic diet group had higher median values compared to 

the control group and the generic diet group for the weight (84.0 kg vs. 63.0 kg and 81.0 kg; p < 0.001), 

BMI (29.2 Kg/m2 vs. 22.5 Kg/m2 and 29.0 Kg/m2; p < 0.001), and lean mass (61.0 kg vs. 46.4 kg and 

52.4 kg; p = 0.015). On the other hand, the generic diet group showed higher median values compared 

to the control group and nutrigenetic diet group for fat mass (27.0 kg, vs. 14.6 kg and 25.3 kg; p < 0.001) 

and body fat percentage (35.7 kg, vs. 25.0 kg 31.4 kg; p < 0.001). The prevalence of a sedentary 

lifestyle was significantly higher in the nutrigenetic diet group (18.5%) compared to the control group 

(0.0%) and the generic diet group (17.4%; p = 0.032). Furthermore, laboratory results showed 

significant differences for lower HbA1C levels (p = 0.004) and lower fasting insulin levels (p = 0.001) 

among control groups compared to the generic diet and nutrigenetic diet group (Table 3). 

 

Variables Generic diet (N = 23) Nutrigenetic diet (N = 27) P-value 

Age 

Median (IQR) 40.0 (32.0–52.5) 37.0 (30.5–41.5) 0.33 

Sex 

Male 16 (59.3%) 11 (47.8%) 0.42 

Female 11 (40.7%) 12 (52.2%)  

Macronutrient distribution, median (IQR) 

Carbohydrates percentage 55.0 (51.0–55.0) 55.0 (54.0–55.5) 0.16 

Proteins percentage 15.0 (15.0–15.0) 15.0 (13.5–15.0) 0.53 

Fat percentage 30.0 (30.0–33.0) 30.0 (30.0–33.0) 0.61 

Ethnicity    

South India 30.43% (7) 29.63% (8) 1 

North India 30.43% (7) 18.52% (5) 0.68 

West India 21.73% (5) 11.11% (3) 0.61 

Others and Don’t Know 17.39% (4) 40.74% (11) 0.44 
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Table 3. Bivariate analysis of the baseline characteristics between the Non-obese, Generic, 

and Nutrigenetic groups. 

The bivariate analysis of the post-test characteristics among the three groups revealed several 

significant differences. The nutrigenetic diet group exhibited noteworthy improvements in body 

measurements, including reductions in weight, BMI (p < 0.001), body fat percentage (p = 0.002), and 

fat mass (p < 0.001) compared to the generic diet group. Additionally, the nutrigenetic diet group had 

higher lean mass ((p = 0.005). In terms of laboratory parameters, the nutrigenetic diet group showed 

lower HBA1C levels (p = 0.029) and lower fasting insulin levels (p = 0.021) compared to the generic 

diet group. However, no significant differences were observed in other laboratory measures (Table 4). 

 

 

Variables Non-obese (Control 

Group) (N = 19) 

Generic diet (N = 23) Nutrigenetic diet 

(N = 27) 

P-value 

Body measurements, median (IQR) 

Weight (kg) 63.0 (54.0–67.0) 81.0 (72.0 – 90.5) 84.0 (73.5–79.5) <0.001 

BMI (Kg/m2) 22.5 (22.0–23.3) 29.0 (27.7 – 33.0) 29.2 (27.4–31.2) <0.001 

Body Fat 

Percentage 

25.0 (19.6–28.4) 35.7 (30.6 – 40.6) 31.4 (25.5–37.3) <0.001 

Fat mass (kg) 14.6 (13.1–16.3) 27.0 (23.9 – 34.7) 25.3 (21.1–31.9) <0.001 

Lean mass (kg) 46.4 (39.7–54.6) 52.4 (46.3 – 61.8) 61.0 (44.8–69.1) 0.015 

Exercising habits     

Sedentary lifestyle 0 (0.0%) 4 (17.4%)  5 (18.5%) 0.032 

Slightly active 11 (61.1%) 15 (65.2%) 17 (63.0%)  

Moderately active 7 (38.9%) 1 (4.3%) 3 (11.1%)  

Very active 0 (0.0%) 3 (13.0%) 2 (7.4%)  

Laboratory results, median (IQR) 

HbA1C (%) 5.40 (5.30–5.65) 5.80 (5.65–5.95) 5.60 (5.50–6.10) 0.004 

Fasting Blood 

Sugar (mg/dl) 

93.50 

(87.15–96.68) 

98.10 

(89.00–101.74) 

95.30 

(89.30–103.65) 

0.296 

Fasting Insulin 

(Miu/L) 

6.24 (4.50–8.75) 11.82 (8.36–18.04) 8.98 (6.53–12.49) 0.001 

Total cholesterol 

(mg/dl) 

189.00  

(173.00–213.50) 

200.00 

(179.00–216.50) 

202.00 

(169.50–220.00) 

0.564 

Triglycerides 

(mg/dl) 

93.00 

(71.00–121.50) 

118.00 

(93.21–144.00) 

123.00 

(83.50–181.50) 

0.121 

Iron (mcg/dl) 88.80 (64.95–119.10) 83.75 (63.50–107.90) 85.25 (64.10–94.70) 0.659 

Uric acid (mg/dl) 5.20 (4.50–6.25) 5.60 (4.25–7.15) 6.00 (4.95–7.00) 0.405 

TSH (Miu/ml) 2.55 (1.69–3.14) 2.94 (2.12–4.79) 2.00 (1.76–3.88) 0.176 

T3 (ng/dl) 1.06 (0.93–1.23) 1.07 (0.97–1.15) 1.15 (1.02–1.26) 0.391 

T4 (ng/dl) 8.00 (7.29–8.87) 8.80 (8.51–9.46) 8.66 (7.50–9.93) 0.121 
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Table 4. Bivariate analysis of the Post-test characteristics between the Non-obese, Generic, 

and Nutrigenetic groups. 

The nutrigenetic diet group demonstrated significant improvements compared to the non-obese 

and generic diet groups. Notably, the nutrigenetic diet group exhibited substantial weight reduction 

(median: 5.00 kg, IQR: 3.25–6.00) and a significant decrease in BMI (median: 1.58, IQR: 1.06–2.19). 

Additionally, body fat percentage significantly decreased in the nutrigenetic diet group (median: 1.34, 

IQR: 0.48–3.68). Conversely, the non-obese group experienced a significant reduction in triglyceride 

levels (median: -22.00, IQR: −47.50–−3.50) compared to the other groups (p = 0.003) (Table 5). 

 

Variables Non-obese (Control 

Group) (N = 19) 

Generic diet (N = 23) Nutrigenetic diet 

(N = 27) 

P-value 

Body measurements, median (IQR) 

Weight (kg) 58.5 (54.0–68.0) 85.0 (77.5–93.8) 80.0 (70.8–90.0) <0.001 

BMI (Kg/m2) 22.3 (21.7–23.4) 30.7 (28.2–33.4) 27.9 (25.1–29.7) <0.001 

Body Fat 

Percentage 

25.4 (17.2–27.7) 35.6 (26.3–40.9) 29.0 (24.7–34.5)  0.002 

Fat mass (kg) 13.0 (11.1–15.3) 23.2 (20.0–30.0) 22.3 (19.3–26.7) <0.001 

Lean mass (kg) 44.3 (40.7–52.9) 58.7 (51.4–62.3) 57.9 (50.7–63.5) 0.005 

Exercising habits     

Sedentary lifestyle 0 (0.0%) 3 (13.0%) 0 (0.0%) 0.004 

Slightly active 9 (33.3%) 12 (52.2%) 9 (47.4%)  

Moderately active 12 (44.4%) 8 (34.8%) 3 (15.8%)  

Very active 6 (22.2%) 0 (0.0%) 7 (36.8%)  

Laboratory results, median (IQR) 

HbA1C (%) 5.70 (5.50–5.75) 5.90 (5.70–6.50) 5.70 (5.50–6.00) 0.029 

Fasting Blood 

Sugar (mg/dl) 

89.90  

(83.60–94.10) 

93.02  

(89.70–98.90) 

87.90 

(81.65–96.05) 

0.097 

Fasting Insulin 

(Miu/l) 

6.63 (5.13–9.60) 10.67 (7.03–16.13) 7.50 (5.90–11.75) 0.021 

Total cholesterol 

(mg/dl) 

189.00 

(182.50–218.50) 

198.00 

(176.00–214.50) 

198.00 

(165.00–221.50) 

0.963 

LDL (mg/dl) 123.90 

(99.10–132.70) 

105.50 

(51.00–125.20) 

130.00 

(109.05–144.85) 

0.067 

Triglycerides 

(mg/dl) 

126.00 

(88.50–151.00) 

139.00 

(113.00–180.00) 

118.00 

(94.00–163.50) 

0.251 

Iron (mcg/dl) 96.10 

(78.31–113.35) 

76.45 (65.00–98.60) 84.30 

(54.45–95.05) 

0.121 

Uric acid (mg/dl) 5.40 (4.59–6.05) 5.70 (4.35–6.85) 5.80 (4.70–6.75) 0.656 

TSH (mIU/dl) 2.84 (2.09–3.63) 3.22 (2.03–4.38) 2.36 (1.71–3.37) 0.368 

T3 (ng/dl) 1.10 (0.99–1.54) 1.02 (0.96–1.18) 1.07 (0.96–1.19) 0.220 

T4 (ng/dl) 8.01 (7.15–8.82) 8.65 (8.25 – 9.58) 8.94 (7.97–10.08) 0.143 
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Table 5. Bivariate analysis of the changes in body measurements and laboratory results 

between the Non-obese, the Generic, and Nutrigenetic groups (Baseline–Post-test). 

To understand whether the dependent variables such as age, sex, exercise, hydration, and sleep 

can influence the post-treatment BMI, we performed a multiple linear regression. After controlling for 

age (coefficient of 0.026 (SE = 0.058, β = 0.068, p = 0.659, 95% CI = −0.092–0.143)), gender 

(coefficient of 0.311 (SE = 1.278, β = 0.038, p = 0.809, 95% CI = −2.274–2.897)), exercising habits 

(coefficient of -0.759 (SE = 0.889, β = −0.147, p = 0.398, 95% CI = −2.558–1.039)), hydration  

(coefficient of −2.127 (SE = 0.865, β = −0.386, p = 0.018, 95% CI = −3.876–−0.379)), sleeping hours 

(coefficient of -0.655 (SE = 1.210, β = −0.079, p = 0.591, 95% CI = −3.101–1.792)),  macronutrient 

distribution (coefficient of 2.371 (SE = 1.320, β = 0.286, p = 0.080, 95% CI = −0.300–5.042)), and 

TSH levels (coefficient of 0.070 (SE = 1.86, β = 0.056, p = 0.707, 95% CI = −0.305–0.446)), the only 

variable that showed a statistically significant association with BMI was hydration. The coefficients 

of the other variables were not statistically significant, indicating that they did not have a significant 

impact on the BMI (Table 6). 

 

Variables Non-obese group  

(Control Group)  

(N = 19)  

Generic diet 

(N = 23) 

Nutrigenetic diet 

(N = 27) 

P-value 

Changes in Body measurements, median (IQR) 

Weight (kg) 0.00 (−0.25–0.00) 0.00 (−0.25–0.00) 5.00 (3.25–6.00) <0.001 

BMI (Kg/m2) 0.00 (−0.02–0.30) 0.00 (0.00–0.04) 1.58 (1.06–2.19) <0.001 

Body Fat 

Percentage 

0.23 (−0.46–2.07) −0.23 (−1.19–2.22) 1.34 (0.48–3.68) 0.055 

Fat mass (kg) 3.00 (−1.60–5.19) 5.13 (−0.87–8.55) 4.37 (0.32–8.60) 0.435 

Lean mass (kg) −2.99 (−5.19–2.61) −2.84 (−7.29–2.21) 2.63 (−4.47–5.08) 0.329 

Changes in Laboratory results, median (IQR) 

HbA1C (%) −0.10 (−0.25–0.00) −0.10 (−0.20–0.00) 0.00 (−0.10–0.10) 0.331 

Fasting Blood 

Sugar (mg/dL) 

0.00 (−4.45–5.80) 0.50 (−2.54–8.40) 5.10 (−0.35–13.00) 0.153 

Fasting Insulin 

(Miu/L) 

−0.58 (−1.24–0.00) 0.24 (−3.13–3.20) 0.58 (−1.41–3.58) 0.360 

Total cholesterol 

(mg/dL) 

−4.30 (−15.00–1.00) 0.00 (−11.38–8.50) 5.00 (−13.00–20.00) 0.221 

Triglycerides 

(mg/dL) 

−22.00 (−47.50–−3.50) −11.00 (−40.50–0.00) 4.00 (−13.00–33.00) 0.003 

Iron (mcg/dL) 0.00 (−16.35–18.85) 0.00 (−12.90–18.00) 0.45 (−22.00–23.70) 0.923 

Uric acid (mg/dL) 0.00 (−0.50–0.42) 0.00 (−0.45–0.30) 0.40 (−0.20–0.80) 0.102 

TSH (Miu/mL) −0.27 (−0.67–0.00) 0.04 (−0.40–0.41) −0.01 (−0.35–0.33) 0.097 

T3 (ng/dL) 0.00 (−0.08–0.07) 0.00 (−0.09–0.13) 0.06 (−0.07–0.11) 0.656 

T4 (ng/dL) 0.06 (−0.72–0.57) 0.57 (−0.79–1.05) 0.57 (−0.79–1.05) 0.491 
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Table 6. Linear regression model, examining the possible factors impacting the post-test 

BMI value. 

Model Unstandardized 

coefficients 

Standardized 

coefficients 

t P-value 95% CI for BMI 

B Std. Error β 

(Constant) 29.878 3.977  7.512 <0.001 21.833–37.992 

Age 0.026 0.058 0.068 0.444 0.659 −0.092–0.143 

Gender 0.311 1.278 0.038 0.244 0.809 −2.274–2.897 

Exercising habits −0.759 0.889 −0.147 −0.854 0.398 −2.558–1.039 

Hydration −2.127 0.865 −0.386 −2.461 0.018 −3.876–−0.379 

Sleeping hours −0.655 1.210 −0.079 −0.541 0.591 −3.101–1.792 

TSH levels 0.070 0.186 0.056 0.378 0.707 −0.305–0.446 

Macronutrient 

Distribution 

2.371 1.320 0.286 1.795 0.080 −0.300–5.042 

Gender, 1: Male, 2: Female. Exercising habits, 1: Sedentary lifestyle, 2: Slightly active, 3: Moderately active, 4: Very 

active. Water drinking, 1: Rarely, 2: 3-5 glasses, 3: 5-7 glasses, 4: Elixir of life. Sleeping hours, 1: 5-7 hours, 2: 7-9 hours, 

3: Most of the day. Diet type, 1: Nutrigenetic. 2: Generic. 

We also wanted to understand whether there could be differences in the nutrigenetic diet group 

between the baseline and post-treatment after four months. Significant results were observed, with 

participants experiencing a reduction in weight (p < 0.001, effect size r = 0.96), BMI (p < 0.001, effect 

size r = 0.84), body fat percentage (p < 0.001, effect size r = 0.68), and fat mass (p < 0.001, effect size 

r = 0.71) after the treatment. The sedentary lifestyle category significantly decreased (p = 0.001), 

indicating a positive shift towards a more active lifestyle. Additionally, the fasting blood sugar (p = 

0.019, effect size r = 0.44) and uric acid levels (p = 0.042, effect size r = 0.39) showed significant 

improvements. Moreover, no significant changes were found in lean mass levels or other laboratory 

measurements (Supplementary Table 3). 

The bivariate analysis comparing the baseline characteristics between the generic and nutrigenetic 

diet groups showed no significant differences in most of the measured variables. Body measurements 

such as weight, BMI, body fat percentage, fat mass, lean mass, basal metabolic rate, and recommended 

calories were similar between the groups. The distribution of individuals across different exercise 

habits was also comparable. Additionally, there were no significant disparities in laboratory results, 

including HbA1C, fasting blood sugar, total cholesterol, triglycerides, iron, uric acid, triiodothyronine 

(T3), and thyroxine (T4) levels. However, a trend towards lower fasting insulin levels was observed 

in the nutrigenetic diet group (p = 0.079). These findings suggest that the nutrigenetic diet did not 

have a significant impact on most baseline characteristics compared to the generic diet 

(Supplementary Table 4). 

The bivariate analysis comparing the post test of subjects in the generic and nutrigenetic diet 

groups revealed some notable differences. Subjects following the nutrigenetic diet had significantly 

lower BMIs (p = 0.009, effect size r = 0.81) compared to those on the generic diet. Moreover, the 

nutrigenetic diet group has lowered fasting blood sugar (p = 0.038, effect size r = 0.62) and fasting 

insulin (p = 0.047, effect size r = 0.59). However, no significant differences were found for the body 

weight, body fat percentage, fat mass, and most other laboratory results. These findings suggest that 
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the nutrigenetic diet may have favorable effects on BMI, blood sugar, and insulin compared to the 

generic diet (Supplementary Table 5). 

The bivariate analysis comparing the changes in body measurements and laboratory results 

between the generic and nutrigenetic diet groups revealed some significant findings. Subjects 

following the nutrigenetic diet exhibited significantly lower weight (p < 0.001, effect size r = 0.86), 

BMIs (p < 0.001, effect size = 0.76) compared to those on the generic diet. Additionally, the nutrigenetic 

diet group showed a significant decrease in body fat percentage (p = 0.020, effect size r = 0.33) compared 

to the generic diet group. No significant differences were observed for the weight, fat mass, and lean 

mass between the groups. In terms of laboratory results, there were significant improvements in 

triglyceride levels (p = 0.008, effect size r = 0.37) and uric acid levels (p = 0.047, effect size r = 0.28) 

in the nutrigenetic diet group compared to the generic diet group. However, no significant differences 

were found for the HbA1C, fasting blood sugar, fasting insulin, total cholesterol, LDL cholesterol, iron, 

thyroid-stimulating hormone (TSH), T3, and T4 levels between the groups (Supplementary Table 6). 

The bivariate analysis of the baseline and post-treatment non-obese group characteristics revealed 

a significant increase in triglyceride levels (p = 0.004, effect size r = 0.64) and TSH levels (p = 0.021 

effect size r = 0.52) post-treatment. Meanwhile, the baseline and post-treatment generic diet group 

showed a significant decrease in fat mass (p = 0.002, effect size r = 0.61) and a significant increase in 

triglyceride levels (p = 0.009, effect size r = 0.53) after the intervention (Supplementary Tables 7 and 8). 

4. Discussion 

This case-control study aimed to investigate the impact of a personalized nutrigenetic diet on 

weight loss and its effects on various clinical parameters in an Indian population. The study included 

three groups: obese individuals following a nutrigenetic diet, obese individuals following a generic 

diet, and a control group comprised of subjects with a normal BMI who did not follow any specific 

diet. 

The nutrigenetic test utilized in this study examined genetic variations in 18 genes and 25 rsIDs. 

It should be noted that the test was not originally designed as a weight management tool, but rather as 

a means to enhance personalization and to optimize overall healthy eating practices. The selection of 

gene variants was based on established evidence of gene-diet interactions, where the impact of genetic 

variation can be modified through nutrition or exercise interventions (Supplementary Table 1). In the 

nutrigenetic diet group, all subjects received specific guidance in terms of nutritional recommendations 

and meal plans tailored to their genetic makeup and lifestyle. Genotyping data were generated using a 

microarray chip, and personalized genetic risk scores were calculated for each trait of interest. These 

risk scores were used to categorize individuals into high-, medium-, and low-risk groups. In the generic 

diet group, all subjects received specific guidance in terms of nutritional recommendations and meal 

plans tailored to their lifestyle. 

The study sample consisted of 69 subjects, with a median age of 36.0 years. The distribution of 

sex and age among the three groups was not statistically significant, indicating that any observed 

differences in the outcomes can be attributed to the dietary interventions rather than initial variations 

in the participant’s characteristics. 

The analysis of baseline characteristics revealed some interesting findings. The nutrigenetic diet 

group had higher values for weight and BMI compared to the control group and the generic diet group, 

suggesting that individuals in this group had a higher baseline weight and BMI. Conversely, the generic 
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diet group had higher values for fat mass and body fat percentage compared to the control group and 

the nutrigenetic diet group, indicating a higher adiposity for this group. These baseline differences may 

have influenced the outcomes observed in the study. 

In our findings, the nutrigenetic diet group showed a notable decrease in fat mass and body fat 

percentage, aligning them more closely with the metrics observed in the control group and 

demonstrating the efficacy of personalized dietary approaches. This is corroborated by results from the 

Nutrigenomics Overweight/Obesity and Weight Management (NOW) Trial, where the group experienced 

significantly greater reductions in their body fat percentage over a standard group lifestyle balance (GLB), 

highlighting the impact of nutrigenomic interventions in weight management (P < 0.05) [17]. 

Regarding the laboratory results, the nutrigenetic diet group displayed an improved glycemic 

control, as indicated by a lower HbA1C level compared to the generic diet group. Although the 

difference was statistically significant, both groups had HbA1C values within the normal range, thus 

suggesting that both dietary approaches were generally effective in maintaining glycemic control. 

Moreover, fasting insulin levels were significantly lower in the nutrigenetic diet group compared to 

the generic diet group, thus indicating better insulin sensitivity. Most importantly, the within-group 

effect among the nutrigenetic diet group showed significant reduction in BMI, weight, body fat 

percentage, fat mass, and triglycerides.  

We conducted a multiple linear regression analysis to assess the influence of sex, age, exercise, 

sleep, and macronutrient distribution on the post-BMI value. The regression model yielded some 

interesting findings. Among the variables examined, only hydration showed a significant association 

with the outcome variable (weight loss). Individuals who reported higher hydration levels had a 

significant decrease in weight compared to those with lower hydration. This suggests that increased 

hydration may have contributed to the observed weight loss in the study participants. However, the 

other variables, including age, sex, exercising habits, sleeping hours, TSH levels, and macronutrient 

distribution, did not show statistically significant associations with weight loss. These results indicate 

that these factors may not have played a significant role in influencing the effectiveness of the 

nutrigenetic diet in promoting weight loss in the study population. 

A study conducted by Stookey, et al. 2008, found that increasing drinking water intake may 

positively impact weight loss among overweight women following a diet intervention. Over 12 

months, both absolute and relative increases in drinking water were associated with significant 

reductions in body weight and fat, independent of other factors such as diet group, changes in beverage 

intake, food consumption, and physical activity. These results provide support for the notion that 

drinking water could promote weight loss and improve the body composition levels, as we have 

discovered in our study [18].  

Interestingly, our overall study result correlates with the study conducted by Arkadianos et al. [14]. 

Their study investigated the effectiveness of nutrigenetics based diet in long-term weight management. 

Patients with a history of unsuccessful weight loss attempts underwent a nutrigenetic test, while a 

comparison group did not receive the test. After 300 days, the nutrigenetic group showed a better 

maintenance of weight loss (73% vs. 32% in the comparison group) and a significant average reduction 

in BMI (1.93 kg/m2) compared to a gain in the comparison group (0.51 kg/m2). Additionally, the 

nutrigenetic group demonstrated improved blood fasting glucose levels, with a higher percentage 

achieving levels below 100 mg/dL (57% vs. 25% in the non-tested group). Additionally, their findings 

suggested that incorporating nutrigenetic information into personalized diets could lead to a better 

compliance, sustained weight loss, and improved glucose levels [14]. 
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Another study conducted by Talib, et al. [19] also aligned to our results. They investigated the 

effectiveness of a DNA-based customized diet and exercise plan for weight management as compared 

to a conventional plan. A total of 30 subjects were divided into two groups: Plan A consisted of 15 

individuals who followed the DNA-based plan, and Plan B consisted of 15 individuals who adhered 

to the conventional plan. The results showed that both Plan A and Plan B led to weight loss after three 

months, although the difference in weight loss between the two groups was not statistically significant 

at that time. However, after six months, the subjects in Plan A exhibited a significant weight reduction 

compared to those in Plan B, indicating the potential long-term benefits of the DNA-based approach. 

Similarly, while the BMI of individuals in Plan A did not show significant differences after three 

months, it became statistically significant after six months, further supporting the efficacy of the DNA-

based plan for sustained weight management. Additionally, the study revealed that subjects in Plan A 

experienced a significant reduction in waistline measurements compared to those in Plan B after six 

months, indicating the impact of the DNA-based plan on body composition changes. These findings 

suggested that incorporating genetic information into personalized weight management strategies 

could provide a more effective approach to weight loss among obese individuals. Furthermore, the 

inclusion of a genetically personalized component improved motivation and compliance, thus 

indicating the potential psychological benefits of tailoring weight management plans to an individual's 

genetic profile [19]. 

5. Limitations 

A notable challenge in our study was the practicality of modifying participants' diets and 

subsequently collecting post-intervention data, which resulted in a smaller sample size. This limitation 

underscores the need for further research to validate our findings. In future studies, it would be feasible 

to segregate subjects based on their ethnicity with a larger sample size. Such segmentation would 

enable a more detailed examination of the specific changes and impacts associated with different ethnic 

groups. This approach could provide deeper insights into the nuanced relationship between diet, 

genetic background, and health outcomes across diverse ethnicities. 

6. Conclusions 

The findings of this study suggest that a nutrigenetic diet, along with proper hydration, may have 

beneficial effects on body weight, body composition, and glucose metabolism compared to a generic 

diet. Subjects following the nutrigenetic diet exhibited significant reductions in BMI, body fat 

percentage, and fat mass, thus indicating the potential for weight loss and an improved body 

composition. Furthermore, the nutrigenetic diet group showed lower fasting blood sugar and fasting 

insulin levels, suggesting an improved glucose metabolism. However, no significant differences were 

found in most other laboratory results. These findings highlight the potential advantages of tailoring 

dietary interventions based on genetic factors for weight management and metabolic health. 

It is important to note that individual responses to a nutrigenetic diet may vary, and further 

research is needed to explore the underlying mechanisms and long-term effects. Future studies with 

larger sample sizes, longer durations, and more comprehensive assessments of metabolic parameters 

would provide additional insights into the benefits and limitations of a nutrigenetic approach to diet 

management. Overall, the present study contributes to the growing body of evidence supporting the 
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potential of nutrigenetic approaches in personalized nutrition and highlights its role in promoting 

healthier lifestyles and a metabolic well-being. 
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