
AIMS Molecular Science, 3(3): 386-425. 

DOI: 10.3934/molsci.2016.3.386 

Received 16 May 2016,  

Accepted 8 August 2016,  

Published 15 August 2016 

http://www.aimspress.com/journal/Molecular 

 

Review 

Approaches in biotechnological applications of natural polymers 

Priscilla B.S. Albuquerque1,3, Luana C.B.B. Coelho2, José A. Teixeira3,  

and Maria G. Carneiro-da-Cunha1,2,* 

1 Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco (UFPE), 

Recife, PE, Brazil 
2 Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco 

(UFPE), Recife, PE, Brazil 
3 Department of Biological Engineering, Universidade do Minho, Campus de Gualtar, Braga, 

Portugal 

* Correspondence: Email: mgcc1954@gmail.com; Tel: +55.81.21268547;  

Fax: +55.81.21268576. 

Abstract: Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available 

and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic 

materials for industrial applications due to their intrinsic properties, as well as they are considered 

alternative sources of raw materials since they present characteristics of sustainability, 

biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex 

carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering 

variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring 

in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and 

animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are 

pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages 

are part of cell and physiological products. It is important to highlight that gums represent the largest 

amounts of polymer materials derived from plants. Gums have enormously large and broad 

applications in both food and non-food industries, being commonly used as thickening, binding, 

emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and 

cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films 

and coatings are extensively studied. The use of gums depends on the intrinsic properties that they 

provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are 

being processed into various forms, including the most recent nanomaterials, for various 

biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, 
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chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current 

researches about them are reviewed in this article. 

Keywords: agarose; alginate; carrageenan; chitin; galactomannan; gum; hydrocolloids; mucilages; 

polysaccharides; starch 

 

 

1. Introduction 

 

Natural polymers are materials of natural origin with properties of biocompatibility, low cost, 

availability and lack of toxicity. These polymers, such as gums and mucilages, are increasingly 

preferred over synthetic materials due to their intrinsic properties; in addition to be considered 

alternative sources of raw materials for industrial applications. 

As definition, gums are polysaccharides composed by multiple sugar units linked together to 

create large molecules with heterogeneous composition. Upon hydrolysis, they yield simple sugar 

units such as arabinose, galactose, glucose, mannose, xylose or uronic acids. The polysaccharide gums 

represent one of the most abundant industrial biomaterials and have been reported by several studies 

due to their sustainability, biodegradability and biosafety. Gums are abundant in nature and commonly 

found in many higher plants; in addition, they are frequently produced as a protection mechanism 

following plant injury [1]. 

Besides gums, the constituents of polysaccharides also include mucilages. Although their natural 

polymeric source, gums and mucilages have certain differences: gums readily dissolve in water, while 

mucilages form viscous masses; gums are considered pathological products, whereas mucilages are 

physiological products. In addition, their similarities are related to their broad range of 

physicochemical properties, which are widely used for applications including cosmetics, paper, 

pharmacy, textile, adhesive, inks, lithography, paint, explosive, and smoking products [2,3]. In order 

to avoid misinterpretations, it is important to distinguish the above-mentioned terms.   

Mucilage is a polysaccharide mixture commonly found in various organs of many higher plant 

species. Due to its high variability in terms of chemical constituents, mucilage probably assumes a 

multitude of physiological functions in plants [4]. Mucilages found in rhizomes, roots and seed 

endosperms may act primarily as energy reserves [5], whereas foliar mucilages appear not to serve as 

storage carbohydrates. Generally, it has been assumed that foliar mucilages are merely secondary plant 

metabolites, but there was also reported that they may play a role in wound responses, frost tolerance, 

water transport, plant host-pathogen interactions, the ionic balance of plant cells, and as carbohydrate 

reserves. There is growing evidence that, due to the high concentration of hydroxyl groups in the 

polysaccharides, extracellular mucilages in particular have a high water-binding capacity and may 

play an important role in the drought resistance of certain plant species [2]. 

Natural gum is a term used to describe a group of naturally occurring polysaccharides. They have 

widespread industrial applications due to their ability either to form the gel, make the viscous solution 

or stabilize the emulsion systems [6]. Water-soluble gums are described as hydrocolloids; they are 

used for various applications, including dietary fibers [7], texture modifiers, stabilizers and/or 

emulsifiers [8,9], gelling agents [10], thickeners [11], coating agents [12,13] and packaging films [14]. 

Many natural gums form three dimensional interconnected molecular networks known as “gels”. The 

strength of the gel depends on its structure and concentration, as well as on factors such as temperature, 
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pH, and ionic strength. The linear polysaccharides occupy greater volume than branched polymers of 

comparable molecular weight. Thus, at the same concentration, comparable linear polysaccharides 

exhibit greater viscosity. Therefore, it is difficult for the heterogeneous gum molecules to move freely 

without becoming entangled with each other (and any other large molecules also present). In addition, 

natural gums are often recognized by their swelling properties, which occurs due to the entrapment of 

large amounts of water between their chains and branches [1]. 

Cellulose, chitin, agar and starch are the most common polysaccharides used in industry. 

Regarding their broad range of applications, the preference for use of natural polymers is presumed 

over comparable synthetic materials due to their non-toxicity, low cost and availability. For instance, 

most of the natural gums are safe enough for oral consumption in the form of food additives or drug 

carriers [1]. In addition, synthesizing natural polymers as nanomaterials enhances the industrial 

applicability due to its larger surface, besides the intrinsic properties above mentioned. The present 

work considers the most recent literature dealing with natural polymers, including natural gums and 

mucilages, and their potential biotechnological applications. Moreover, we summarized information 

about their chemical structure, physicochemical and functional properties. 

 

2. Classification of natural polymers and their biotechnological applications 

 

Gums and mucilages are sourced from the endosperm of plant seeds, plant exudates, tree or shrub 

exudates, seaweed extracts, fungi, bacteria, and animal sources, where they perform a number of 

structural and metabolic functions; it is important to highlight that plant sources provide the largest 

amounts of gums. Natural gums are categorized based on their origins, behaviour and chemical 

structures. Gums submitted to a hydrolysis process, because of their polysaccharide nature, produce an 

indefinite number of monosaccharides. Depending on the type of the products obtained by hydrolysis, 

gums can be further classified into pentosans and hexosans. Chemically, they are pathological 

products consisting of calcium, potassium and magnesium salts of complex substances known as 

polyuronides, whose sugar units can be separated by hydrolysis using dilute mineral acids, followed by 

separation of liberated monosaccharides using different chromatographic techniques [3]. Different 

sources of gums and mucilages are listed in Table 1. 

Plant-based gums are the polysaccharides originated from various parts of plant (e.g. plant cell 

walls, tree exudates, seeds, tuber/roots, seaweeds) [6]. Most of them belong to the Leguminosae 

family, which is divided into the subfamilies Caesalpinioideae, Mimosoideae and Faboideae [15]. The 

polysaccharides sourced from plants are examples of natural compounds that have contributed to the 

Leguminosae family classification, but special emphasis has been given to galactomannans [16]. 

The considerably growing interest in gums is due to their diverse structural properties and 

metabolic functions in food, pharmaceutical, cosmetic, textile and biomedical products [17], since 

they can be used as dietary fiber, texture modifiers, gelling agents, thickeners, emulsifiers, stabilizers, 

coating agents and packaging films [6,18]. In the recent years, the demand for plant-based gums in 

food, medicine and drug delivery systems have been considerably increased because they are the most 

notable ingredients in liquid and semisolid foods [19]. However, the market still desires new sources 

of plant-based gum to meet the demand for ingredients with more usefulness especially in food 

systems [6], hence they are the new generation of products sourced from sustainable materials that 

intend to comply the ecological and economic requirements.  
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Acting as soluble dietary fibres, gums play a crucial part in developing foods with high satiating 

capacity due to their viscosity. Most of the scientific researches mention that when gums are hydrated, 

they increase the viscosity of the solution medium and show a very wide range of rheological 

behaviour, generally pseudoplastic, depending on their concentration, chemical arrangement and 

structure [20]. 

 

Table 1. Classification of the different available gums and mucilages. 

Source Name Type Reference 

Tree gum 

exudates 

Arabic gum 

Prosopis alba gum 

Acacia tortuosa gum 

Almond gum  

Albizia stipulata gum 

Acacia senegal gum 

Cashew gum 

Arabinogalactan 

Arabinogalactan 

Arabinogalactan 

Arabinogalactan 

Arabinogalactan 

Arabinogalactan 

Galactan with glucose, arabinose, rhamnose, 

mannose and glucuronic acid units 

[21] 

[22] 

[23] 

[24] 

[25] 

[26] 

[27] 

Extracts Pectin 

 

Galacturonic acid with rhamnose, arabinose, 

galactose, xylose, and glucose units 

[28] 

Seeds Cassia spectabilis gum 

Guar gum 

Cassia nodosa gum 

Cassia grandis gum 

Fenugreek 

Locust bean gum 

Starch 

Hymenaea courbaril gum 

Galactomannan 

Galactomannan 

Galactomannan 

Galactomannan 

Galactomannan 

Galactomannan 

Glucan 

Xyloglucan 

[29] 

[30] 

[31] 

[32] 

[33] 

[34] 

[35] 

[36] 

Red seaweeds Agar 

Carrageenans 

Galactan 

Galactan 

[37] 

[38] 

Brown seaweeds Alginate Mannuronic acid with guluronic acid units [39] 

Microbial Xanthan gum 

Cellulose 

Glucan 

Glucan 

[40] 

[6] 

Animal Chitin 

Hyaluronic acid 

Chondroitin sulphate 

Glucosamine 

Glucosamine with glucuronic acid units 

Galactosamine with glucuronic acid units 

[41] 

[42] 

[43] 

 

Studies dealing with gums as texture modifying agents are continuing to increase in the food and 

culinary industries, especially for gelling, thickening and emulsifying purposes. Some hydrocolloids 

are used as gelling agents, for example, to increase the satiety sensation in the stomach, brought about 

by different triggering factors. It is believed that, in order for gastric gelation to induce satiety, not only 

must a gel form in the stomach but the gel must also possess some strength [44]. Also as regards the 

food industry, the most common polysaccharides used for production of edible films are cellulose, 

chitosan, agar, starch, and no less important, galactomannans, since their mechanical and thermal 

properties have been widely exploited for biotechnological application. 
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Not only in food and culinary industry, but also in biomedical applications, the synergistic 

interactions that occur in systems containing different blends of polysaccharides have been used for a 

long time due to their ability to form strong gels even at low concentrations [45]. Still in view of the 

medical field, some of the current challenges in the conventional therapeutic systems include lack of 

proper drug delivery systems with efficient bioavailability or drug release capability, lack of efficient 

imaging and sensing technique, lack of targeted delivery systems, etc. As an attempt to circumvent 

these issues, the advent of nanotechnology allows the use nano-tools to overcome the shortcomings of 

the conventional methods [46], therefore, natural gums are being processed into various forms, 

including the most recent nanomaterials, for various biotechnological applications. The main natural 

polymers, including gums and mucilages, as well as the current researches about them are reviewed 

below. 

 

3. Galactomannans 

 

Galactomannans are neutral polysaccharides isolated from seeds. The main chain is composed of 

(1→4)-β-D-mannose (M) units with different degrees of substitution on O-6 with α-D-galactopyranosyl 

(G) units (Figure 1). Galactomannans are considered highly water soluble hydrocolloids providing 

highly viscous and stable aqueous solutions, in addition, its solubility depends on the composition (or 

M/G ratio) and on the distribution of galactose units along the mannan backbone chain: the larger the 

galactose content, the higher the solubility in water [47].  

 

 

Figure 1. Representative segment of a galactomannan main chain from plant origin. 

 

The M/G ratios varies among the species of the same subfamily. Caesalpinioideae presents M/G 

ratios ranging from 2.44 (Cassia grandis) [32] to 4.2 (Delomix regia) [48] and its main representatives 

are Cassia tora (M/G: 3.0) [49], C. spinosa (M/G: 2.7–3.0) [49,50] and Ceratonia siliqua (M/G: 

3.5–3.75) [51]. Mimosoideae subfamily presents lower M/G ratios, usually varied from 1 (Mimosa 

scabrella) [52] to 2.6 (Besmanthus illinoensis) [49]. Faboideae subfamily presents a broad range of 
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M/G ratios for its representatives and includes the main commercially used galactomannan in food and 

non-food industries, the guar gum (Cyamopsis tetragonolobus, M/G: 1.8) [53].  

Galactomannans are polysaccharide gums with several functions associated in terms of their 

physicochemical and biological properties, which in fact offer a wide variety of applications. Unlike other 

gums, galactomannans or their derivatives are less exploited on an industrial scale, despite milled 

endosperm powders of guar, locust bean (Ceratonia siliqua), and fenugreek (Trigonella foenum-graecum) 

represent the galactomannan seeds currently exploited on an industrial scale [54]. Among their 

applications, these gums accumulated moisture (desiccation tolerance) at the early stage of seed 

swelling and serve as a carbohydrate energy resource during seed germination. In addition, 

galactomannan gums may also play a protective role, since they impart certain strength to the 

endosperm surrounding the germ at the periphery [55]. 

Compared with other gums, galactomannans exhibited excellent retention of viscosity even at low 

concentrations. They can be used as mass-efficient aqueous thickeners, nutritional supplements [11,40], 

and component in a mixed gel [56,57]. In the food industry, galactomannans as guar and locust bean 

gum enjoy widespread use based on their ability to thicken and stabilize many food products [55]. 

More recently, some works reported the possibility of using galactomannans in the formation of films 

and coatings [14,59-61]. 

In some works, galactomannans have been used in binary mixtures with other polysaccharides 

such as xanthan gum [62-64], agar [65] and kappa carrageenan [58,66], to form gels with new 

properties. Among the oil and textile industries, galactomannan gums are the major ingredients in 

drilling mud and are used mainly also for their capacity to increase printing quality. The functional 

properties of these polysaccharides are of primary importance for controlling the release of drugs in the 

pharmaceutical industry [67,68]. 

 

4. Cellulose 

 

Cellulose, the major structural constituent of the cell wall of plants, is the most abundant 

polysaccharide in nature. It has many advantages, such as superior thermal and mechanical properties, 

in addition to biocompatibility, biodegradability, and cost-effectiveness [69,70].  

One of the most successful biomaterials for health is the bacterial cellulose, a promising 

biopolymer obtained through biosynthesis routes by some bacterial genera belonging to Acetobacter, 

Rhizobium, Agrobacterium, Aerobacter, Achromobacter, Azotobacter, Salmonella, Escherichia, and 

Sarcina genera. Bacterial cellulose has been extensively studied due to its purity, superior 

physico-mechanical and biological properties, as well as its potential applications in numerous 

traditional industries, such as biomedical, construction, pulp and papermaking, in addition to textile 

industry [71-73]. 

The biosynthesis of cellulose is a process commonly associated to the living plant cell through 

photosynthesis. In the oceans, however, most cellulose is produced by unicellular plankton or algae 

using the same type of carbon dioxide fixation found in photosynthesis of land plants. In addition, 

several animals, and microbial can assemble cellulose, but these organisms are devoid of 

photosynthetic capacity and usually require glucose or some organic substrate synthesized by a 

photosynthetic organism to assemble the polymer [74]. According to Nobles et al. [75], even most 

cellulose widespread in nature is now being produced by plant cellulose synthase complexes; this 
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enzyme has bacterial origin, therefore its genes have been acquired by plants from cyanobacterial 

ancestors of their chloroplasts. 

Despite the most recent literature dealing with the elucidation of the molecular mechanisms of 

cellulose biosynthesis in plants, many aspects of this process still remain obscure. Especially for 

bacterial cellulose biosynthesis, the model system associated with the microbial origin of cellulose has 

long been used as a simpler and genetically tractable model to study its biosynthesis in plants. Even after 

this model system became dispensable, studies of bacterial cellulose biosynthesis proved to be extremely 

important, since bacterial cellulose has advantageous characteristics over comparable with plant 

cellulose, including high crystallinity degree, elasticity, durability and higher water-absorbance [76-78]. 

In summary, there are four main different pathways to obtain cellulose: the first is the most 

popular and industrially important pathway for isolating cellulose from plants, which includes the 

chemical pulping, separation, and purification processes to remove lignin and other polysaccharides 

(hemicelluloses). The second pathway consists in the biosynthesis of cellulose by different types of 

micro-organisms (unicellular algae, fungi, and bacteria). The third pathway is the enzymatic in vitro 

synthesis starting from materials such as cellobiosyl fluoride. The last pathway is a chemical synthesis, 

that produces cellulose though a ring-opening polymerization of the benzylated and pivaloylated 

derivatives of glucose [73]. 

In what concerns the basic structure of cellulose, it is a simple polysaccharide with no branching 

or substituents in its homogeneous backbone (Figure 2). The morphological hierarchy of cellulose is 

composed by elementary fibrils, which pack into larger units called microfibrils, and these are in turn 

assembled into fibres. Within the cellulose fibrils, there are regions where the cellulose chains are 

arranged in a highly ordered structure (crystallites) and regions that are disordered (amorphous-like). 

The extraction of the crystalline regions results in nanocrystalline cellulose (NCC), while the 

interaction between inter- and intra-molecular networks can vary, giving rise to cellulose polymorphs 

or allomorphs [79,80].  

 

 

Figure 2. Representative image of the cellulose main chain and the hierarchical structure 

of this polysaccharide.  

 

NCC is the base reinforcement unit that strengthen all subsequent structures in plant, trees, etc., 

and can be a useful material on which to base a new polymer composite industry. NCC has also 

properties such as low density, high specific strength and modulus, high surface area, unique optical 

properties, and modifiable surface properties due to the reactive hydroxyl groups [81]. Advantages in 
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the biotechnological application of NCC when compared to macrocellulose are related not only to their 

useful, unsurpassed, physical and chemical properties, or to their sustainability, biodegradability, 

renewability, abundance, high biocompatibility. Actually, the nanoscale dimension opens a wide range 

of possible properties to be discovered. According to Fujisawa et al. [82], NCC can be divided in three 

major groups: (1) cellulose nanocrystals (CNC), obtained from acid hydrolysis followed by 

mechanical agitation from the suspension of nanocrystals in water; (2) microfibrillated cellulose 

(MFC), prepared with mechanical disintegration method of the cellulosic pulp in water; and (3) 

nanofibrillated cellulose (NFC), prepared using a combination of chemical oxidation with 

2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), followed by mechanical disintegration in water, or 

only by mechanical disintegration. 

It is important to highlight that the hydroxyl groups are the most targeted reactive groups on the 

cellulose main chain; they can fully or partially react with chemical agents to obtain various 

derivatives with different degree of substitution. For upgrading the value of cellulose, the obtained 

derivatives have been developed and used in industries such as food, cosmetic, biomedical, and 

pharmaceutical. However, the application of cellulosic material is limited due to the difficulty in 

processing, for example, the high crystallinity degree and rigid intra/intermolecular hydrogen bonds 

which result in its insolubility in most solvents [35,83].  

The above mentioned problems associated with the processing of cellulose could be observed for 

other natural polymers since they present increasingly application in the industrial technology. In 

addition, most polymers do not show biological activity unless some modifications are carried out, so 

it is important to mention that numerous attempts are being performed to minimize these certain 

drawbacks with chemical modifications in the polymeric structure. 

The most important chemical transformation and functionalization of cellulose based on hydroxyl 

group include esterification, etherification, selective oxidation, graft copolymerization, and 

intermolecular crosslinking reaction [84]. The esterification process of cellulose was applied for 

different purposes, such as the preparation of superabsorbent hydrogels [85] and bacterial cellulose 

nanofibers [86]. The etherification process of cellulose was especially applied in the pharmaceutical 

industry, for example to obtain NFC as safe candidate for novel, bio based, and permanently 

antimicrobial material [87]. The oxidation of primary hydroxyl groups of cellulose is one of the most 

important methods of their functionalization, which yields valuable oxidized products such as 

polyuronic acids and aldehydes, to be further used in various fields as drugs, dyes, glues, thickeners, 

additives to foodstuffs, cosmetics and many other. Oxidized cellulose and regenerated cellulose are 

widely used as excellent hemostatic materials in various surgical operations and postsurgical adhesion 

prevention layer [88-90].  

Regenerated cellulose has also been used as films; cellophane films, for example, have not been 

commonly used for food packaging, due to their high water vapour permeability (low barrier properties) 

compared to their synthetic counterparts. On the other hand, transparent cellulose films exhibit good 

oxygen and CO2 barrier properties at dry conditions. They are made from purified wood or cotton pulp 

sheets and have important characteristics such as transparency, durability, flexibility, non-water solubility 

and non-permeability to air and grease. Other transparent cellulose films such as MFC and NFC film have 

emerged as a potential packaging material due to their strong mechanical properties [91,92].  

Currently, there are two oxidation systems to selectively convert the primary hydroxyl groups in 

cellulose into carboxyl and/or aldehyde groups: (1) 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) 

and its derivatives; (2) N-hydroxyphthalimide (NHPI), N-hydroxy-benzotriazole (HBT), and violuric 
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acid (VA) [93,94]. The amount of carboxylic groups formed by oxidation of cellulose was investigated 

for different and important purposes, such as the following examples. A comparatively investigation 

between TEMPO and NHPI to oxidize regenerated cellulose fibers [95], the potential of 

TEMPO-mediated oxidized NFC as bioremediator of metal ions from contaminated water [96]; the in 

vitro antibacterial evaluation of TEMPO-oxidized cellulose films functionalized with silver 

nanoparticles [97]; and the preparation of water stable films made of TEMPO/NaClO2 oxidized NFC, 

covalently bonded with poly(vinyl alcohol) [98]. 

Another approach for cellulose modification via chemical redox initiation methods (ceric 

ammonium nitrate or ferrous ammonium sulphate–potassium persulfate) or irradiation methods (UV, 

microwave, and γ-rays) is the graft copolymerization, which provides a mean of altering the physical 

and chemical properties of cellulose and increasing its functionality [35,97-101].  

Nowadays, the research on cellulose nanocomposites has grown exponentially. As definition, 

cellulose nanocomposites are structures composed of water-soluble or water-dispersive polymers mixed 

with cellulose nanomaterials, and manufactured using different processes able to affect properties such 

as dispersion, distribution and alignment of the reinforcing phase of the composite [102]. The most 

recent literature dealing with cellulose nanocomposites described the employment of the 

microwave-assisted method on the investigation of the influence of cellulose on nanocomposites of 

cellulose/Ag [103], cellulose Ag/Cl [104], cellulose/SrF2 [105], cellulose/CaF2 and cellulose/MgF2 [106], 

and cellulose/F-substituted hydroxyapatite [107]. The pharmaceutical field has important studies, for 

example, all cellulose nanocomposite membranes with excellent performance were successfully 

fabricated as novel filtration system to remove nanoparticles and Hepatite C virus from aqueous 

medium [108]. Transparent porous nanodiamonds/cellulose nanocomposite membranes with 

controlled release of doxorubicin were tested as a candidate for wound dressing [109]; and 

cellulose-graft-polyacrylamide/nano-hydroxyapatite composites were reported as a promising 

scaffold for bone tissue engineering [110,111].  

 

5. Polysaccharides from animal origin 

 

Glycosaminoglycans (GAGs) are heteropolysaccharides composed by a repeating disaccharide 

unit without branched chains, being one of the two monosaccharides always an amino sugar 

(N-acetylgalactosamine or N-acetylglucosamine) and the other one an uronic acid. They are usually 

found on all animal cell surfaces and in the extracellular matrix, where are known to bind and regulate 

different proteins. In the last years, an increasing number of GAGs, chitin and chitosan applications 

have been reported by the scientific literature reporting their applicability in numerous contexts from 

food, cosmetic, textiles and clinical areas [43].  

Chondroitin sulphate (CS) is an essential component of extracellular matrix of connective tissues 

in which plays a central role in various biological processes, including the elasticity of the articular 

cartilage, hemostasis and inflammation, regulation of cell development, cell adhesion, proliferation 

and differentiation [43]. Hyaluronic acid (HA) is classified as a viscous substance with multifunctional 

properties, especially those related to biological functions like cell proliferation, differentiation and 

tissue repair; the applicability of HA has been focused recently as drug delivery devices with studies 

suggesting a number of molecules might be used as gel preparations for drug transport. Since the 

application of the polysaccharide in the medicinal field has been increased, the interest in isolation of 

HA has been augmented to greater extents [112].  
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Although CS and HA has been isolated from terrestrial origin so far, the increasing interest on 

these polysaccharides significantly aroused the alternative search from marine sources since it is at the 

preliminary level. However, chitin is still the main waste product of the shellfish industry and, due of 

this importance, will be detailed revised below. 

 

Chitin 

 

Chitin is the second most abundant polymer after cellulose [89]. Its chemical structure 

(poly-β-(1→4)-N-acetyl-D-glucosamine) is widely synthesized in a number of living organisms, which 

depending on its source, chitin occurs mainly as two allomorphs, namely α (the most abundant) and β 

forms [47]. Sharing the classification of natural polymers from animal origin with CS and HA, chitin can 

be found in many organisms including fungi, yeasts, algae and squid pen; it is also usually found in 

lobsters, crab tendons, shrimp and crab shells as well as insect cuticles, being shells the preferred source 

of chitin due to their high availability as waste from the seafood processing industry [43,47]. 

Chitin occurs in nature as ordered crystalline microfibrils found as structural components in the 

cell wall of fungi and yeast or in the exoskeleton of arthropods. The main commercial sources of chitin 

are crab and shrimp shells, where chitin is associated with proteins, pigments and calcium carbonate. 

The physical properties of chitin in solution are still scarce in the literature due to the difficulties in 

dissolving the polymer; chitin is insoluble in all usual solvents, which represents a problem in view of 

the development of processing and of its uses [47].  

Chitin can be partially degraded by acid to obtain a series of oligomers namely oligochitins. Instead, 

under alkaline conditions, a partial deacetylation of chitin results in the most important chitin derivative 

in terms of applications: chitosan (Figure 3). Oligochitins as well as those from chitosan are recognized 

for their bioactivity including antitumoral [113,114], antimicrobial [115], fungicidal [116] and 

immunotherapeutic [117] properties, eliciting chitinase [118], and regulating organism growth [111]. 

 

Figure 3. Representation of chitin and chitosan structures. “n” is the degree of polymerization. 
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Chitin is an amino polysaccharide having massive structural propensities to produce bioactive 

materials with innovative properties, functions and a range of biotechnological applications. In 

addition, the specific physicochemical, mechanical, biological and degradation properties offer 

efficient way to blend this biopolymer with synthetic ones [119]. 

Chitin has a low toxicity and it is inert in the gastrointestinal tract of mammals. Chitinases and 

lysozyme from egg white can degrade chitin; in the first case, the enzymes are widely distributed in 

nature, found in bacteria, fungi and plants as well as in the digestive tract of numerous animals. After 

the deacetylation process, it was shown that the rate of in vivo degradation is high for chitin, but 

decreases for chitosan [47,120].  

The main applications of chitin are in medical and pharmaceutical fields, especially due to the 

presence of the acetamide group, which is similar to the amide bond of the protein of the living tissue and, 

therefore, is compatible with human or animal cells. Hence, chitin can be used in wound healing [121,122] 

and tissue engineering applications [123,124].  

Still in view of wound dressing materials, Morgado et al. [125] remarked that chitosan had also 

been used for wound dressing production due to its intrinsic properties, including antimicrobial and 

hemostatic activities, biocompatibility, and biodegradability. Chen et al. [126] and Lih et al. [127] also 

highlighted the potential application of chitosan as wound dressing due to the recognition of its surface 

by platelets. The coagulation cascade starts in a few seconds with the protonated amine groups of 

chitosan attracting the negatively charged residues on red blood cell membranes, resulting on a strong 

agglutination, thrombin generation and fibrin mesh synthesis within the microenvironment created by 

this polysaccharide.  

The marked insolubility of chitin in all usual solvents is the most different property compared to 

chitosan, which is the only commercially available water-soluble cationic polymer due to the positive 

charges on its amino groups. The water solubility of chitosan allows the interaction of this cationic 

biopolymer with anionic molecules such as glycosaminoglycans (GAG) and proteoglycans. Many 

cytokines/growth factors are linked to GAG, so the complex of chitosan-GAG may retain and 

concentrate those substances [128]. This unique property makes chitosan an appropriate material not 

only in the biomedical and pharmaceutical fields; instead, the antimicrobial and gas barrier properties 

of chitosan were successfully applied in the food industry, for example, in a nanomultilayer coating 

obtained by electrostatic layer-by-layer self-assembling technique; by combining the intrinsic 

properties of chitosan and the low oxygen permeability of pectin, layers were efficient in the reduction 

of gas flow and on the extension of the shelf-life of mangoes [129]. Chitosan-based films with 

quercetin incorporated also showed potential to be used as a solution for active food packaging [130]. 

The positive charge of chitosan was also used in the development of a high-efficient gene delivery 

formulation combined with polyethylenimine and DNA by Min et al. [131], who achieved a system 

less cytotoxic than those made of a single cationic carrier. 

Many applications were described based on chitin and its blends for tissue engineering, for 

example, Wan and Tai [132] presented a revision of chitin as scaffolds and matrices for tissue 

engineering, stem cell propagation and differentiation. Polymer matrix–calcium based composites 

were used for hard tissue substitutes [133], in addition to drug delivery [134]. Chitin is also efficient to 

give porous forms providing scaffolds for complete tissue formation [135,136]. 

In what concerns drug delivery system, chitin and its derivative amorphous chitin, alone or with other 

polymers, have been widely used due to its biocompatible, biodegradable and non-toxic nature [137]. 

Further, more recently application takes into consideration the high surface area presented in nanometric 
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systems, especially because of the nano-size possess certain unique properties which enable them to be 

used in a number of biomedical applications. Prepared by cross-linking reaction using TPP, chitin 

nanoparticles were described as efficient networks for drugs with antitumoral [138,139] and 

antibacterial [137] purposes. Working with one derivative of chitin containing carboxyl groups (CMC), 

Dev et al. [140] have taken the approach of cross-linking the CMC as a way to control its biodegradability 

and to result in nanoparticles, providing a most favorable option for drug delivery applications in 

chemotherapy. Chitin nanoparticles can be also isolated from the purified chitin by repeated acid 

hydrolysis and applied for different purposes, such as the development of bio-nanocomposites with 

starch [141] and as a suitable adsorbent material for the removal of dyestuff from effluents [142].  

Chitin can be used in the food industry because of its biological activities including antioxidant and 

antimicrobial effects. In addition to other properties that could improve food safety, quality, and shelf 

life [143], however the main publications dealing with protective barrier against food spoilage [144,145], 

edible film production [146-150], use as stabilizers and thickeners compounds [143], and prebiotics 

ingredients [151] related chitosan as the most efficient biomaterial in this field.  

 

6. Seaweed polysaccharides 

 

Algae are an important source of many polysaccharides from the point of view of applications, in 

addition to be the oldest known living organisms. Morphologically, they are very primitive and their 

evolution was very slow over time. Blue-green algae (Cyanophyta) appeared first, followed by red 

algae (Rhodophyta), green algae (Chlorophyta) and finally brown algae (Phaeophyta). Algae are in 

fact rich in non-essential and essential amino acids such as proline, glycine and lysine, besides many 

other molecules [39,47]. 

It was recognized that the three main gums, agar, alginate, and carrageenan, could be extracted 

from algae and used especially as thickeners or gelling polymers. Their physical properties are 

efficiently used in food, however new applications of algae are being developed, for example in the 

production of drugs and pharmaceuticals. Red seaweeds contain agar (mainly neutral), carrageenans 

and a few other polysaccharides included under the category of sulphated polysaccharides. Brown 

algae produce alginates, a carboxylic polymer, initially in different ionic forms and a few other 

polysaccharides, among them fucoidans [47]. 

 

6.1. Agar and carrageenan 

 

Algae derived from Rhodophyta are an important source of polysaccharides, which are sulphated 

glycans together with a variety of O-methylated sugar residues, among them carrageenans and agars, 

polysaccharides commonly used in industry. The basic structure of these polymers is composed of a 

linear chain of β-D-(1→3) galactopyranose and α-D/L-(1→4) galactopyranose units (Figure 4) 

arranged in an alternating sequence [47]. 

Polysaccharides sourced from red algae have attracted an increasing interest due to their excellent 

physical properties, such as thickening, gelling, and stabilizing ability [152,153], and also due to their 

beneficial biological activities, such as anticoagulant [154], antithrombotic [38], antioxidant [155], 

antiviral [156,157], anti-inflammation [158], antitumour [159], and immunomodulatory activity [160]. 

It is important to highlight that their biological activities depend on the structural features, such as the 

sulphate content and distribution of sulphate groups on the main chain, molar mass, and stereo-chemistry. 
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Figure 4. Chemical structure of repeat units of polysaccharides sourced from red algae. 

 

6.1.1. Agar/agarose 

 

Agar is a gelatinous substance composed of alternating D- and L- galactopyranose units. Its 

macromolecular structure consists in a mixture of agarose and agaropectin. Agarose is the neutral 

fraction of agar, and it is obtained by precipitation of the anionic agaropectins by quaternary 

ammonium salt and separation by centrifugation. Agaropectin is a heterogeneous mixture of smaller 

molecules, which have similar structures with agarose but contains many anionic groups such as 

sulphate, pyruvate and glycuronate. Due to the similar chemical and physical properties with agarose, 

agar has also been widely studied and applied in the biomedical field because of its good 

biocompatibility, biodegradability, nontoxicity, availability and lowcost [47,161]. 

Agarose adopts a single or double helical conformation in the solid state. Gelation occurs by 

aggregation of double helices at a temperature dependent on methoxyl and sulphate contents, which 

can modulate this process. The three-dimensional network based on association of double helices is 

thermoreversible, i.e., the crosslinks occur physically without chemical catalyst or any crosslinking 

agent, and it is stabilized by cooperative hydrogen bonds. Therefore, the low cost, special mechanical 

properties, biocompatibility and relatively bioinert nature make agarose a promising alternative as a 

gel matrix [47,162]. 

Since agar and agarose have good biocompatibility and excellent moisturizing capacity, many 

applications were described in the literature. Various forms of systems based on agar and agarose have 

been developed for the applications in pharmaceutical industries and medical research: Miguel et al. [163] 

produced a new in situ thermo responsive hydrogel composed by agarose and chitosan to be used as an 

injectable scaffold for tissue regeneration. They corroborated Varoni et al. [164], who described 

agarose hydrogels as mouldable materials, i.e., the hydrogel may be polymerized in situ reducing 

invasiveness of the surgery, besides it also be able to acquire the right shape at the wound site, without 

wrinkling or fluting and interacting with the damaged tissue. Agar and agarose fibers were fabricated 

by Bao et al. [161] and demonstrated to be good candidate materials for wound-dressing applications.  

The scientific literature reported that the use of hydrogel as biomaterials for wound healing is also 

promising, however, they usually exhibit relatively poor mechanical properties due to the high 

swelling ratio, which limits their practical applications as wound dressings. Therefore, the most recent 

studies demonstrated that the incorporation of nanomaterials is probably the effective strategy to 

improve the mechanical property of hydrogels [165]. Wang et al. [166], for example, developed 
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nanocomposite hydrogels based on agarose and ZnO and concluded that the system might be an 

excellent candidate for wound dressings.  

Agarose can be processed by extrusion from solution at high temperature, forming gel beads into 

ice-cold buffer. Another method is to emulsify agarose in a warm fluid which is immiscible with the 

aqueous polysaccharide solution; the emulsion is then cooled and produce microspheres [167]. 

Large-sized agarose beads can be prepared by some typical techniques, such as mechanical stirring and 

spraying methods. However, these methods suffer from poor control of droplet size and size 

distribution, low energy efficiency, and time consuming characteristics. Li et al. [168] improved the 

emulsification reproducibility and stable bead properties by developing a manufacturing protocol for 

uniform droplets and beads of controlled size with rotating membrane emulsification. 

Agarose is also widely used as growth medium for microorganisms (bacteria and fungi) [169-171] 

and for biotechnological applications. Agarose was submitted to an enzymatic hydrolysis process with no 

acid treatment and converted in a potential hydrolysate for bioethanol production [172]. By casting and 

subsequent drying process, agar and agarose films can be formed depending on the application [173,174]. 

In the food industry, it is well known that agar films possess several properties adequate for food 

packaging applications, however, their high cost-production and quality variations caused by 

physiological and environmental factors affecting wild seaweeds make them less attractive for 

industries [175]. Despite having good mechanical and relatively good oxygen and water barriers 

properties, the most recent trends in food industry use nanomaterials as promising option to improve 

mechanical and barrier properties of biodegradable agar-based composite films [176-178]. 

In the domain of blends, agar was mixed with different materials, for example, poly(vinyl 

alcohol) and soy protein, respectively for specific food applications [179] and for scanning the 

variations in the matrix tensile strength [180]. Agar and agarose were also mixed with different 

polysaccharides to produce blends with potential biotechnological applications. Agarose was mixed 

with fenugreek galactomannan and formed a matrix efficiently used as biosensor to detect pesticides in 

food [181]. Multicomponent hydrogel films composed of agar, κ-carrageenan, konjac glucomannan 

powder, and nanoclay improved mechanical and water resistant properties of the blended hydrogel 

film [182]. Recently, agarose blends have been used in nanotechnological process, such as the 

rheological study of agarose hydrogels with tunicate cellulose nanowhiskers [183]. 

 

6.1.2. Carrageenan 

 

Carrageenan is a word that seems to originate from the inhabitants of the country of Carrageen, on 

the south Irish coast where extracts from red algae for food and medicines were already used as early 

as 600 years ago. The major constituent of such algae is the so-called carrageenans, naturally occurring 

anionic sulphated linear polysaccharides with the linear backbone built up by β-D-galactose and 

3,6-anhydro-α-D-galactose with variable density in the sulphated group [38,184]. 

There are several different carrageenans with slightly varied properties and chemical structures. The 

three most prevalent and of highest commercial interest are called iota, kappa, and lambda carrageenan, 

differentiated based on the amount and position of sulphate groups, and serving different properties [38].  

Carrageenans have been extensively used in the food industry as thickening, gelling, stabilizing 

and protein-suspending agents due to its biocompatibility, biodegradability, high capacity of water 

retention and mechanical strength of its gels. According to the properties of carrageenan, it can split 

into two groups like, gelling (kappa and iota) and thickening agent (lambda); the 3,6-anhydro-α-D-galactose 
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is essential for the gelling properties of kappa and iota carrageenans. The molecular weight of 

carrageenans is critically important to its functionality in food, so, as stabilizers, carrageenans achieve 

its functionality due to its high molecular weight and binding capacity to proteins through charged 

sulphate and carboxyl groups [185]. 

The most recent applications of carrageenans are described in the following. Encapsulation of 

β-galactosidase in kappa carrageenan hydrogel beads was investigated for the application in food 

industry [186]. Multilayer coatings composed of kappa carrageenan and chitosan were produced, 

characterized in terms of their permeability’s and surface properties [187], and used as model for the 

release behavior of Methylene blue; the industrial relevance of this type of nanolayered coatings consists 

in the development of bioactive compound release systems for application in food industry [188]. 

Multilayer films with a nanocomposition of kappa carrageenan, agar, clay and polylactide were prepared 

to modify the mechanical and barrier properties of the film for the food packaging application [189]. Still 

in view of the nanoscience, carrageenans were used not only as carriers of active antimicrobial 

nanoparticles, but also as polymer matrices for biodegradable films, for example, nanocomposite films 

with carrageenan, silver nanoparticles and clay mineral were prepared to test their combined effect on 

the antimicrobial activity and physicochemical film properties [190]. 

The biological activity of carrageenan as a natural occurring gum has been increasing widely for 

human applications and creates a strong position in the biomedical field [38], but it is important to 

highlight that the preliminary studies reported carrageenans administered in drinking water or diet 

could be a potential cause of intestinal inflammation and ulcers in animals [38,191]. Later, it was 

determined that these studies and others were conducted with a different material obtained by a 

degradation of the carrageenan that resulted in a sulfated polysaccharide with the same structural 

backbone to carrageenan, but with a lower molecular weight and different functional properties. 

Degraded carrageenan is referred to as poligeenan [185,192], polymer obtained by acid hydrolysis at 

high temperatures for several hours [185,193]. Poligeenan is also used in food applications, however, it 

was related to capable of causing gastrointestinal irritation in experimental animals and was considered 

to cause gastrointestinal cancer in animals. Carrageenans do not cause these effects and is safe at 

maximally administered oral doses [185]; they are related to inflammation just as employed in 

laboratories to create pathological models for exploration of the process and treatment of the 

inflammation [194-198]. 

Regarding the biological activities of carrageenans, its effect as food supplement was investigated 

on the immunity status and lipid profile in patients with cardiovascular disease. The results 

demonstrated that carrageenan moderately modulated all of the immunity system markers, caused 

statistically significant decreases in important biomarkers of chronic inflammation and significantly 

decreased cholesterol levels and low density lipoprotein cholesterol [199]. Besides the well-known 

biological activities related to inflammatory, immune [200], antioxidant [201-203], and antitumor 

responses [204,205], carrageenans are potent inhibitors of herpes and HPV viruses and there are 

indications that these polysaccharides may offer some protection against HIV infection [38,200]. 

Anticoagulant activity could be the most attractive property associated to carrageenans [154,160,206] 

and also to other sulphated polysaccharides, which were reported to possess similar or even stronger 

activity than those of heparin. 

Carrageenans have been used by the pharmaceutical industry as excipient in different forms of 

presentation. Hydrogels of kappa carrageenan containing CaCO3 and NaHCO3 were tested as pore 

forming agents by Selvakumaran and Muhamad [207], and the system with CaCO3 was considered an 
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efficient floating drug delivery system for amoxicillin trihydrate. Iota-carrageenan was investigated 

not only as a drug-loaded polymer but also as an ionic polymer to increase the solubility of the 

lappaconitine analgesic-alkaloid [208]. Hydrogels composed of kappa carrageenan and synthetic or 

natural polymers were reported, such as the blend constituted of kappa carrageenan and polythiophene 

for the electrically controlled drug release of acetylsalicylic acid [209]. Carrageenans were also used 

by the Interpenetrating Polymer Network (IPN) technique, which possess several advantages like high 

swelling capacity and tremendous mechanical strength on the targeted and controlled drug delivery. 

For example, IPN beads of kappa carrageenan and sodium carboxymethyl cellulose using AlCl3 as a 

crosslinking agent were evaluated on the drug release behavior of ibuprofen [210].  

 

6.2. Alginate 

 

Alginate is the most important polysaccharide derived from brown algae (Phaephyta), and it can 

be also produced by soil bacteria (Azotobacter vinelandii and Pseudomonas species). This gum is 

composed of 1,4-linked β-D-mannuronic acid (M) with 4C1 ring conformation and α-L-guluronic acid 

(G) with 1C4 conformation, both in the pyranosic conformation and present in varying amounts. It was 

demonstrated that the physical properties in aqueous medium for these polymers depend not only on 

the M/G ratio, but also on the distribution of M and G units along the chain. In addition, the stiffness of 

the alginate chains as well as calcium complex formation could be attributed to the composition (M/G 

ratio) and distribution of M and G units in the chains [47].  

The main property of alginates is their ability to retain water, in addition to gelling and stabilizing 

properties. Because of their linear structure, and high molecular weight, alginates form strong films 

and good fibres in the solid state. Gel formation is a very important characteristic for alginates; the 

higher content of G units form stable crosslinked junctions with divalent counterions (for example, Ca, 

Ba, and Sr, unless Mg), so the crosslinked network can be considered a gel (Figure 5). In addition, the 

low pH also forms acidic gels stabilized by hydrogen bonds [47].  

As an anionic polymer, alginate forms electrostatic complex when mixed with a cationic polymer. 

The stability of the formed complex depends on the pH and salt concentration, but even in the best 

conditions, the complex is insoluble and thus allows the formation of fibres, films, and capsules. Many 

applications are proposed to these complexes, especially for the most investigated polyelectrolyte 

complex based on alginate and chitosan. For example, a nanomultilayer coating composed of sodium 

alginate and chitosan, obtained by electrostatic layer-by-layer self-assembling, onto aminolyzed/charged 

PET was characterized and presented highly functional properties and promising future for industrial 

applications [211]. This alginate-chitosan nanomultilayer coating was applied in fresh-cut mangoes 

and improved the microbiological and physicochemical quality, extending the quality and shelf life of 

fresh-cut mangoes up to 8 days [130]. The deposition of functionalized particles on multilayers based 

on chitosan-alginate was investigated with the aim to use the complex in opto-electronics, biosensors 

or medical applications [212]. Belscak-Cvitanovic [213] prepared chitosan-alginate beads to 

encapsulate and retard the release of caffeine in water. Wang et al. [214] developed chitosan-alginate 

coatings to deliver titanium substrates via electrodeposition and suggested the potential application of 

this composite coating in tissue engineering scaffolds field. One more example is the study of Seth et 

al. [215], who designed magnetic chitosan-alginate core–shell beads for oral administration of low 

permeable drug. 
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Figure 5. Chemical structure of repeated units of alginate: β-D-mannuronic acid (M) and 

α-L-guluronic acid (G), and the schematic crosslink between alginate and the counterions. 

 

Several studies have shown that the chitosan-alginate complex acts as an effective way to 

improve de stability of encapsulated compounds [216,217]. It is important to highlight that, nowadays, 

the most extensively investigated delivery systems to encapsulate, protect and control the release of 

functional and unstable compounds in industries varying from food to pharmaceutics considers the 

development of capsules in micro and nano scales. Liu et al. [218] optimized a formula of 

chitosan-alginate deposited nanoliposomes and observed an improved in vitro digestion stability. 

Haidar et al. [219] developed core-shell hybrid nanoparticles based on the layer-by-layer assembly of 

alginate and chitosan on liposomes and demonstrated that the polymers shell could increase the 

membrane stability and sustain release of the model protein. Liu et al. [220] evaluated the 

environmental stress stability of microencapsules based on vitamin C liposomes decorated with 

chitosan-alginate membranes and observed the release kinetics of these formulations during in vitro 

gastrointestinal digestion. Chitosan-alginate complexes loaded with other nano compounds were 

tested with different purposes, including bactericidal activity [221], tissue engineering [222], and 

osteochondral [223] and food [224] applications.  

Other polyelectrolytes may also be involved to form complexes with chitosan-alginate, such as 

collagen [225], gelatin [226], inulin [227], BSA protein [228], poly(L-lysine) [229], poly(L-lactide) [230], 

and hydroxyapatite [231]. 

Regarding the characteristic advantages of alginates, including biocompatibility, biodegradability, 

immunogenicity, and gel formation, alginates are well adapted for biomedical and pharmaceutical 

applications, such as tissue engineering, delivery vehicles for drugs and cell or enzyme entrapment. In 

addition, alginates have been successfully used in the food industry, for example, to prolong shelf life of 

the products and protect bioactive compounds encapsulated in the alginate matrix [232,233]; they can 

also be used as an antioxidant active interface for food preservation [234], and as a part of matrices 

designed to improve the oxidative stability during food storage [235].  
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Taking into account the above mentioned characteristics of alginates, nearly all of them are 

harvested in their wild state; cultivation is too expensive to provide alginates at a reasonable price for 

industrial applications. The quantity and quality of the alginates extracted depend on the algae species 

and on the season of harvest; furthermore, the higher content of alginate is still directed to the food 

industry. 

 

7. Gum extracted from Anarcadium occidentale 

 

Cashew gum (CG) is an exudate extracted from Anacardium occidentale, a popular tree 

belonging to the family Anacardiaceae. The cashew tree can grow up to 12 feet tall and is native to 

northeastern Brazil, however it can also be found in India, Mozambique, Tanzania, Kenya and among 

other countries. As a polysaccharide exudate, this gum is produced as a mechanism of plant defense 

against stress caused by physical injury or microbial attack. Its production can occur in all parts of the 

tree and its qualitative and quantitative depends on tree maturity and environmental conditions; 

initially, the gum is off white in colour but changes to reddish brown or yellowish brown on exposure. 

It is sparingly soluble in water but swells in contact with it giving a highly viscous solution [236-238]. 

The polyuronide CG is composed of a branched framework of D-galactose units. In addition, 

present are D-glucuronic acid, L-arabinose, L-rhamnose and, except in the case of a Venezuelan 

sample, D-glucose. D-xylose, D-mannose and 4-O-methyl-D-glucuronic acid have been found in 

some samples [239,240]. As a mixture of acid polysaccharides, CG contains various metal ions such as 

neutralized cations. The nature and content of these constituents depend on the composition of the soil 

upon which the trees grew. The major cations of A. occidentale are K+, Na+, Ca2+ and Mg2+. Crude CG, 

containing these cations, tends to be naturally transformed into Na+ salt, after purification or dialysis 

against NaCl 0.15 M, as previously described [237,239]. Figure 6 demonstrates the chemical 

composition of the galactose framework of CG and a graphic representation of the sugars and cations 

possibly associated to the polysaccharide.  

 

 

Figure 6. Representative image of the galactose main chain and possible sugars and 

counterions associated to the chemical structure of CG. 

 

CG, as a versatile, naturally occurring biopolymer, is finding increasing applications in 

biotechnology industries, especially from pharmaceutical to food industry; however, there is a lack of 

understanding of its physicochemical properties thus limiting its applications. Chemical structure, 
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solubility and molecular weight of CG closely affect its solution properties as well as its interactions 

with other polysaccharides [239]. 

Modifications of gums have been tried through derivatisation of functional groups, grafting with 

polymers, cross-linking with ions, etc. The modification of CG can improve its technological and 

functional properties, since its application is related to a better understand on the physicochemical 

properties of the gum, in its original state or chemically modified, either isolated or blended with other 

polymer [241]. 

The unique properties of CG are due to hydroxyls, the majority, and to carboxyl reactive groups. 

This polysaccharide is easily chemically modified to reduce the water solubility or to develop pH 

sensitivity, introduce functional reactive groups, etc. Therefore, it can be utilised for a chosen 

application [237]. Thus, as the composition and properties of CG were disclosed, the chemical 

modification observed for blends composed of CG and other polymers were proposed to increase their 

reactivity. Following the use of CG blended with other polymers, the most recent literature reports the 

development of systems for drug release, like microbeads [242] and nanoparticles [243] of CG and 

alginate, and nanogels of CG and chitosan [244].  

Several applications of blended CG were described, such as the production of films prepared with 

CG and polyvinyl alcohol (PVA) with the important purpose of wound therapeutics [245,246]. A 

layer-by-layer film containing CG intercalated with polyaniline unmodified or modified with 

phosphonic acid intercalated with CG was evaluated in determination of dopamine [247], and 

nanocomposite films of starch and CG were added to a nanoclay to increase the stability of cashew nut 

kernels [248]. Hydrogels based on CG (namely Policaju in this study) and chitosan were developed, 

characterized in their chemical structure, and indicated as a promising road to biomaterial fabrication 

and biomedical applications [249]. The larvicide activity of an essential oil loaded in beads based on 

chitosan and CG was evaluated by Paula et al. [250]; afterward, CG nanoparticles added with other 

essential oil was proposed to improve the controlled release of a larvicide system [251]. CG and 

carboxymethylcellulose based formulations have been evaluated as protective edible coatings on intact 

and cut red guavas [252].  

The properties of CG have also been exploited as a binder, for example the binding efficacy of CG 

based on tablet formulation was investigated in comparison with standard binders such as acacia and 

polyvinyl pyrrolidone; the results suggested that CG can be used as an alternative binder to produce a 

tablet of better mechanical strength and dissolution profile of particular drug substance [253]. In addition, 

CG can be used as a substitute for liquid glue for paper, in the cosmetic industry, as an agglutinant for 

capsules and pills [237], and as edible coatings for application on mangoes [27] and apples [254]. 

Fabrication of systems utilizing CG for drug delivery have been an area of great interest, such as 

the transdermal release profile for diclofenac diethyl amine loaded with nanoparticles of acetylated 

CG [255]. Other example is the study about the controlled delivery of antimicrobial peptides 

immobilized in multilayer films of CG and indium tin oxide to combat and prevent anti-leishmanial 

activity [256]. Self-assembled nanoparticles from hydrophobized CG containing an anti-inflamatory 

drug was also characterized as a drug delivery device [257]. 

CG is one of few biopolymers that have been proposed to replace the similar but more popular 

polysaccharide gum arabic. As a biopolymer with amphiphilic compounds, CG was reported to have 

about 6% of polysaccharide-protein complex, suggesting that probably the same complex is present in 

the gum arabic. The similarity of both gums suggests the study of CG in the food and beverage 

industry as thickening and gelling agent, and as colloidal stabiliser [258].  
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8. Pectin 

 

Pectin is a complex and heterogeneous polysaccharide located in the middle lamella and primary 

cell walls of plant tissues, and in fruits and vegetables. The chemical structure of pectin depends on the 

origin, location in the plant and extraction method, been composed of acidic polymers, known as 

homogalacturonan, rhamnogalacturonan and xylogalacturonan with several neutral sugars/polymers 

such as arabinans, galactans and arabinogalactans (attached as side chains). The available data support 

the highly schematic model of pectin shown in Figure 7. The backbone contains α-(1-4)-linked linear 

homogalacturonic units alternated with two types of highly branched rhamnogalacturonan regions. 

The first region is substituted with side chains of arabinose and galactose units, while the second has a 

highly conserved structure, consisting of the main chain branched with eleven different 

monosaccharides, including some rare sugars such as 2-O-methylxylose, 2-O-methylfucose, apiose, 

aceric acid, 2-keto-3-deoxy-d-manno-octulosonic acid, and 3-deoxy-d-lyxo-2-heptulosaric acid. 

Xylogalacturonan is similar to homogalacturonan except that it is substituted with single 

β-(1-3)-xylose units or such units substituted with a few additional β-(1-4)-xylose. In all natural 

pectins, some of the carboxyl groups exist in the methyl ester form [35,47,259]. 

 

 

Figure 7. Schematic structure of pectin. The relative abundance of the different types of 

pectin varies, but homogalacturonan and rhamnogalacturonan I are considered the major 

components, while xylogalacturonan and rhamnogalacturonan II are minor components. 

 

Pectin has a high molecular weight and can be converted into hydrogels, intended as flexible 

network of polymer chains that can swell but do not dissolve in water. Pectin solutions at high 

concentrations and low pH facilitate the formation of coil entanglements, resulting in formation of 

physical gels. Moreover, water-insoluble gels may be obtained with the use of divalent or trivalent 

cations. This simple gelling mechanism has raised interest for the preparation of hydrogels for 

biomedical applications, including drug delivery, gene delivery, tissue engineering and wound 

healing. It is also important to highlight that the monosaccharide content and the spatial disposition of 



406 
 

AIMS Molecular Science  Volume 3, Issue 3, 386-425. 

the crosslinking blocks in the pectin structure need to be carefully considered when designing pectin 

gels for specific biomedical applications [260]. 

Pectins exist with different degrees of esterification. They can be classified as high methoxyl 

pectin or low methoxyl pectin according to its degree, that yield some differences in their properties, 

for example, pectins with a high degree of esterification form thermoreversible gels in acidic 

conditions [47,261].  

Pectins are widely used as technological adjuvants in the food industry, fully exploiting their 

structural diversity. Different structures lead to distinct gelling properties, emulsion and thickening 

activities, emulsion stabilities, and release effects in complex food matrices. In the pharmaceutical 

industry, pectin is commonly used as an excipient due to its non-toxicity, low production costs, and 

gelling activity properties [262]. 

Edible coatings based on pectin [263,264] and associated with other polysaccharides, including 

alginate [265] and chitosan [129], were developed in terms of evaluate the coating storage ability on 

foods and fruits. Pectin containing agricultural by-products are also used as potential sources of a new 

class of prebiotics known as pectic oligosaccharides [259,266,267]. The impact of protein content and 

combination mode between protein and pectin on emulsifying properties is one of the most properties 

studied by the scientific literature [268-270]. 

The increasing use of pectin in drug delivery is facilitated by the physicochemical properties of 

pectin. Muco-adhesiveness, ease of dissolution in basic environments, resistance to degradation by 

proteases and amylases of the upper gastrointestinal tract and the ability to form gels in acid 

environments, which allows this natural polysaccharide to target different drug delivery formulations. 

For example, films [271], beads [272], pellets and structures in micro and nanoscale [273-275], into 

completely different environments such as nasal, vaginal, ocular, gastric and, specially, large 

intestine [261,276]. The use of pectin-derived drug carries in colon cancer treatments has been 

extensively considered; pectin is intact in the upper gastrointestinal tract and degraded by specific 

colonic bacteria [277,278]. Modification of pectin via grafting with poly(N-vinylpyrrolidone) (PVP) 

has also been reported to form an effective hydrogel that can make effective colon-targeted drug 

delivery [279]. In terms of the gel-forming capacity, pectin lowers cholesterol by binding the 

cholesterol and bile acids in the gut, thus promoting their excretion [280-282]. 

In addition to food and pharmaceutical applications, recent studies reported that pectins showed 

immunomodulating activities [283-285]. The hydrogel of pectin has been explored in tissue 

engineering applications for bone cell culture and promoting the nucleation of minerals, and in wound 

healing applications for binding active drugs or growth factors and protecting against bacteria [260]. 

Still in view of the wound care, oxidized pectin and carboxymethyl chitosan membranes were 

developed by in situ cross-linking and demonstrated to be non-hemolytic and cytocompatible [286]. 

Pectin is a natural anti-glycation agent and has been used beneficially to treat healing damages. Wound 

dressings of oxidized pectin, gelatin and nonwoven cotton fabric were used as immobilizing supports 

for nanosilver and ciprofloxacin [287] and alow vera and curcumin [288] with the important propose to 

test their viability as effective materials for wound management.  

 

9. Starch 

 

Starch is a biopolymer synthesized in a granular form by green plants for energy storage over long 

periods. Starch granules consist of two major components, branched amylopectin and linear amylose; 
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in both cases, the basic structure is composed of α-D-glucopyranose residues, forming 

α-1,4-glucosidic bonds in linear structure of amylose and additional α-1,6-glycosydic branches in 

amylopectin molecules. Minor constituents such as lipids, proteins, and minerals are present in starch 

and the levels vary with the origin. The differences in structure of amylose and amylopectin have 

indeed significant variance in their properties. Amylose is much more prone to crystallization process, 

called retrogradation, and can produce tough gels and strong films, while amylopectin could be 

dispersed in water and retrogrades much slower, which results in soft gels and weak films [35,289]. 

The predominant model for starch structure is presented in multi-scale, consisting of granules, 

into which is found growth rings composed of amorphous and crystalline lamellae containing 

amylopectin and amylose chains [290], as can be observed in Figure 8. 

 

 

Figure 8. Multi-scale model for starch structure, containing granules, growth rings, 

amorphous and crystalline lamellae, hilum, and amylopectin and amylose molecular 

structures. 

 

Starch is an excellent material for biotechnological applications due to its non-toxic, renewable 

and biodegradable characteristics; however, its direct applications are limited by its poor 

processability and intrinsic properties, such as thermal, mechanical, and biological properties. Thus, 

various chemical, physical, and enzymatic modifications or blending with other materials has supplied 

solutions to achieve properties that are more desirable. Similar to the cellulose (section 4), 

conventional chemical modifications of starch are performed based on the primary and secondary 

hydroxyl groups, including esterification, etherification, oxidation, and graft copolymerization [35].  

Starch esters are generally prepared by reacting with fatty acids and fatty acid methyl ester in 

organic solvents [291,292]. Starch esters have been developed for pharmaceutical applications, e.g. 

used as superdisintegrant and matrix former in capsules and tablet formulations; and for medical 

application to maintain human colonic function and preventing colonic disease [35,293]. 

Quaternary ammonium cationic starches, the major commercial starch ethers, are commonly 

prepared by the reaction of an aqueous alkaline solution of 2,3-epoxypropyltrimethyl ammonium chloride 

or 3-chloro-2-hydroxypropyltrimethyl ammonium chloride. The quaternary ammonium-substituted 

cationic starches may form nanoparticles with anionic sodium tripolyphosphate. The nanoparticles could 



408 
 

AIMS Molecular Science  Volume 3, Issue 3, 386-425. 

entrap hydrophobic molecules, providing a great potential as nanosized carrier in health care and 

environmental sciences [35,294]. Hydroxyethyl starch is semisynthetic starch ether by reacting with 

ethylene oxide in alkaline medium, and it has been used as a plasma volume expander and cryoprotectant 

in medicine. A nanocarrier based on hydroxyethyl starch for active receptor-mediated targeting was 

synthesized [35,295]. The hydroxyethyl starch folic acid conjugate nanocarriers could be of high interest 

for the development of receptor mediated targeting using polymeric nanocapsules to deliver and 

accumulate their encapsulated molecules to the targeted area. 

Selective oxidation of starch with N2O4 or a TEMPO/NaClO/NaBr system can exclusively yield 

carboxylates on the primary hydroxyl groups. Such oxidation approaches can also be applied to 

selectively oxidize starch derivatives, which bear another oxidation candidate primary hydroxyl group 

(e.g. hydroxyethyl starch) [35]. Recently, NaClO oxidation was applied in the aqueous 

re-dispersibility of starch nanocrystal powder and increased the oxidation degree from 0.41 to 0.581% 

(w/w), while the applied active chlorine increased from 1 to 4% (w/w) [296]. 

It is important to note that starches are chemically and/or physically modified to accentuate their 

positive characteristics, diminish their undesirable qualities (such as high viscosity, susceptibility to 

retrogradation, and lack of process tolerance), or improve new attributes (retention, film formation, 

digestibility, solubility, etc.). Acid hydrolysis has been used for a long time to modify starch and its 

properties because of its simplicity and controllability; recently, the main researches about acid 

hydrolysis has been applied for preparing starch nanocrystals (SNC). The preparation methods and 

applications of SNC have been extensively reported by the scientific literature [290,297-300]. In 

addition to SNC, starch crystallites, microcrystalline starch and hydrolysed starches all refer to the 

crystalline part of starch obtained by hydrolysis. They differ from each other in the extent of hydrolysis 

they have undergone (from the most to the least), and have to be distinguished from starch 

nanoparticles, of which they are just one kind, and which can be amorphous [290].  

Because starch is environmentally friendly, nano-scale starch derivatives are suggested as one of 

the promising biomaterials for novel utilization in foods, cosmetics, medicines as well as various 

composites. For example, a comparative study was developed with waxy maize starch 

nano-derivatives extracted through acid hydrolysis and ultrasound treatment, respectively for 

nanocrystals and nanoparticles. Their application in nanocomposite films was suggested to improve 

their morphological, structural and thermal behaviour [301]. SNC and nanoparticles were also 

compared in a rheological characterization of suspensions containing its nano-derivatives under 

different ionic strength conditions [302]. SNC were also found to serve as an effective reinforcing 

agent for natural rubber [303], edible films from potato starch [304], and amaranth protein films [305]. 

 

10. Conclusions 

 

The aim of this review was to approach the most recent scientific literature dealing with natural 

polymers, their chemical structure, physicochemical and functional properties, in addition to their 

biotechnological applications. From the fundamental point of view, it was remarkable to note the 

preference of industry applications for natural gums when comparable with synthetic materials due to 

their non-toxicity, low cost, availability, biodegradability and biosafety. The use of nano-tools to 

process natural polymers, their derivatives or blends, is gaining prominence in the industrial field due 

to the advantages in the use of nanomaterials sourced from natural origin, since the use of these 

materials are likely to cause less environmental impact. 
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