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Abstract: Androgens play a key role in the development and progression of prostate cancer, and 

androgen deprivation therapy (ADT) is the first line treatment for advanced disease. Although ADT 

is initially successful in controlling prostate cancer, many patients eventually become resistant to 

therapy and progress to develop lethal castration-resistant prostate cancer (CRPC). Androgens drive 

prostate cancer cell growth via the androgen receptor (AR), which is a transcription factor essential 

for prostate cancer cell viability, proliferation and invasion and has important roles in a range of 

signalling pathways. The progression to CRPC is thought to involve persistence of AR signalling and 

reprogramming of the AR transcriptional landscape to allow tumour cells to continue to grow despite 

low levels of circulating androgens. During this time AR activity can be maintained through 

activating mutations, gene amplification, AR splice variants or signalling crosstalk with other 

pathways. CRPC is highly aggressive and ultimately lethal, meaning there is an urgent need to 

understand the mechanisms that drive this form of the disease and to develop new therapeutic targets. 

This review discusses the role of the AR signalling in some of the many mechanisms and pathways 

that contribute to the development of prostate cancer and the progression to castrate resistant disease. 
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1. The prostate gland 

 

The prostate is a small glandular organ situated within the pelvic cavity of males, beneath the 

bladder and surrounding the urethra. The main function of the prostate is to produce prostatic fluid, a 

component of semen which protects and enhances the survival of sperm cells. Structurally, the 

mature prostate is divided into four distinct zones, the transition zone, the central zone, the peripheral 

zone and a fibromuscular stroma (Figure 1a). The transition, central and peripheral zones contain 

highly organised glandular epithelium structures separated by a fibromuscular stromal network [1].  
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Figure 1. (a) Zonal anatomy of the prostate—the prostate is divided into four distinct 

zones; three glandular zones (peripheral zone, central zone and transition zone) and a 

fibromuscular stroma. (b) Cells within with the prostate gland—arranged within the 

basement membrane of prostate glands are basal cells, luminal secretory cells and a small 

number of neuroendocrine cells. The fibromuscular stroma contains smooth muscle cells, 

fibroblasts, nerve cells, blood vessels within an extracellular matrix. 
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Arranged within the basement membrane of these glandular epithelium structures are transient stem 

cells (~1%), basal cells (40%), luminal secretory cells (60%) and a small number of neuroendocrine 

cells. The surrounding fibromuscular stromal tissue contains smooth muscle cells, fibroblasts, nerve 

cells, blood vessels, extracellular matrix and lymphatics (Figure 1b) [2].  

The size of the prostate can increase with age, resulting in a condition termed benign prostatic 

hyperplasia (BPH). This non-malignant condition is common in men >60 years [3] and is 

characterised by progressive hyperplasia of glandular and stromal tissues within the transitional zone 

of the prostate [4]. BPH is not usually serious, but the increased growth can sometimes impact on the 

urethra causing discomfort and leading to complication such as acute urinary tract infections (UTI) 

and urinary retention (AUR) [5,6].  

 

2. Prostate cancer 

 

Prostate cancer (PCa) is the second most common type of non-skin cancer in men, after lung 

cancer. There were an estimated 1.1 million new cases of PCa in 2012 worldwide, accounting for 

around 15% of all new cancer diagnoses [7]. In the United Kingdom, there are over 47,000 new PCa 

cases diagnosed each year with around 10,000 deaths and it is predicted that approximately 1 in 

every 5 men will be diagnosed with PCa during his lifetime [8]. PCa incidence rates increase with 

age and are highest in men ≥65 years. PCa incidence is expected to rise with an increasingly aging 

population.  

PCa is a heterogeneous disease and the process of initiation is not fully understood. As with 

many cancers, two main models of tumour initiation and progression have been proposed. The clonal 

evolution model involves multiple genetic and epigenetic changes within a single cell of origin 

which confer a selective growth and survival advantage to produce a dominant clone. Genetic 

instability within the expanding tumour population produces further mutant cells creating tumour cell 

heterogeneity [9]. The cancer stem cell model suggests that the tumour originates from a small 

sub-population of tumour initiating cells that have retained the ability to self-renew, generating 

heterogeneity through differentiation [10,11]. For either model of cancer development, the complex 

heterogeneity of the disease creates a major challenge for treatment.  

PCa diagnosis usually involves measurement of serum prostate-specific antigen (PSA) levels, a 

digital rectal examination, and a needle core biopsy sampling. PSA is a serine protease which is 

secreted almost exclusively by the epithelial cells of the prostate [12]. PSA is commonly used as a 

biomarker of PCa as disruption of the prostatic epithelium allows PSA to leak into the circulating 

blood stream [13]. However, PSA use as a PCa biomarker is controversial as it does not distinguish 

between PCa and other non-malignant conditions such as BPH, infection or chronic inflammation [14]. 

Several new PCa biomarkers are currently being investigated, including the use of tumour specific 

PSA isoforms [15] and PSA glycan signatures [16], as well as non-invasive urine-based biomarkers 

such as detection of prostate cancer antigen 3 (PCA3) RNA [17] and TMPRSS2:ERG fusion 

transcripts [18]. These new approaches may prove to be more reliable at detecting PCa, thus helping 

to reduce the over diagnosis and over treatment issues associated PSA screening.  

The Gleason grading system is used in combination with PSA screening to categorise hematoxylin 

and eosin (H&E) stained prostatic tissue sections from biopsy samples. The morphology and structural 

arrangement of carcinoma cells help separate prostate tumours into five basic grades, from grade 1 

(well-differentiated, small uniform glands) to grade 5 (poorly-differentiated, occasional gland 
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formation) [19]. These grades are used to generate an average Gleason score indicating the clinical 

stage of the tumour, possibility of progression to metastatic disease, and patient’s treatment/survival 

prognosis [20]. 

 

3. Androgen receptor signalling  

 

Androgens play a key role in the growth and function of the prostate. Androgens are a group of 

steroid hormones of which testosterone is the most prevalent in males. Testosterone is primarily 

produced in the testes by the Leydig cells (90%), although small amounts are also produced by the 

adrenal glands (10%). Testosterone production is regulated through the hypothalamic-pituitary-gonadal 

(HPG) axis. Pulses of GnRH (gonadotropin-releasing hormone) are secreted from the hypothalamus 

to stimulate the release of LH (luteinising hormone) and FSH (follicle-stimulating hormone) from 

the anterior pituitary gland, this in turn stimulates the synthesis of testosterone. Circulating 

testosterone levels regulate the further production of GnRH to create a feedback loop [21].  

The AR is a nuclear steroid hormone receptor which functions as a ligand dependant 

transcription factor. The human AR gene is located on the X chromosome (Xq11-12) and 

spans >90-kb of DNA [22]. Eight coding exons in the AR gene [23] encode a 110-kDa protein with 

four functionally distinct domains: an N-terminal domain (NTD), a DNA-binding domain (DBD), a 

small hinge region and a ligand-binding domain (LBD). The first large AR gene exon encodes the 

highly variable NTD, which contains several regions of repetitive DNA sequences (CAG 

tri-nucleotide repeat) [24]. The highly conserved DBD contains two zinc finger domains and is 

encoded by exons 2 and 3 [25], whilst exons 4 to 8 encode the C-terminal LBD. The AR protein 

contains two trans-activation domains, the hormone independent activation function 1 (AF1) is 

located within the NTD and the hormone-dependent activation function 2 (AF2) within the LBD 

(Figure 2a). Not all cell types within the prostate gland are AR-positive. Whilst the luminal secretory 

cells express high levels of AR [26], the majority of basal cells, neuroendocrine cells, and stem cells 

are AR-negative and function independently of androgens [27]. 

In the prostate, testosterone is converted to dihydrotestosterone (DHT) by 5α-reductase 

enzymes [28]. The action of DHT is dependent upon binding to the androgen receptor (AR). In the 

prostate DHT has a 10-fold higher binding affinity for the AR than testosterone [29]. In its inactive 

form, the AR is located in the cytoplasm bound to heat shock proteins (specifically HSP90) and other 

chaperone molecules [30]. In the “genomic signalling” AR pathway, binding of DHT to the ligand 

binding domain (LBD) of the AR induces a series of conformational changes that dissociate the AR 

from the HSPs and chaperone molecules. These changes promote AR phosphorylation and its 

translocation to the nucleus, where the activated AR interacts with co-activators and binds as a dimer 

to androgen response elements (AREs) found in the promoter regions of target genes [31]. The AR 

controls transcription of many genes which are involved in cell growth and survival [32] as well as 

prostate-specific antigen (PSA) [33] (Figure 3a).  

This classical AR genomic signalling pathway depends on AR nuclear translocation and DNA 

binding for transcription and cell proliferation, a process which occurs over several hours. In contrast, 

the “non-genomic AR signalling pathway” involves interactions within minutes between AR and 

intracellular signalling molecules in the cytoplasm. Activated AR can interact directly with the p85α 

regulatory subunit of PI3K (phosphoinositol 3-kinase) [34], SH3 (Src homology 3) domain of Src [35] 

and Ras/Raf-1 [36] leading to MAPK/ERK (mitogen-activated protein kinase/extracellular signal 
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regulated kinase) activation and subsequent cell proliferation. Non-genomic AR signalling may also 

enhance AR genomic activity. AR activated kinases can directly phosphorylate AR even in the 

absence of ligand binding [37], creating an autocrine feedback loop (Figure 3b).   

 

4. Androgen receptor in prostate cancer 

 

In 1941, Huggins and Hodges were the first to demonstrate the androgen dependency of PCa 

growth and progression [38]. Androgens and the AR have since been portrayed as the crucial players 

in both localised and advanced disease [39] and have been the major target for therapeutic treatment 

of PCa for many years. 

 

 

 

Figure 2. (a) The androgen receptor gene—the AR gene is located on the X 

chromosome (Xq11-12) and has eight coding exons. The full length AR protein has four 

functionally distinct domains: an N-terminal domain (NTD), a DNA-binding domain 

(DBD), a small hinge region and a ligand-binding domain (LBD). These four domains 

include two trans-activation domains, AF1 and AF2. (b) Common cancer associated 

androgen receptor splice variants—the most common AR splice variants AR-V7 and 

Arv567es lack a functional LBD and are constitutively active. U—unique variant specific 

C terminal sequence.  
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Figure 3. (a) Classical genomic androgen receptor signalling in the 

prostate—testosterone enters the prostate cell where it is converted to DHT by the 

enzymes 5α-reductase. Inactive AR is located in the cytoplasm bound to heat shock 

proteins (Hsp) and other chaperone molecules. Binding of DHT to the AR induces a 

series of conformational changes that dissociate the AR from the Hsps and promotes AR 

phosphorylation and translocation to the nucleus. In the nucleus the activated AR 

interacts with co-activators and binds as a dimer to androgen response elements (AREs) 

of target genes leading cell proliferation. (b) Non-genomic androgen receptor 

signalling in the prostate—activated AR can interact directly with numerous 

intracellular molecules including the p85α regulatory subunit of PI3K, the SH3 (Src 

homology 3) domain of Src and Ras/Raf-1 leading to MAPK/ERK activation and 

subsequent cell proliferation. 

 

The current treatment options for localised PCa and locally advanced PCa include active 

surveillance, radical prostatectomy and types of radiation therapy such as external beam radiotherapy, 

permanent seed brachytherapy, high-intensity focused ultrasound (HIFU) or cryotherapy to remove 

or kill tumour cells. The main treatment options for advanced metastatic PCa are chemotherapy with 

docetaxel (Taxotere®) and androgen deprivation therapy (ADT). Reduced serum testosterone levels 

are achieved by surgically removing the testicles (orchidectomy) [40] or using a combination of 

GnRH agonists and antagonists such as goserelin (Zoladex®), leuprorelin acetate (Prostap®), 

triptorelin (Decapeptyl®) and degarelix (Firmagon®) to suppress the production of testosterone [41], 
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and AR antagonists such as bicalutamide (Casodex®), and flutamide (Eulexin®) which block AR 

function [42].  

Despite an initial response to ADT, many patients go on to develop castration-resistant prostate 

cancer (CRPC) within a few years [43], in which the tumour cells develop mechanisms which allow 

them to continue to grow despite depleted androgen levels. This has led to the development of 

second generation AR signalling inhibitors such as Abiraterone (Zytiga®) and Enzalutamide 

(Xtandi®). Abiraterone is an irreversible inhibitor of the enzyme CYP17A1, which is designed to 

inhibit extragonadal testosterone synthesis from the adrenal glands and the tumour 

microenvironment [44]. Enzalutamide is an AR antagonist which works by binding to the LBD of the 

AR, thus inhibiting its translocation to the nucleus, chromatin binding and interactions with 

co-regulators [45]. Radium-233 (Xofigo®), a radiopharmaceutical agent has recently been approved 

for the treatment of CRPC patients with bone metastases [46]. Although these agents have been 

modestly successful at prolonging the overall survival of PCa patients, resistance mechanisms 

inevitably develop which will continue to drive disease progression. CRPC is highly aggressive and 

ultimately lethal, meaning there is an urgent need to understand the mechanisms that drive this form 

of the disease and to develop new therapeutic targets.    

 

5. Splicing  

 

Most human genes produce multiple mRNA isoforms that can be translated into a diverse range of 

proteins often with distinct functions and cellular localisation. Aberrant splicing as a result of defective 

splicing regulation has been associated with the onset and progression of many types of cancer, 

including PCa [47]. Over 200 genes are known to express PCa-specific splice variants, including the 

AR itself, KLK3 (kallikrein 3) which encodes PSA [48], KLF6 (kruppel-like factor 6) [49], ACTN1 

(actinin 1), CALD1 (caldesmon 1), VCL (vinculin), COL6A3 (collagen type VI 3), TPM1 

(tropomyosin 1) [50], FGFR2 (fibroblast growth factor receptor 2) [51] and the tumour suppressor 

gene TSC2 (tuberous sclerosis complex 2) [52]. Alternative promoters can also be important in 

producing mRNA isoforms: these include an androgen regulated alternative isoform of TSC2 mRNA 

that has been shown to increase cell proliferation [53]. 

The up-regulation of several splicing regulators has been shown to alter the splicing profile of key 

genes involved in PCa. These include the RNA-binding proteins SAM68 (also known as KHDRBS1, 

KH domain containing, RNA binding, signal transduction associated 1) [54,55], SRSF1 

(serine/arginine-rich splicing factor 1) [56] and DDX5 (DEAD (Asp-Glu-Ala-Asp) box helicase 5) [57]. 

SAM68 can alter signal dependent splicing and transcriptional activity of the AR [55].  

 

6. Downstream regulated pathways 

 

AR signalling has been directly linked to numerous processes known to be important in prostate 

cancer development and progression, including central metabolism and biosynthesis [32], lipid and 

cholesterol biosynthesis [58-60], fatty acid metabolism [61-63], response to ER stress [64,65], and 

most recently glycosylation [66].  

Aberrant glycosylation is a prevalent feature in cancer and has been linked to PCa 

progression [66-71]. A number of glycosylating enzymes are AR regulated and over-expressed in PCa 

including UAP1, ST6GALNAC1 (ST6 alpha-N-acetyl-neuraminyl-2, 3-beta-galactosyl-1, 

http://prostatecanceruk.org/prostate-information/treatments/abiraterone
http://prostatecanceruk.org/prostate-information/treatments/enzalutamide


287 
 

AIMS Molecular Science  Volume 3, Issue 2, 280-299. 

3-N-acetylgalactosaminide alpha-2,6-sialyltransferase 1), GCNT1 (glucosaminyl (N-acetyl) 

transferase 1), GALNT7 (polypeptide N-acetylgalactosaminyltransferase 7), PGM3, CSGALNACT1 

(chondroitin sulfate N-acetylgalactosaminyltransferase 1), ST6GAL1 (ST6 beta-galactosamide 

alpha-2,6-sialyltranferase-1) and EDEM3 (ER degradation enhancer, mannosidase alpha-like 3) [72]. 

Over-expression of UAP1, the last enzyme in the HBP pathway, has been observed in tumour tissue 

from PCa patients and correlates positively with AR expression [73]. Increased ST6GALNAC1 

expression in PCa cells increases cell mobility and decreases cell adhesion [74] and GCNT1 

expression is associated with the aggressive potential of PCa [75,76].  

The PI3K-AKT signalling pathway is another important player in prostate cancer progression, 

and has been shown to be altered in 42% of primary and up to 49% of metastatic tumours [77]. Loss 

of the tumour suppressor PTEN, a negative regulator of the PI3K/AKT signalling pathway, has been 

identified in almost all advanced metastatic CRPC cases [78] together with mutations in PIK3CA, 

AKT1 and PIK3CA [79]. Reciprocal crosstalk between AR signalling and the PI3K pathway has 

been identified as possible mechanism underlying CRPC [80]. Expression of the PI3K regulatory 

sub-unit PIK3R1 is androgen regulated and repressed in PCa tissue, suggesting a transcriptional link 

between AR signalling and the PI3K pathway [81], and supporting combinatorial inhibition of AR 

and PI3K signalling to significantly reduce progression to CRPC. Another common feature of PCa is 

activation of the RAS/ERK1/2 signalling pathway, which is mutated in 43% of primary PCa tumours 

and 90% of PCa metastases [77]. Hyperactivation of RAS/ERK1/2 is thought to be due to loss of 

negative regulators of the pathway, including sprouty genes and PTPRR, which are both directly 

repressed by the AR [81,82]. Activation of RAS/ERK1/2 is thought to serve as a potentiating second 

hit to loss of PTEN to accelerate PCa progression [82].  

There is increasing evidence for the role of the Wnt/β-catenin pathway in the progression to 

CRPC (reviewed in [83]). β-catenin (CTNNB1) interacts with the AR enhancing transcriptional 

activity by altering the sensitivity and the specificity of the receptor binding to ligands [84,85]. 

Increased expression of nuclear β-catenin has been observed in advanced metastatic and CRPC 

compared with primary PCa tumours [86,87]. Activating mutations in β-catenin [79,88] and recurrent 

alterations in APC [79] have been described in CRPC patients.  

 

7. The development of castrate resistant prostate cancer  

 

There are many mechanisms and alternative pathways associated with the androgen-independent 

growth observed in CRPC, the majority of which involve androgens and are mediated by the AR. 

Therefore, suppression of AR signalling remains the therapeutic goal in the treatment of prostate 

cancer. 

 

7.1. Altered steroidogenesis  

 

Despite the low serum testosterone levels obtained after ADT, intratumoral testosterone levels 

can remain sufficient enough to induce cancer progression, suggesting that altered steroidogenesis 

pathways have been activated. Several studies have now demonstrated that PCa cells are able to 

produce testosterone from different androgen precursors, such as cholesterol [89] and the adrenal 

androgen dehydroepiandrosterone (DHEA) [90]. In addition, several genes involved in testosterone 

biosynthesis become up-regulated in CRPCs [91,92]. These include AKR1C3 (aldo-keto reductase 
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family 1, member C3), which encodes an enzyme which catalyses the conversion of androstenedione 

to testosterone, SRD5A1/2 (steroid-5-alpha-reductase, alpha polypeptide 1/2) which converts 

testosterone to DHT, CYP17A1 (cytochrome P450 17A1) and HSD17B6 (hydroxysteroid (17-Beta) 

dehydrogenase 6) [93].  

 

7.2. AR amplification and hypersensitivity  

 

Increased AR levels have been identified in CRPC cell lines [94] and occur in 20 to 30% of CRPC 

cases [95]. AR amplification allows tumour cells to become hypersensitive to low levels of testosterone. 

An excess in AR production can result from AR gene amplification, increased mRNA transcription or 

stabilisation of the mRNA or protein [96]. The mechanisms underlying AR hypersensitivity remain 

unclear but are thought to be a response mechanism to the selective pressure imposed within an 

androgen-depleted environment [97]. AR overexpression is the most frequent genetic alteration 

observed in CRPC, with AR copy number gain detected in up to 50% of patients [79,98,99]. Gene 

amplification and copy number variations in both AR and CYP17A1 have been detected in circulating 

tumour cells (CTCs) and cell-free tumour DNA (ctDNA) from metastatic CRPC patients indicating a 

possible mechanism for the resistance to treatment with second generation therapies (abiraterone and 

enzalutamide) [100-103].  

 

7.3. AR mutations and splice variants 

 

AR mutations have been found in around 10% to 30% of CRPC patients [104]. The McGilll 

Androgen Receptor Gene Mutation Database (available at: http://androgendb.mcgill.ca) contains 

extensive details of 1110 AR mutations, 168 of which have been associated with PCa. The majority 

of mutations identified in CRPC are found within the LBD (49%) followed by the NTD (40%), DBD 

(7%) and hinge region (2%) [105]. The most frequent AR mutation is the point mutation T877A 

which substitutes a threonine for alanine at position 877. The T877A mutation is found within the 

LBD of the AR and occurs in around one-third of CRPC cases [106]. Mutations in the LBD broaden 

binding specificity resulting in activation by multiple endogenous hormones including estrogens, 

progesterone and even the androgen antagonist flutamide [107]. Mutations that occur in the NTD and 

DBD could modulate the receptors affinity for co-regulator and influence nuclear localisation [108].  

A large number of constitutively active AR splice variants have been identified. The most 

prevalent of these AR isoforms are AR-V7 [109] and ARv567es [110], both of which lack a 

functional LBD but maintain a nuclear localization signal (NLS) (Figure 2b). These changes ensure a 

constitutive nuclear localisation and facilitates AR signalling in the absence of androgens, or in the 

presence of enzalutamide [111,112]. Patients with high expression levels of AR-V7 and ARv567es 

have particularly poor prognoses with significantly shorter survival rates [113]. AR-V7 mRNA 

transcripts have been detected in CTCs of metastatic CRPC patients and are highly predictive for 

resistance to treatment with abiraterone and enzalutamide [114,115], highlighting this molecule as a 

potential prognostic and predictive biomarker.  

 

7.4. Co-activators and co-repressors  

 

Many different proteins have been identified as co-regulators for AR. These proteins can 

http://prostatecanceruk.org/prostate-information/treatments/abiraterone
http://prostatecanceruk.org/prostate-information/treatments/abiraterone
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function to either enhance (co-activators) or repress (co-repressors) transcriptional activity of the AR. 

Expression of these co-regulatory proteins changes during the different stages of PCa progression, 

and can affect many cellular functions such as proliferation, apoptosis, migration, invasion and 

differentiation [116]. Increased expression of several AR co-activators has been observed during 

ADT, including of P300, CBP and Tip60 [117-119]. The P300/CBP pathway promotes 

androgen-independent IL-6 mediated AR activation [120], whilst Tip60 promotes cell proliferation 

by translocation of AR into the nucleus [121].  

 

7.5. Ligand-independent activation  

 

Although ADT works to repress AR signalling, there are a number of cytokines and growth 

factors that continue to stabilise the AR, enhancing transcriptional activity independently of ligand 

binding. Interleukin-6 (IL-6) is a multifunctional cytokine important for immune regulation and 

which regulates cell growth [122]. Androgens induce the expression of IL-6 in the androgen sensitive 

LNCaP PCa cell line [123]. Reciprocally, IL-6 can regulate AR activity in a ligand-independent and 

synergistic manner even in low concentrations of androgens [124,125]. Serum IL-6 levels are a 

significant prognostic factor in PCa and elevated IL-6 serum levels have been reported in CRPC 

patients [126]. The JAK-STAT (janus kinase/signal transducers and activators of transcription), 

MAPK and PI3K-AKT signalling pathways have been shown to be important in the AR activation by 

IL-6 [127,128].  

The epidermal growth factor receptor (Her2/neu) is a receptor tyrosine kinase oncoprotein that 

plays a major role in cell growth and differentiation [129]. Gene amplification and over expression of 

the Her2/neu protein drive the progression of many types of cancers, including breast and ovarian 

cancers (Her2/neu gene amplification is found in ~25% of breast cancers) [130]. In prostate cancer, 

Her2/neu expression increases with progression to CRPC [131], promoting cell growth and survival 

in the absence of androgens through the activation of Akt (protein kinase B) [132].  

The transcription factor nuclear factor kappaB (NF-κB) plays a critical role in cancer 

development and progression [133]. The AR is thought to activate NF-κB signalling in the absence 

of androgens and represses NF-κB in the presence of androgens [134]. Constitutive activation of 

NF-κB signalling in the absence of androgens significantly increases AR mRNA and protein levels, 

AR trans-activation activity and cell proliferation in vitro [135]. NF-κB2 (p52) interacts directly with 

the NTD of the AR, enhancing nuclear translocation, activation and enhances the recruitment of 

co-activators such as p300 to the promoter region of AR-dependent genes [136].  

 

7.6. Neuroendocrine differentiation  

 

Neuroendocrine cells in the prostate are rare and are found interspersed between the luminal 

secretory and basal cells within the prostate gland. Unlike the luminal secretory and basal cells, 

neuroendocrine cells are AR negative, non-proliferative, terminally differentiated cells [137,138]. 

They secrete a range of growth factors and hormones which can stimulate proliferation and inhibit 

apoptosis in the surrounding cells including chromogranin A (CgA), parathyroid hormone-related 

protein (PTHrp), bombesin (BBN), vascular endothelial growth factor (VEGF) and many more [139].  

Neuroendocrine differentiation refers to the trans-differentiation of PCa cells toward a 

neuroendocrine phenotype, induced in response to the androgen-depleted environment created by 
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ADT [140]. The induction of neuroendocrine differentiation in PCa cells by androgen depletion is 

well documented in vitro [141] and in PCa xenografts in mice [142]. Neuroendocrine differentiation is 

significantly increased in CRPC [143], and relates to a more aggressive behaviour and less favourable 

prognosis [144]. A number of molecular signalling molecules and pathways have been shown to promote 

neuroendocrine trans-differentiation in prostate cancer cells including, IL-6 [145,146], isoform 1 of the 

TPD52 protein [147], Fyn kinase [148], Wnt-11 [149] and the PI3K-Akt-mTOR pathway [150]. 

However, the mechanisms involved are not fully understood. 

Although AR is the main regulator and therapeutic target in PCa, other endocrine systems have 

also been linked to PCa development and tumour progression. Estrogen acting via its receptors (ERα 

and ERβ), can regulate proliferation, differentiation, apoptosis, EMT, invasiveness and chronic 

inflammation in prostate cancer cells (reviewed in [151]). Relaxin (H2), a peptide hormone secreted 

by the prostate, is up-regulated during progression to CRPC [152]. Over-expression of relaxin 

stimulates the PI3K-Akt signalling pathway leading to β-catenin stability, AR association and the 

subsequent transcription of target genes [153]. The tumour micro-environment also plays an important 

role in regulating PCa progression. In the normal prostate, signalling cross-talk between the stromal 

and epithelial compartments maintains cellular homeostasis. Stromal AR activity can regulate the 

composition of the prostate micro-environment. In particular, the AR activity of cancer-associated 

fibroblasts (CAFs) has been shown to promote PCa epithelial cell growth and invasion through the 

regulation of growth factors [154]. An important regulator which inhibits epithelial proliferation 

called transforming growth factor-β (TGF-β) is under androgenic control [155]. Over expression of 

TGF-β has been observed in prostate tumours isolated from patients following ADT [156]. Elevated 

levels of TGF-β in prostate stroma have been shown to promote prostate tumour growth and 

angiogenesis [157], and indirectly activate the AR in PCa cells [158]. 

 

8. Conclusion and future perspectives 

 

PCa remains one of the leading causes of cancer-related death in men. Androgens and the AR 

are key players in the development and progression of this disease and have been the main target of 

therapeutic treatments for many years. ADT, the treatment for advanced PCa, works by reducing 

circulating testosterone levels and blocking AR signalling and is initially effective in halting tumour 

growth. Unfortunately there are a significant proportion of patients that go on to develop CRPC, in 

which PCa cells develop mechanisms which allow them to continue to grow despite depleted 

testosterone levels. The mechanisms underlying the development of CRPC are numerous and there 

are no doubt many more to discover before we will fully understand this disease. The high 

prevalence of AR pathway alterations observed in multiple patient cohort studies suggests that the 

majority CRPC tumours remain dependent of AR signalling for growth. Despite the recent 

development of new more potent treatments targeting AR signalling, CRPC remains terminal. 

Multiple mechanisms and alternative pathways have been associated with the androgen-independent 

growth observed in CRPC. Detailed knowledge of the genetic and biological background of tumours 

is therefore essential in understanding the drivers of disease progression and will assist in the 

development of effective biomarkers and patient treatments. Optimal treatment will likely require 

targeting AR signalling in combination with multiple other pathways specific to individual patients.  
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