

---

**Review**

## Report of an outbreak of enterovirus disease in a neonatal intensive care unit and a systematic review of the literature

**Nathan L'Etoile<sup>1,2,\*</sup>, Lindsay Brim<sup>3</sup>, Susan Coffin<sup>1,2,3</sup> and Ericka Hayes<sup>1,2,3</sup>**

<sup>1</sup> Division of Pediatric Infectious Diseases, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA

<sup>2</sup> Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA

<sup>3</sup> Department of Infection Prevention, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA

**\* Correspondence:** Email: [letoilen@chop.edu](mailto:letoilen@chop.edu); Tel: +12155901000; Fax: +2678762203.

**Abstract:** Neonatal enterovirus infections have the potential to cause devastating illness and death in this vulnerable age group. Existing evidence suggests that the incidence of enteroviral infections in the post-natal period may be higher than previously thought. Because neonates infected with enterovirus are at risk of severe sequelae, and healthcare-associated outbreaks in neonatal settings can occur, enteroviral infection in hospitalized neonates is a serious concern. Thus, it is essential to conduct surveillance for these infections and to deploy robust infection control measures once the virus has been detected in a neonatal care setting. Here, we report an outbreak of enterovirus in a neonatal intensive care unit (NICU) that was rapidly identified and contained, resulting in relatively few cases but requiring temporary closure of the unit. Additionally, we present our review of the literature describing the characteristics of enteroviral outbreaks in NICU and nursery settings to compare published outcomes of outbreaks to those of our outcome.

**Keywords:** enterovirus; outbreak; neonates; infection prevention; healthcare-associated

---

HFMD: Hand-foot-and-mouth disease; IPC: Infection prevention and control; IVIG: Intravenous immune globulin; NICU: Neonatal intensive care unit; ORION: Outbreak Reports and Intervention Studies of Nosocomial Infection; PCR: Polymerase chain reaction; PPE: Personal protective

equipment; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses

## 1. Introduction

Non-polio enteroviruses are known to cause potentially devastating sequelae in neonates and can spread easily via droplets and contaminated fomites, making this a dangerous cause of viral outbreaks in the neonatal intensive care unit (NICU). Neonatal illness caused by enterovirus ranges from enanthems and exanthems typical of hand-foot-and-mouth disease (HFMD) to life-threatening pancarditis, hepatitis, and coagulopathy. Neonatal diseases may be acquired vertically from the mother, at times with devastating consequences, or post-natally [1]. The case fatality rate for severe cases of infection is high, with one review estimating a mortality of up to 30%–38% in infants with myocarditis [2]. Neonatal enterovirus acquisition may be common, but the percentage of asymptomatic cases in infected infants may be high in the late summer and fall, the time of year during which enteroviruses are thought to be more prevalent. One study testing for enterovirus found that the incidence of enterovirus in children born during the late summer and fall was as high as 12.8%, but 79% of the cases were asymptomatic [3].

Infection prevention and control (IPC) strategies are critical to prevent transmission of enteroviruses within healthcare settings. Because effective treatment options for severe enterovirus remain elusive and understudied, prevention measures to limit spread are essential. Rapid recognition and robust outbreak responses are essential. However, other measures to prevent healthcare-associated spread may be important, including surveillance for sporadic cases, awareness of the community's burden of disease, and visitor screening.

While the clinical spectrum of neonatal enterovirus is well described, there is a relative paucity of reports of outbreaks within nursery and neonatal care settings. Understanding effective IPC strategies and mechanisms of transmission can help clinicians and operation leaders at medical institutions stop the spread of enteroviruses.

In this report, we describe an outbreak of enterovirus that occurred within a large, tertiary care NICU and outline the IPC strategies implemented that stopped the ongoing spread of the virus. Additionally, we present a systematic review of the literature describing healthcare-associated outbreaks of enteroviruses, their clinical outcomes, and the infection prevention strategies utilized to halt the spread of this group of viruses and compare prior outbreak experiences to that of our own.

## 2. Materials and methods

### 2.1. Outbreak reporting

This retrospective case series following an outbreak of four cases of HFMD in infants admitted to the NICU and one employee in a large, quaternary care children's hospital is reported in accordance with the Outbreak Reports and Intervention Studies Of Nosocomial Infection (ORION) guidelines [4]. Patients were included if they had a confirmed case of HFMD, defined as a symptomatic patient with a lesion swab positive for enterovirus by polymerase chain reaction (PCR). The enterovirus PCR utilized at our institution is a lab-developed multi-plex real-time PCR using published primers adapted for use in a TaqMan assay [5]. Electronic medical records were reviewed to document symptomatology, physical exam findings, medical history, laboratory evaluation, complications, and additional clinical

outcomes. Additionally, staffing assignments and bed location were also obtained by these means. Infection control procedures were documented from meeting notes collected from the outbreak response group.

The hospital is a large, tertiary acute care, academic children's hospital in a large metropolitan area in the United States. The affected wing of the NICU has only private rooms with private bathrooms, in a total of 23 patient rooms. Our infection prevention team consists of nine infection preventionists, four managers, one director, and one medical director. All were involved in the outbreak response group, as were unit personnel, environmental staff, and hospital leadership.

## 2.2. Systematic review of the literature

We conducted a systematic review of healthcare-associated enterovirus outbreaks in neonatal, NICU, and nursery settings in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [6]. After querying PubMed in November 2023 using the keywords ("enterovirus") OR ("echovirus") OR ("coxsackie") AND ((NICU) OR (neonatal intensive care unit) OR (nursery) OR (intensive care nursery)) AND ((outbreak) OR (cluster)) for papers published since 1970, after the modern enterovirus naming system was adopted, 104 papers were identified. Following an abstract and title review for relevance by one reviewer (NL), 32 studies were included. Reports were included if they described an outbreak of a non-polio enterovirus in either a NICU, a nursery, or a maternity ward in an acute care setting. Reports were excluded if the full text was not available, the report was written in any language other than English, the report only described a single case of enterovirus, or other viruses were included in the evaluation without the ability to extract enterovirus-specific data. Reports were reviewed by one reviewer (NL) for the virus identified, number of cases, staff and visitor involvement, attack rate, clinical outcomes, infection prevention and control measures implemented, season during which the outbreak occurred, and duration of outbreak. Information was only utilized if directly reported in the manuscript.

## 2.3. Definitions and calculations

An outbreak was defined as more than one case of hospital-associated, laboratory-confirmed (PCR) case of enterovirus in a patient who had been admitted to the hospital for >72 hours without an admission diagnosis of known or expected enterovirus disease (neonatal enterovirus, HFMD, etc.) in the NICU, nursery, or maternity ward. A mean, median, and standard deviation were calculated for patient ages and duration of outbreaks using only articles that reported the relevant data. A range of gestational ages of the affected patients at the time of birth was extracted. The mortality rate was calculated as a percentage of deaths of infected patients from reports that reported this outcome. The attack rate was taken from each article's report, and a range of attack rates was calculated.

## 3. Results

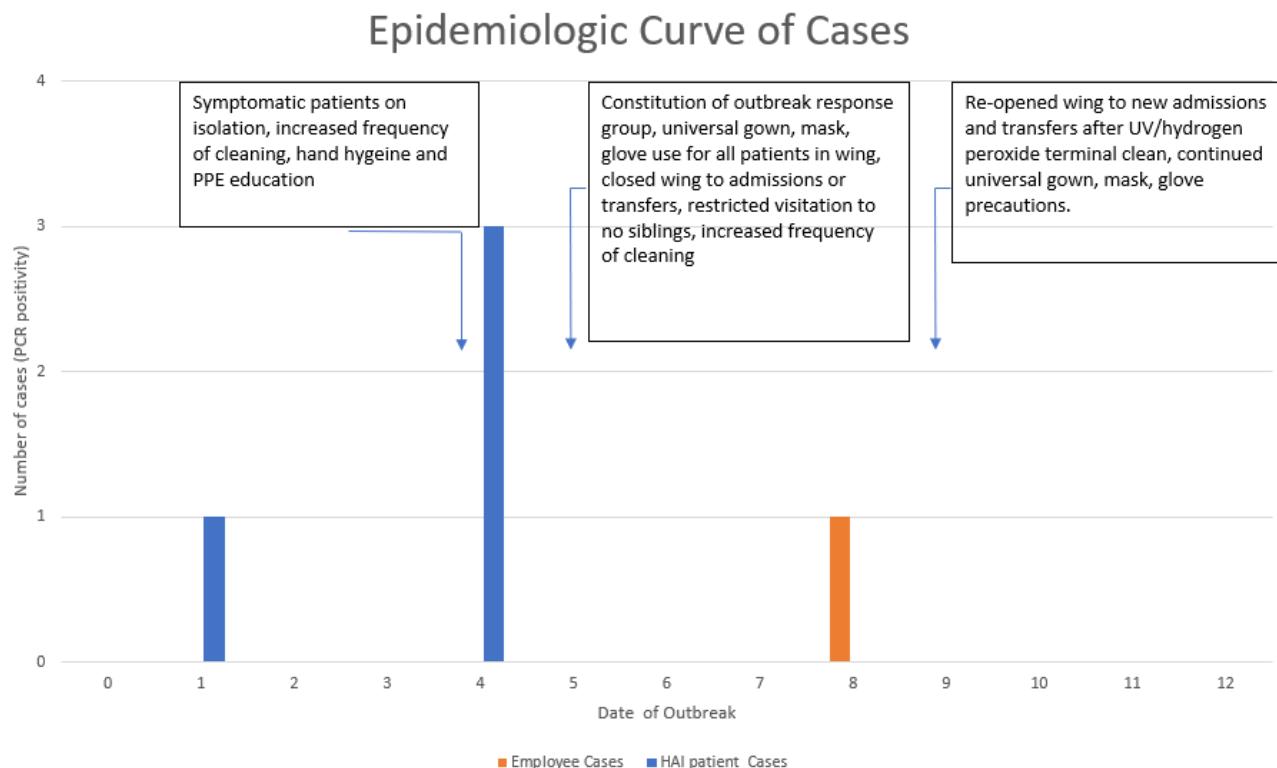
### 3.1. Outbreak report

The index patient was an 8-month-old male born at 25 weeks of gestational age and admitted since birth for management of complications related to prematurity. The patient was first noted to have

crusted scalp lesions in early August (Outbreak Day 0). The differential diagnosis for these lesions included folliculitis, pustular melanosis, impetigo, and HFMD. By Day 1, a PCR swab from a lesion was obtained and found to be positive for enterovirus. On Day 3, three other infants were noted to have papulovesicular lesions over the scalp and face in various stages of healing, with some lesions open and others scarred over, consistent with HFMD. PCR swabs from vesicular lesions on all three infants were positive for enterovirus. An epidemic curve annotated with employed IPC measures is provided in Figure 1. Notably, all infants involved were in four different single-bed rooms along the same hallway; all four rooms had dedicated sinks and personal protective equipment donning/doffing areas. Of note, two of the four infants had been under precautions with gowns and gloves for all clinical care for longer than the prior month due to a previous history of colonization with multidrug-resistant organisms. A description of the clinical features of involved infants is provided in Table 1.

### 3.2. Clinical outcomes

The index patient developed a superficial *Staphylococcus aureus* bacterial infection in the scalp lesion that was treated with cefazolin followed by mupirocin. Another patient grew *Klebsiella oxytoca* from a lesion, although this was thought to represent a contaminant without signs of infection and was not treated without sequelae. One patient required escalation in respiratory support six days following the development of symptoms; however, this patient had crusted lesions throughout at the time of escalation, so enterovirus was not suspected to be the cause of the escalation. Three of the four patients developed a fever during this illness; however, no antibiotics were required for any of these infants due to their fever. No other clinical sequelae or work up were noted. Ultimately, the severity of disease was thought to be mild in all affected patients without extensive rash or enanthem. On Day 7 of the outbreak, an employee self-reported symptoms consistent with enterovirus infection and tested positive on Day 9; however, a description of these symptoms was not available for this report.


### 3.3. Exposure investigations

We reviewed medical records to identify shared exposures. We identified a bedside nurse who provided care to the index patient on Days–1 and 0. This individual also cared for two other patients the day before their symptom onset. The affected employee worked until Day 5, wearing appropriate personal protective equipment (PPE) throughout the outbreak. Three of the four infected patients had received care from a single occupational therapist in the days preceding their infection; notably, this therapist cared for the index patient on Day–1 and Day 0.

### 3.4. Infection prevention and control interventions

On Day 3 of the outbreak, IP&C standard precautions were reinforced with staff. All symptomatic patients were placed on contact and droplet precautions (as per the IPC standard at our institution, which includes gowns, gloves, masks, and eye protection). On Day 4 of the outbreak, the affected section of the NICU was placed on universal droplet and contact precautions after recognition of the additional three cases. Concurrently, all admissions and transfers to that area of the NICU were paused for 6 days, corresponding to one incubation period of enterovirus. Sibling visitation was paused, and screening of all adult visitors for viral-like symptoms was reinforced. Environmental services

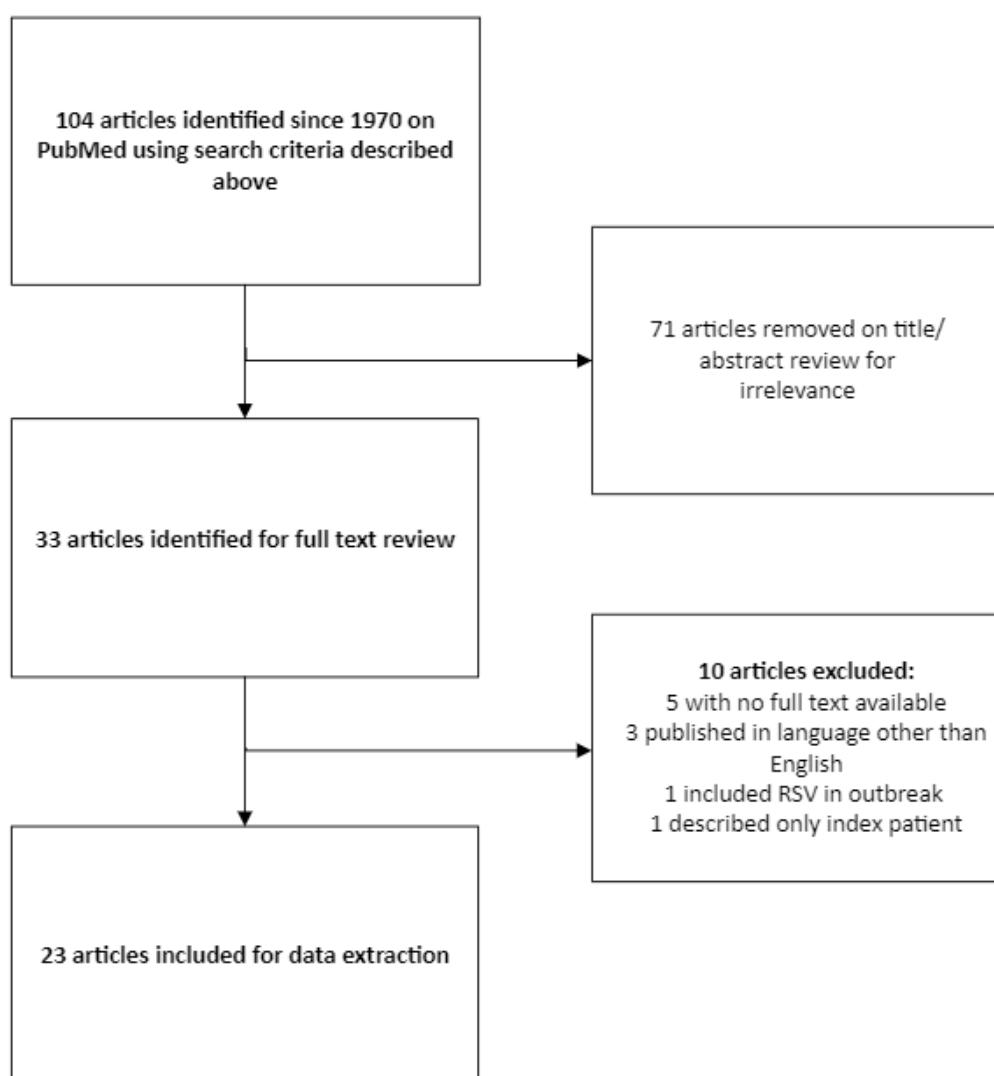
increased cleaning to three times daily for the bed spaces of positive patients, high-touch areas in common areas, and nursing stations. By Day 10, the affected area of the NICU was reopened to new admissions after no further patient positives were identified for 5 days. Following reopening, no further cases of HFMD or enterovirus infection were noted.



**Figure 1.** Epidemiologic curve with cases (blue bars) identified during the outbreak. Day 0 corresponds to the date when the index patient developed scalp lesions; subsequently, they tested positive by PCR on Day 1. The employee case was noted on Day 8 of the outbreak. IPC measures are described on the date that they were initiated. “Isolation” refers to the use of gowns, masks, eye protection, and gloves by staff when caring for the affected patients. PPE refers to personal protective equipment.

**Table 1.** Clinical information regarding patients' infectious course including date of symptom onset, age at positivity, and duration of admission at the time of enterovirus PCR positivity, as well as information regarding transfer from another institution, gestational age at birth, reason for admission, symptoms at onset of enterovirus illness, and sequelae and complications of enterovirus infection. BPD refers to bronchopulmonary dysplasia.

| Patient | Date of symptom onset | Age at positivity | Duration of admission                          | Gestational age at birth | Primary diagnosis/reason for admission | Symptoms at onset                      | Sequelae and complications                                                                                                                    |
|---------|-----------------------|-------------------|------------------------------------------------|--------------------------|----------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | 8/6/2023              | 8 months          | 8 months, transfer to our institution at 1 mo. | 25 weeks, 6 days         | Pre-maturity, BPD                      | Rash, fever                            | Bacterial superinfection of lesions with skin positive for <i>Staphylococcus aureus</i> . Infection required systemic and topical antibiotics |
| 2       | 8/9/2023              | 5 months          | 5 months, transfer to our institution at 1 mo. | 23 weeks, 6 days         | Pre-maturity                           | Rash, fever 3 days after onset of rash | No antibiotics utilized; however, <i>Klebsiella oxytoca</i> grew from a wound.                                                                |
| 3       | 8/9/2023              | 8 months          | 7 months                                       | 24 weeks, 1 day          | Pre-maturity                           | Rash, irritability                     | Required escalation in respiratory support 6 days after onset of rash; however, by that time, lesions had crusted over.                       |
| 4       | 8/9/2023              | 8 months          | 8 months, transfer to our institution at 2 wk. | 25 weeks, 4 days         | Pre-maturity, BPD                      | Rash, fever                            | No antibiotics utilized. Uneventful recovery.                                                                                                 |


### 3.5. Enterovirus outbreaks within the NICU and hospital nurseries, a review of the literature

Using the described criteria, 32 articles were identified for full-text review (Figure 2). Additional articles were excluded because the full article was not available ( $n = 5$ ) [7–11], the report was in a language other than English ( $n = 3$ ) [12–14], multiple organisms were reported ( $n = 1$ ) [15], or only an index case was reported/not an outbreak ( $n = 1$ ) [16]. Thus, 23 articles describing 23 outbreaks were extracted.

Similar numbers of outbreaks were reported from neonatal nurseries ( $n = 10$ ) and NICUs ( $n = 11$ ); two outbreaks occurred simultaneously in a NICU and nursery. Most outbreaks ( $n = 14$ , 61%) occurred during the summer/fall months only.

257 patients were included, with a median of 10 patients per outbreak (range: 2–23). Nine outbreaks (40%) reported associated employee infections; however, the number of employees impacted was not consistently reported. Among the 126 neonates from whom age at the onset was reported, the median age was 9.5 days. Outbreak duration was available for 16 studies, of which the median duration was 15.5 days (range: 1 day old to 202 days). For seven studies in which the attack rate was either reported or calculable, the attack rate ranged from 9% to 50%. Seven reports involved Echoivirus 11, and numerous other enteroviruses were implicated in outbreaks (Table 2). There were 10 deaths reported across all 23 studies out of a total of 257 patients reported (3.9%).

Most studies ( $n = 17$ , 74%) described the specific IPC strategies employed to control the outbreaks. Eight studies reported unit closure of infected areas and four reported prophylactic usage of intravenous immune globulin (IVIG). Table 2 outlines the remaining interventions utilized.



**Figure 2.** PRISMA diagram denoting search methodologies with excluded articles by title/abstract review and exclusions following full-text review.

**Table 2.** Characteristics of outbreak reports included: author data, number of patients impacted, age of patients, gestational ages of patients, days to resolution, IPC measures implemented, clinical outcomes, month of outbreak, and pathogen identified as cause. Attack rates are included when reported in clinical outcomes (7 studies reported an attack rate). Outbreaks are ordered by publishing date.

| Article and published       | authorNumber | of year patients impacted | Mean patients                             | age of patients                                                             | of birth (range)                                                                                            | Gestational age       | at resolution                                                             | to implementation | control measures | Significant clinical outcomes  | Month of outbreak          | Pathogen identified |
|-----------------------------|--------------|---------------------------|-------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------|-------------------|------------------|--------------------------------|----------------------------|---------------------|
| Drew [17]                   | 197810       | 22 (6–39)                 | 26–40 weeks                               | 30                                                                          |                                                                                                             | No measures described | 5 infants developed myocarditis. No fatalities reported. Attack rate 50%. |                   |                  | February                       | Echovirus 11               |                     |
| Faulkner et al. 1973 [18]   |              | Not available             | Index case: weeks, no further information | 31                                                                          | Not reported                                                                                                | No measures described | 4 infants with abnormal CNS signs. No fatalities reported.                |                   |                  | August                         | Echovirus 17               |                     |
| Eilard et al. 1974 [19]     | 11 (4–47)    | 29–42 weeks               | 11                                        |                                                                             | No measures described                                                                                       | Death of index case.  |                                                                           |                   |                  | July                           | Coxsackie B2               |                     |
| Mertens et al. 1982 [20]    | 11 (6–30)    | Not reported              | 14                                        | Strict hand hygiene, isolation                                              | 1 infant required escalation of care. No fatalities reported.                                               |                       |                                                                           |                   |                  | October                        | Echovirus 11               |                     |
| Nagington et al. 1983 [21]  | 5 (3–7)      | Not reported              | 56                                        | Surveillance, prophylactic IVIG                                             | 1 death, 5 infants developed meningitis, 6 developed respiratory symptoms, and 1 required kidney resection. |                       |                                                                           |                   |                  | August to October              | Echovirus 11               |                     |
| Reiss-Levy et al. 1986 [22] | 11 (2–56)    | 29–40 weeks               | 29                                        | Strict hand hygiene, isolation, environmental decontamination, unit closure | No fatalities reported.                                                                                     |                       |                                                                           |                   |                  | December (Southern Hemisphere) | Echovirus 11, Coxsackie B3 |                     |
| Isaacs et al. 1989 [23]     | 28 (16–70)   | 27–38 weeks               | 12                                        | Strict hand hygiene                                                         | No fatalities reported. Attack rate 29%                                                                     |                       |                                                                           |                   |                  | October November               | Echovirus 11               |                     |

*Continued on next page*

| Article and published        | authorNumber | of patients impacted          | Mean age of patients (range)                | Gestational age in birth (range) | atDays resolution | toInfection days                                   | control implemented                                                                                                               | measures                                                                                                 | Significant clinical outcomes | Month of outbreak         | Pathogen identified |
|------------------------------|--------------|-------------------------------|---------------------------------------------|----------------------------------|-------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------|---------------------|
| Wreghitt et al. 1989 [24]    | 4            | 8–9, partial data available   | Incomplete data: weeks index case available | 31Not reported                   | Not               | Strict surveillance, IVIG                          | hand hygiene, prophylactic                                                                                                        | Death of index case.                                                                                     | June to August                | Echovirus 7               |                     |
| Birenbaum et al. 1997 [25]   | 19           | 7–202, partial data available | 26–40 weeks                                 | Not reported                     | Not               | Strict environmental decontamination, unit closure | hand hygiene, isolation, 7 infants developed bloody stools, and 4 infants developed abdominal distention. No fatalities reported. | 7 infants developed bloody stools, and 4 infants developed abdominal distention. No fatalities reported. | October November              | Echovirus 22              |                     |
| Pasic et al. 1997 [26]       | 23           | Not available                 | Not reported                                | 15                               | 15                | Prophylactic IVIG, unit closure                    | 7 infants developed severe disease, 3 of which died.                                                                              | 7 infants developed severe disease, 3 of which died. Attack rate 34%.                                    | August                        | Echovirus 4, Echovirus 6  |                     |
| Takami et al. 1998 [27]      | 4            | Not available                 | Incomplete data, full term                  | 3/417                            | Not reported      | No measures described                              | No                                                                                                                                | fatalities reported.                                                                                     | July to August                | Echovirus 7               |                     |
| Austin et al. 1999 [28]      | 2            | Not available                 | Incomplete data, weeks index case           | 36Not reported                   | Not               | Isolation                                          | Index case developed myocarditis. No fatalities reported.                                                                         | Not reported                                                                                             | Not reported                  | Coxsackie B4              |                     |
| Jankovic et al. 1999 [29]    | 8            | 7 (5–10)                      | 34–42 weeks                                 | 10                               | 16                | No measures described                              | 2 developed severe disease, and 2 deaths were reported.                                                                           | 2 developed severe disease, and 2 deaths were reported.                                                  | September                     | Echovirus 17              |                     |
| Eisenhut et al. 2000 [30]    | 4            | Not available                 | Incomplete data, full-term index case       | 10                               | 10                | Isolation, prophylactic IVIG                       | surveillance,Death of index case, additional death in asymptomatic patient.                                                       | Death of index case, additional death in asymptomatic patient.                                           | Not reported                  | Coxsackie A9              |                     |
| Takami et al. 2000 [31]      | 23           | 4 (1–17)                      | Not reported                                | Not reported                     | Not               | Not reported                                       | No fatalities reported.                                                                                                           | Attack rate 29%                                                                                          | September 1995                | Echovirus 7, Coxsackie B3 |                     |
| Syriopoulou et al. 2002 [32] | 20           | 5.5                           | Mean two of which were                      | 37.8 weeks,15                    | 15                | Surveillance, decontamination, unit closure        | Environmental                                                                                                                     | No fatalities reported. Attack rate 33%.                                                                 | July                          | Enterovirus               |                     |

Continued on next page

| Article published                 | authorNumber | of year patients impacted | Mean patients | age of patients | Gestational in birth (range) | at days resolution | to days infection | control implemented                                                                     | measures                                                                                  | Significant clinical outcomes | Month of outbreak | Pathogen identified        |
|-----------------------------------|--------------|---------------------------|---------------|-----------------|------------------------------|--------------------|-------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------|-------------------|----------------------------|
| Apisarnt-hanarak et al. 2005 [33] | 13           |                           | Not available | Not reported    |                              | 6                  |                   | Strict hand environmental decontamination, unit closure                                 | hygiene, No fatalities reported                                                           |                               | March             | Echovirus 11               |
| Kusuhsara et al. 2008 [34]        |              | 72 (7–180)                |               | Not reported    |                              | 35                 |                   | Strict hand environmental decontamination, isolation, visitor restrictions, unit closed | hygiene, No fatalities reported                                                           |                               | November December | to Echovirus 18            |
| Huang et al. 2010 [35]            |              | 42 (22–89)                |               | Not reported    |                              | 11                 |                   | Isolation, strict hand environmental decontamination, closed unit                       | hygiene, 4 infants developed encephalitis. No fatalities reported. Attack rate 37%        | April to May                  |                   | Enterovirus 71             |
| Siafakas et al. 2013 [36]         |              | 18 (6–30)                 |               | 28–40 weeks     |                              | 41                 |                   | Isolation, strict hand environmental decontamination, cohorting.                        | hygiene, No fatalities reported                                                           |                               | July to August    | Echovirus 6                |
| Alidjinou et al. 2018 [37]        |              | 26 (22–29)                |               | 30–32 weeks     |                              | Not reported       |                   | Strict hand surveillance                                                                | hygiene, All patients with signs and symptoms of NEC, but no classic features identified. | October November              |                   | to Echovirus 27            |
| Ho et al. 2010 [38]               |              | 33 (1–90)                 |               | 27–40 weeks     |                              | 23                 |                   | Isolation, environmental decontamination, visitor precautions.                          | 1 patient with myocarditis, 5 developed meningitis. No fatalities reported.               | May to June                   |                   | Echovirus 11, Coxsackie B3 |
| Xi et al. 2010 [39]               |              | 27 (7–64)                 |               | 27–39 weeks     |                              | Not reported       |                   | Strict hand environmental cohorting, unit closure.                                      | hygiene, No fatalities reported. Attack rate 33%                                          | July                          |                   | Echovirus 18               |

#### 4. Discussion

This case series demonstrates an example of an outbreak of enterovirus in a NICU that was contained quickly by a rapid coordinated effort to isolate infants infected with enterovirus and prevent infection of other patients within the unit. Infection prevention methods focused on hand hygiene, universal droplet and contact precautions, environmental decontamination, and unit closure.

The methods used to contain this outbreak have also been consistently used to control other outbreaks described in the literature reviewed. Our outbreak lasted roughly 10 days, shorter than the median duration of 15.5 days reported in this review, which may be related to our IPC measures. Additionally, fewer patients were affected (4) than the median number of patients affected in this literature review (10). Consistent with 40% of the included cases, our outbreak included an employee who was positive via enterovirus PCR. This employee was known to have cared for the index patient, but no other infected infants.

Notably, our outbreak occurred in older patients than those described in the reports reviewed, and their clinical presentation was less severe; also, we did not identify any outbreak that occurred in patients at a similar age range to that of the patients affected in our outbreak. The clinical presentations of our patients were largely limited to HFMD symptoms, all having had a consistent exanthem. While one patient caused concern for a superinfection, this was ultimately treated with topical antibiotics after a brief period of systemic antibiotics. As such, the clinical features of our outbreak were significantly less severe than the constellation of presentations described in the cases reviewed.

The literature review demonstrated a reported mortality of 3.9% associated with infant enterovirus; we included all healthcare-associated cases of enterovirus whereas other reports of mortality have generally focused on severe infection [2]. Importantly, comparisons of the mortality rates between our outbreak and those of reported outbreaks are difficult to make, given the significant age difference between patients affected in our outbreak as compared to those in the reports reviewed. Similarly, the patients included in our outbreak had lower gestational ages (23–27 weeks) than most reported in the systematic review (26–42 weeks). That said, this remains a deadly virus that requires diligent IPC strategies to halt its spread. Interestingly, while 61% of reviewed outbreaks occurred during the summer months, as did our outbreak, the remainder occurred during other seasons. This reinforces the fact that clinicians must be vigilant at all times of the year, with a low threshold to test for enterovirus in a patient or patients with clinically evident disease. Employee involvement in 40% of outbreaks also underpins that employee surveillance and symptom reporting with sick time for affected staff should be observed, as they may serve as vectors during outbreaks.

Four of the reviewed studies reported utilization of IVIG as a preventative measure in asymptomatic, exposed patients [21,24,26,30]. Authors reported that all patients in their respective units were given IVIG, one using IVIG administration as a criterion for discharge [21]. Most studies reported administering a single dose of IVIG; however, one reported a second dose for some infants without citing criteria for a second dose [21]. Two reports described success in preventing infection or reducing symptom severity [21,26], and one report concluded that IVIG did not prevent subsequent infections, possibly due to the use of a lower IVIG dose (125 mg compared to 250 mg) [24]. One did not report the impact of IVIG on preventing disease or severity [30]. Importantly, none of these reports were designed to evaluate the efficacy of IVIG in preventing or attenuating infection.

While other authors have reported asymptomatic cases involved in outbreaks to demonstrate transmission dynamics, our group did not test those who were asymptomatic, given our retrospective

study design. That said, the lack of new cases following the de-escalation of IPC measures contradicts a continued spread of the circulating virus via asymptomatic carriers.

There are limitations in our current report and conclusions drawn from the systematic review. First, the criteria used to search for outbreaks may have been too restricted; however, given the number excluded, this is less likely. Furthermore, the outbreaks incompletely reported surveillance for asymptomatic cases, so the number of infected individuals may be higher than reported. Missing data was present for multiple metrics evaluated, and data was only reported if authors presented clear data in their manuscript. This review demonstrates the opportunity for prospective studies on the impact of IPC measures on preventing and limiting the spread of enterovirus in this vulnerable patient population.

## 5. Conclusions

Enterovirus can cause severe illness in neonates and infants. Our outbreak demonstrated that vigorous IPC measures curtailed the course of a healthcare-associated outbreak. A review of available literature describing outbreaks of various enteroviruses in NICU and nursery settings reinforces that IPC measures are critical in reducing the spread and duration of outcomes, potentially limiting mortality in this vulnerable population.

### Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

### Acknowledgments

We would like to thank the Infection Prevention Department at the Children's Hospital of Philadelphia for their input and support of this investigation and review. We would especially like to thank Jordan Mick, who provided information regarding unit characteristics and the outbreak investigation.

NL was funded by a T32 training grant (T32AI055435) while editing this manuscript.

### Conflict of interest

The authors declare no conflict of interest.

### Author contributions

NL collected information regarding the outbreak from infection prevention records and medical records, performed the systematic review, and drafted the manuscript. LB provided information regarding the outbreak and reviewed the manuscript. SC and EH both revised the manuscript and oversaw the drafting.

## References

1. Hawkes MT, Vaudry W (2005) Nonpolio enterovirus infection in the neonate and young infant. *Paediatr Child Health* 10: 383–388.
2. Zhang M, Wang H, Tang J, et al. (2021) Clinical characteristics of severe neonatal enterovirus infection: a systematic review. *BMC Pediatr* 21: 127. <https://doi.org/10.1186/s12887-021-02599-y>
3. Jenista JA, Powell KR, Menegus MA (1984) Epidemiology of neonatal enterovirus infection. *J Pediatr* 104: 685–690. [https://doi.org/10.1016/S0022-3476\(84\)80944-0](https://doi.org/10.1016/S0022-3476(84)80944-0)
4. Stone SP, Cooper BS, Kibbler CC, et al. (2007) The ORION statement: guidelines for transparent reporting of outbreak reports and intervention studies of nosocomial infection. *Lancet Infect Dis* 7: 282–288. [https://doi.org/10.1016/S1473-3099\(07\)70082-8](https://doi.org/10.1016/S1473-3099(07)70082-8)
5. Kares S, Lönnrot M, Vuorinen P, et al. (2004) Real-time PCR for rapid diagnosis of enterovirus and rhinovirus infections using LightCycler. *J Clin Virol* 29: 99–104. [https://doi.org/10.1016/S1386-6532\(03\)00093-3](https://doi.org/10.1016/S1386-6532(03)00093-3)
6. Page MJ, McKenzie JE, Bossuyt PM, et al. (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ* 372: n71. <https://doi.org/10.1136/bmj.n71>
7. Bhamhani V, Abraham J, Sahni M, et al. (2007) Outbreak of Coxsackie B4 arthritis among newborns and staff of a neonatal unit. *Trop Doct* 37: 188–189. <https://doi.org/10.1258/004947507781524728>
8. Chen JH, Chiu NC, Chang JH, et al. (2005) A neonatal echovirus 11 outbreak in an obstetric clinic. *J Microbiol Immunol Infect* 38: 332–337.
9. Rabkin CS, Telzak EE, Ho MS, et al. (1988) Outbreak of echovirus 11 infection in hospitalized neonates. *Pediatr Infect Dis J* 7: 186–190.
10. Rantakallio P, Lapinleimu K, Mäntyjärvi R (1970) Coxsackie B 5 outbreak in a newborn nursery with 17 cases of serous meningitis. *Scand J Infect Dis* 2: 17–23. <https://doi.org/10.3109/inf.1970.2.issue-1.03>
11. Lapinleimu K, Hakulinen A (1972) A hospital outbreak caused by ECHO virus type 11 among newborn infants. *Ann Clin Res* 4: 183–187.
12. Steinmann J, Albrecht K (1985) Echovirus 11-Epidemie bei Frühgeborenen auf einer Neonatal-Intensiv-Station [Echovirus 11 outbreak among premature newborn infants in a neonatal intensive care unit]. *Zentralbl Bakteriol Mikrobiol Hyg A* 259: 284–293. [https://doi.org/10.1016/S0176-6724\(85\)80059-6](https://doi.org/10.1016/S0176-6724(85)80059-6)
13. Kusuhara K, Hikino S, Saito M, et al. (2007) Echovirus 18 (Echo18) outbreak in an intensive care unit for newborn infants. *Fukuoka Igaku Zasshi* 98: 405.
14. Haas R, Neumann D, Oeding U, et al. (1972) Ein Ausbruch von Coxsackie-B5-Meningitiden bei Neugeborenen einer Entbindungsabteilung [An epidemic of Coxsackie B5 meningitis in a newborn nursery]. *Dtsch Med Wochenschr* 97: 1203–1207. <https://doi.org/10.1055/s-0028-1107529>
15. Wilson CW, Stevenson DK, Arvin AM (1989) A concurrent epidemic of respiratory syncytial virus and echovirus 7 infections in an intensive care nursery. *Pediatr Infect Dis J* 8: 24–29. <https://doi.org/10.1097/00006454-198901000-00008>
16. Carolane DJ, Long AM, McKeever PA, et al. (1985) Prevention of spread of echovirus 6 in a special care baby unit. *Arch Dis Child* 60: 674–676. <https://doi.org/10.1136/adc.60.7.674>

17. Drew JH (1973) Echo 11 virus outbreak in a nursery associated with myocarditis. *Aust Paediatr J* 9: 90–95. <https://doi.org/10.1111/j.1440-1754.1973.tb01856.x>
18. Faulkner RS, Van Rooyen CE (1973) Echovirus type 17 in the neonate. *Can Med Assoc J* 108: 878. <https://doi.org/10.1097/00006254-197311000-00012>
19. Eilard T, Kyllerman M, Wennerblom I, et al. (1974) An outbreak of Coxsackie virus type B2 among neonates in an obstetrical ward. *Acta Paediatr Scand* 63: 103–107. <https://doi.org/10.1111/j.1651-2227.1974.tb04356.x>
20. Mertens T, Hager H, Eggers HJ (1982) Epidemiology of an outbreak in a maternity unit of infections with an antigenic variant of Echovirus 11. *J Med Virol* 9: 81–91. <https://doi.org/10.1002/jmv.1890090202>
21. Nagington J, Gandy G, Walker J, et al. (1983) Use of normal immunoglobulin in an echovirus 11 outbreak in a special-care baby unit. *Lancet* 2: 443–446. [https://doi.org/10.1016/S0140-6736\(83\)90402-6](https://doi.org/10.1016/S0140-6736(83)90402-6)
22. Reiss-Levy E, Baker A, Don N, et al. (1986) Two concurrent epidemics of enteroviral meningitis in an obstetric neonatal unit. *Aust N Z J Med* 16: 365–372. <https://doi.org/10.1111/j.1445-5994.1986.tb01188.x>
23. Isaacs D, Dobson SR, Wilkinson AR, et al. (1989) Conservative management of an echovirus 11 outbreak in a neonatal unit. *Lancet* 1: 543–545. [https://doi.org/10.1016/S0140-6736\(89\)90078-0](https://doi.org/10.1016/S0140-6736(89)90078-0)
24. Wreghitt TG, Sutella GM, King A, et al. (1989) Fatal echovirus 7 infection during an outbreak in a special care baby unit. *J Infect* 19: 229–236. [https://doi.org/10.1016/S0163-4453\(89\)90709-3](https://doi.org/10.1016/S0163-4453(89)90709-3)
25. Birenbaum E, Handsher R, Kuint J, et al. (1997) Echovirus type 22 outbreak associated with gastro-intestinal disease in a neonatal intensive care unit. *Am J Perinatol* 14: 469–473. <https://doi.org/10.1055/s-2007-994182>
26. Pasic S, Jankovic B, Abinun M, et al. (1997) Intravenous immunoglobulin prophylaxis in an echovirus 6 and echovirus 4 nursery outbreak. *Pediatr Infect Dis J* 16: 718–720. <https://doi.org/10.1097/00006454-199707000-00019>
27. Takami T, Kawashima H, Takei Y, et al. (1998) Usefulness of nested PCR and sequence analysis in a nosocomial outbreak of neonatal enterovirus infection. *J Clin Virol* 11: 67–75. [https://doi.org/10.1016/S0928-0197\(98\)00022-1](https://doi.org/10.1016/S0928-0197(98)00022-1)
28. Austin BJ, Croxson MC, Powell KF, et al. (1999) The successful containment of coxsackie B4 infection in a neonatal unit. *J Paediatr Child Health* 35: 102–104. <https://doi.org/10.1046/j.1440-1754.1999.00346.x>
29. Jankovic B, Pasic S, Kanjuh B, et al. (1999) Severe neonatal echovirus 17 infection during a nursery outbreak. *Pediatr Infect Dis J* 18: 393–394. <https://doi.org/10.1097/00006454-199904000-00023>
30. Eisenhut M, Algawi B, Wreghitt T, et al. (2000) Fatal Coxsackie A9 virus infection during an outbreak in a neonatal unit. *J Infect* 40: 297–298. <https://doi.org/10.1053/jinf.2000.0650>
31. Takami T, Sonodat S, Houjyo H, et al. (2000) Diagnosis of horizontal enterovirus infections in neonates by nested PCR and direct sequence analysis. *J Hosp Infect* 45: 283–287. <https://doi.org/10.1053/jhin.2000.0788>
32. Syriopoulou VP, Hadjichristodoulou CH, Daikos GL, et al. (2002) Clinical and epidemiological aspects of an enterovirus outbreak in a neonatal unit. *J Hosp Infect* 51: 275–280. <https://doi.org/10.1053/jhin.2002.1253>

33. Apisarnthanarak A, Kitphati R, Pongsuwan Y, et al. (2005) Echoavirus type 11: outbreak of hand-foot-and-mouth disease in a Thai hospital nursery. *Clin Infect Dis* 41: 1361–1362. <https://doi.org/10.1086/497076>
34. Kusuhara K, Saito M, Sasaki Y, et al. (2008) An echovirus type 18 outbreak in a neonatal intensive care unit. *Eur J Pediatr* 167: 587–589. <https://doi.org/10.1007/s00431-007-0516-x>
35. Huang FL, Chen CH, Huang SK, et al. (2010) An outbreak of enterovirus 71 in a nursery. *Scand J Infect Dis* 42: 609–612. <https://doi.org/10.3109/00365541003754444>
36. Siafakas N, Goudesidou M, Gaitana K, et al. (2013) Successful control of an echovirus 6 meningitis outbreak in a neonatal intensive care unit in central Greece. *Am J Infect Control* 41: 1125–1128. <https://doi.org/10.1016/j.ajic.2013.02.014>
37. Alidjinou EK, Lazrek M, Schuffenecker I, et al. (2018) Necrotizing Enterocolitis Cases Associated with Nosocomial Enterovirus Transmission in a Neonatal Unit. *Pediatr Infect Dis J* 37: 954–957. <https://doi.org/10.1097/INF.0000000000001928>
38. Ho SY, Chiu CH, Huang YC, et al. (2020) Investigation and successful control of an echovirus 11 outbreak in neonatal intensive care units. *Pediatr Neonatol* 61: 180–187. <https://doi.org/10.1016/j.pedneo.2019.09.012>
39. Xi H, Tian Y, Shao H, et al. (2023) An outbreak of nosocomial infection of neonatal aseptic meningitis caused by echovirus 18. *Epidemiol Infect* 151: e107. <https://doi.org/10.1017/S0950268823000973>



AIMS Press

© 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (<https://creativecommons.org/licenses/by/4.0>)