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Abstract: Staphylococcus aureus is one of the leading agents of nosocomial and community-acquired 

infections. In this study, we explored the genomic characterization of eight methicillin-resistant clinical 

isolates of S. aureus from Dhaka, Bangladesh. Notably, all strains were resistant to penicillin, 

cephalosporins, and monobactams, with partial susceptibility to meropenem and complete 

susceptibility to amikacin, vancomycin, and tigecycline antibiotics. The strains were found to have an 

average genome size of 2.73 Mbp and an average of 32.64% GC content. Multi-locus sequence typing 

analysis characterized the most predominant sequence type as ST361, which belongs to the clonal 

complex CC361. All isolates harbored the mecA gene, often linked to SCCmec_type IV variants. 

Multidrug resistance was attributed to efflux pumps NorA, NorC, SdrM, and LmrS alongside genes 

encoding beta-lactamase BlaZ and factors like ErmC and MepA. Additionally, virulence factors 

including adsA, sdrC, cap8D, harA, esaA, essC, isdB, geh, and lip were commonly identified. 

Furthermore, genes associated with heme uptake and clumping were present, highlighting their roles 

in S. aureus colonization and pathogenesis. Nine secondary metabolite biosynthetic gene clusters were 

found, of which six were common in all the strains. Numerous toxin-antitoxin systems were predicted, 

with ParE and ParB-like nuclease domains found to be the most prevalent toxin and antitoxin, 

respectively. Pan-genome analysis revealed 2007 core genes and 229 unique genes in the studied 

strains. Finally, the phylogenomic analysis showed that most Bangladeshi strains were grouped into 

two unique clades. This study provides a genomic and comparative insight into the multidrug 

resistance and pathogenicity of S. aureus strains, which will play a crucial role in the future antibiotic 

stewardship of Bangladesh. 

mailto:sabbir.shuvo@northsouth.edu
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1. Introduction 

Multidrug-resistant (MDR) Staphylococcus aureus is capable of manifesting in a wide range of 

nosocomial and community-acquired infections, from mild erythema to potentially deadly diseases 

like endocarditis, pneumonia, and septicemia [1–4]. The species can carry a multitude of resistance 

determinants [5], and it is becoming increasingly difficult to combat them because of resistance to 

antibiotics like cefotaxime and cefepime, making them clinically significant [6,7]. Besides, the seven 

common antibiotics currently used to treat S. aureus infections, namely vancomycin, daptomycin, 

linezolid, sulfamethoxazole and trimethoprim, quinupristin-dalfopristin, clindamycin, and tigecycline 

are also losing their efficacy [8–10]. The emergence of MDR S. aureus has led to the development of 

complex resistance mechanisms, which include chromosomal intrinsic resistance, plasmid, and mobile 

genetic elements, including staphylococcal cassette chromosome mec (SCCmec)-mediated acquired 

resistance and an active efflux system [11–13]. Besides, the pathogenicity of this species is 

predominantly aggressive, as it carries genes encoding a wide range of virulence factors that contribute 

to its survival, transmission, and nutrient acquisition [14–16].  

Management of staphylococcal infection has not been extensively monitored in Bangladesh [17], 

with limited data regarding the prevalence and genotypes of different MDR S. aureus strains, including 

methicillin-resistant S. aureus (MRSA). In contrast, many other Asian countries, including Japan, 

China, and India, have had extensive surveys providing much better insights [18,19]. The existing data, 

nevertheless, is alarming, as Bangladesh shows an increasing trend of MRSA in patients ranging     

from 15.38% to 80.3% [6,20–22]. This aggravating situation makes it imperative for Bangladesh to 

have a comprehensive understanding of the cause and prevalence of antibiotic resistance.  

In this present study, we have explored the genomic characterization of MDR clinical isolates of 

S. aureus from Dhaka, Bangladesh by a genomic study, with a particular focus on genetic variation, 

antimicrobial resistance, virulence profile, and phylogenomic analysis. To the best of our knowledge, 

this is one of the first genomic studies on S. aureus in Bangladesh.  

2. Materials and methods 

2.1. Isolation and phenotypic characterization of S. aureus strains 

In January 2022, a total of eight S. aureus isolates were collected from clinical specimens from 

Dhaka, Bangladesh. SAC1, SAC3, SAC4, SAC5, and SAC6 were isolated from wound swabs from 

five inpatients from the burn unit of Dhaka Medical College. Isolates SAC8, SAC9, and SAC10 were 

obtained from outpatient blood cultures from the LABAID Diagnostic Ltd., Mirpur, Dhaka. Isolation 

of the S. aureus strains was performed on mannitol salt agar (MSA; Condalab, Spain), followed by the 

subculture on MSA to observe their distinctive characteristics. All strains were stored in Luria-Bertani 

broth (HiMedia, India) containing 50% glycerol at −80 ℃ until further use. All procedures were 

approved by the North South University Research Ethics Committee (IRB: 2022/OR-NSU/IRB/0703). 

The confirmed S. aureus isolates were tested to identify their antimicrobial resistance pattern by 

using the Kirby-Bauer disk diffusion technique [23] on Mueller-Hinton agar (HiMedia, India) 

according to the Clinical and Laboratory Standards Institute (CLSI) [24] guideline (Table S1). The 

antibiotics tested were ampicillin (AMP, 30 µg), amoxicillin with clavulanic acid (AMC, 30 µg), 
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tazobactam with piperacillin (TZP, 110 µg), ceftazidime (CAZ, 30 µg), cefixime (CFM, 5 µg), 

ceftriaxone (CRO, 30 µg), cefotaxime (CTX, 30 µg), cefepime (FEP, 5 µg), aztreonam (ATM, 30 µg), 

meropenem (MEM, 10 µg), amikacin (AMK, 30 µg), gentamicin (GEN, 10 µg), ciprofloxacin (CIP, 5 µg), 

levofloxacin (LEV, 5 µg), erythromycin (ERY, 15 µg), tetracycline (TET, 30 µg), tigecycline (TGC, 

15 µg), and colistin (COL, 10 µg) (Bioanalyse, Turkey). The methicillin resistance was confirmed 

using cefoxitin (FOX, 30 µg) [25]. The minimum inhibitory concentration (MIC) of S. aureus strains 

against vancomycin (VAN) was determined by broth microdilution method following CLSI guidelines. 

Briefly, the strains were grown in cation-adjusted Mueller–Hinton broth (Condalab, Madrid, Spain). 

The overnight bacterial suspensions were adjusted to 0.5 McFarland standard and were grown for 20 h at 

37 ℃ in the presence of vancomycin (Opsonin Pharmaceutical, Bangladesh). The vancomycin 

concentrations used ranged from 0.5 to 256 µg/mL. Each experiment was performed in duplicates, and 

bacterial growth was visually observed.  

Biofilm formation was determined by a conventional microtiter-plate assay with minor 

modifications [26]. A single colony from each culture plate was picked and incubated overnight at 37 ℃ 

in a shaking incubator at 220 rpm. The inoculum was then diluted 1:1000 in nutrient broth and 

incubated at 37 ℃ for 48 h under static conditions. Biofilm formation was assessed using 0.1% crystal 

violet staining. The biomass was dissolved with 30% acetic acid to quantify the biofilm, and its 

absorbance was measured at 590 nm using a microplate reader (Multiskan EX, Thermo Scientific, 

Finland). All procedures were conducted at room temperature and repeated three times under identical 

conditions.  

2.2. Genome assembly and annotation 

The genomic DNA of the S. aureus isolates was extracted using Wizard® Genomic DNA 

Purification Kit (Promega, USA) following the manufacturer’s instructions. The quantity and quality 

of extracted DNA was determined using a NanoDrop™ 2000 (Thermo Scientific, USA). Sequence 

raw read files of all S. aureus strains were generated using Ion Torrent Sequencing Technology on an 

Ion GeneStudio™ S5 System (Thermo Fisher Scientific, USA) according to the manufacturer’s 

instructions (DNA Solution Ltd, Dhaka, Bangladesh). For each sample, multiple reads were generated 

and quality control and adapter trimming were performed using the integrated Torrent Suite™ 

Software version 5.10.0. Assembly was done using Unicycler version v0.4.8 [27] and SAMtools 

version 1.11 [28]. To assess the quality of assembly, Quast v5.0.2 was used [29]. The annotations were 

done using the Rapid Annotation using Subsystem Technology (RAST) tool kit (RASTtk) [30]. The 

assembly and annotation services were provided by the Bacterial and Viral Bioinformatics Resource 

Center (BV-BRC) [31,32]. Proksee was used to generate a circular map reflecting the local alignment 

of the strains [33]. Assembled draft genomes were stored at the National Center for Biotechnology 

Information (NCBI) (BioProject: PRJNA983588). 

2.3. Prediction of antibiotic resistance genes and genomic characterization of MRSA strains 

Assembled draft genomes were used in the Resistance Gene Identifier (RGI) tool offered by the 

Comprehensive Antibiotic Resistance Database (CARD) to predict the resistomes of the strains [34]. The 

SCCmecFinder-1.2 was used to predict the SCCmec types [35–37]. Multi-locus sequence typing (MLST) 

of S. aureus isolates was determined by MLST-2.0 web server [37–39]. MLST was performed by 

identifying different variants located in seven housekeeping genes, carbamate kinase (arcC), shikimate 

dehydrogenase (aroE), glycerol kinase (glpF), guanylate kinase (gmk), phosphate acetyltransferase (pta), 

triosephosphate isomerase (tpi), and acetyl coenzyme A acetyltransferase (yqiL). Clonal complexes (CC) 
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were assigned comparing our MLST data with the PubMLST S. aureus typing database (updated 

August 12, 2024) using the Burst analysis software available on the PubMLST server and were defined 

as single-locus variants (SLVs) [40]. SpaTyper-1.0 [38,41], alongside basic local alignment search    

tool (BLAST) from NCBI, were used for staphylococcal protein A (spa) typing. Pathogenfinder-1.1 [42] 

web service was offered by the Center for Genomic Epidemiology (CGE) [37,43] and used to 

determine the pathogenicity of the strains. Default parameters were used for all the services.  

2.4. Prediction of mobilome, virulome, secondary metabolite cluster, and toxin-antitoxin system  

Plasmidfinder-2.1 [37,43], Phage Search Tool Enhanced Release (PHASTER) [44,45], and 

ICEfinder-1.0 [46] for Integrative and Conjugative Elements (ICE's) were used to identify plasmid, 

phage and type IV secretion system of the strains, respectively. Default parameters were used for all 

programs. The presence of virulence factors for the strains was predicted using the Virulence Factor 

Database (VFDB) (http://www.mgc.ac.cn/VFs/) [47]. The strains were systematically scanned by 

Antibiotics & Secondary Metabolite Analysis Shell (antiSMASH) v7.0.1 with default parameters for 

the number and types of secondary metabolite Biosynthetic Gene Clusters (BGCs) present [48]. Toxin-

antitoxin systems mania (TASmania) [49] was used to predict toxin-antitoxin systems. 

2.5. Comparative analysis  

The Bacterial Pan Genome Analysis (BPGA) v1.3 [50] tool was used for pan-genome analysis. 

Average nucleotide identity (ANI) analysis was performed using Kostas Lab [51] (Figure S1). A 

phylogenomic tree was constructed from fifty closely related S. aureus strains isolated worldwide 

based on ANI (Figure S1 and Table S2). Phylogenomic analysis was carried out in the Type Strain 

Genome Server (TYGS) (https://tygs.dsmz.de) for a whole genome-based taxonomic analysis [52]. 

Later, CSIPhylogeny version 1.4 was used for the generation of a phylogenomic tree against the 

reference genome S. aureus NCTC 8325 (accession number: CP000253) based on single nucleotide 

polymorphism (SNP) [53]. Both the phylogenomic trees were visualized by the Interactive Tree of 

Life (iTOL) [54]. All heatmaps were generated using Science and Research (SR) online                          

Plot (www.bioinformatics.com.cn). 

3. Results and discussion 

3.1. Antibiotic resistance profile and characterization of the Bangladeshi S. aureus isolates 

An increasing incidence of MDR S. aureus (97.4%) infections has recently been reported in 

Bangladesh [55]. Among the twenty antibiotics used in this study, all isolated strains demonstrated 

resistance to eight, namely ampicillin, ceftazidime, cefixime, ceftriaxone, cefotaxime, cefepime, 

aztreonam, and cefoxitin, as shown in Table 1 and Figure 1. The MIC of vancomycin for all the strains 

was found to be 1 µg/mL using the broth microdilution method, which is considered sensitive 

according to CLSI guidelines. However, S. aureus is intrinsically resistant to colistin, which was also 

observed in this study. Therefore, tigecycline, vancomycin, and amikacin antibiotics were the most 

effective against all strains, whereas only SAC 4 showed intermediate resistance to amikacin. In 

addition, weak biofilm formation was observed in S. aureus strains SAC 1, 3, 5, 6, and 8, whereas 

SAC 4, 9, and 10 were non-biofilm formers (Table S3).  
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Figure 1. Antibiotic resistance profile of the S. aureus clinical isolates. 

3.2. Genomic features of the isolated S. aureus strains 

The studied isolates were found to have an average genome size of 2.73 Mbp. SAC 6 had the 

largest genome size at 2.84 Mbp (Table 2 and Figure 2). The isolates had an average of 32.64% GC 

content and an average of 2698.5 coding sequences (CDs). SAC 4 had the maximum predicted coding 

sequence of 2963. The draft genome sequences were aligned with reference genome NCTC 8325 

(Figure 2), representing the gaps in the draft genomes. The subsystem superclass distribution identified 

‘metabolism’ as the most predominant subsystem for all the strains (Figure S2). 
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Table 1. Antibiotic sensitivity pattern of the studied S. aureus clinical isolates. 

Antibioti

c class 

Penicillin Penicillin + beta-

lactamase 

inhibitors 

Cephalosporin Monoba

ctam 

Carbap

enem 

Amino 

glycoside 

Fluoroquinol

one 

Macrolide Tetracycline Polymyxin Glyco 

peptide 

Strains 

(SAC) 

AMP AMC TZP FOX CAZ CFM CRO CTX FEP ATM MEM AMK GEN CIP LEV ERY TET TGC COL VAN 

SAC1 R I R R R R R R R R S S S R I R S S R S 

SAC3 R I I R R R R R R R R S S R S R R S R S 

SAC4 R I I R R R R R R R I I S R I R S S R S 

SAC5 R I I R R R R R R R R S S S S S S S R S 

SAC6 R R R R R R R R R R R S R R S R S S R S 

SAC8 R R R R R R R R R R R S S R I R S S R S 

SAC9 R R R R R R R R R R R S R R I R S S R S 

SAC10 R R R R R R R R R R R S S R I R S S R S 

*R = resistant; S = sensitive; I = intermediate  

The MRSA isolates of our study were assigned to 4 genetic lines (CC5, CC8, CC80, and CC361) with their sequence types matching the central 

genotype at ≥ 6 loci. From the MLST analysis, it was found that SAC 5 and 9 belong to sequence type ST6 (CC5), prevalent in Bangladesh [56]. The 

MLSTs (other than ST6) identified in the isolates appear to be unique or not previously registered in clinical isolates of Bangladesh according to the 

PubMLST database [40]. SAC1 was found to belong to ST80 (CC80), which is considered one of the most important toxinogenic clones present in the 

species across the world [57]. 50% of the isolated strains were classified as part of the MLST type 361 (Table 2). Despite the apparent bias of the study 

with the small number of strains used, the results are consistent with established knowledge of MRSA isolates through literature [58–61]. In multiple 

studies, including one in Bangladesh, the comparative sporadicity of ST361 was reported [62,63], which demonstrated a gradual change with more cases 

linked to ST361 (CC361) [58]. Subsequent documentation revealed the presence of ST361 with the SpaType T315 in the processed fish fingers and 

Chatpatti in Dhaka, Bangladesh [59]; similar Sequence and Spa Type were recovered from patients in Irish hospitals between 2000 and 2012 [60] and in 

Kuwait in 2010 [61]. The rest of the isolates (SAC 3, 4, 8) have different SpaTypes (Table 2). 
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Table 2. Genomic features of the S. aureus clinal isolates. 

Name of the strains Genome size (bp) aN50 bL50 GC (%) Coding genes tRNA & rRNA MLST Clonal complex  

(CC) 

Spa types NCBI BioSample 

ID  

SAC 1 2,787,226 176,673 7 32.71 2715 61 ST80 CC80 T376 SAMN35731402 

SAC 3 2,754,801 131,013 5 32.66 2721 57 ST361 CC361 T304 SAMN35731599 

SAC 4 2,814,822 116,081 7 32.64 2963 57 ST361 CC361 T463 SAMN35731600 

SAC 5 2,784,621 111,616 8 32.69 2714 22 ST6 CC5 T4407 SAMN35731637 

SAC 6 2,846,622 141,025 8 32.58 2807 59 ST8 CC8 T3364 SAMN35731648 

SAC 8 2,709,879 70,277 14 32.62 2616 21 ST361 CC361 T2379 SAMN35731650 

SAC 9 2,817,774 192,408 7 32.71 2752 58 ST6 CC5 T304 SAMN35731660 

SAC 10 2,801,390 108,408 8 32.65 2741 59 ST361 CC361 T315 SAMN35731667 

**aN50 = Half of the genome assembly is contained in contigs equal to or larger than this value; bL50 = smallest number of contigs (each with its length) 

in the genome assembly needed to cover approximately half of the total genome size. 

The strains were subjected to prophage sequence identification, leading to the determination of two intact prophage regions in SAC 1, 3, 4, 5, and 9 

(Table S4). SAC 8 and 10 have only one predicted prophage in their genomes. Except for SAC 8, which contains a single plasmid, the rest of the strains 

harbor multiple plasmids ranging from 2 to 6. Moreover, SAC 1, 3, 8, and 10 had putative integrative and conjugative element (ICE) regions with T4SS 

(Table S4). Pathogen finders predicted (97%–98%) that all the strains were to be human pathogens. 



840 

AIMS Microbiology                                                        Volume 10, Issue 4, 833–858. 

 

Figure 2. Sequence alignment of the isolated S. aureus strains. The gaps on each circular 

genome represent the missing regions identified in BLAST analysis. The inner circle 

represents the sequence clockwise. The GC content is shown in black. The positive GC 

skew is shown in green, and the negative GC skew is visualized in purple.  

3.3. Antibiotic resistance of the isolated S. aureus strains 

Several antibiotic-resistant genes, ranging from efflux pumps to antibiotic inactivation, antibiotic 

target alteration, protection, and replacement, have been predicted by CARD in the studied S. aureus 

clinical strains from Bangladesh. All strains studied were found to be MRSA and predicted to have 

mecA (Table 1 and Figure 3), conferring the presence of SCCmec genomic islands. However, mecR1, 

a gene that encodes a membrane-spanning signal transduction protein responsible for the upregulation 

of mecA, is only present in SAC 1, 5, 6, 9, 10. These five strains also contained variations of SCCmec 

type_IV, while SCCmec_type_IVa (2B) was the most common (Table 3). SAC 1, 5, and 9 had SCCmec 

subtype a, whereas SAC 6 and 10 contained subtypes c and g, respectively. The strains with identifiable 

SCCmec elements contained ccrA2/ccrB2 recombinases (Table S5). The server was unable to detect a 

complete SCCmec element in SAC 3, 4, and 8 with a template coverage of at least 40% but was found 

to carry ccrC1-allele-2. Besides, in these strains, MecR1 was also absent (Figure 3). SAC 8 was found 

to have the class complex mec-class-C2 (Table S5), which is composed of insertion sequence IS431, 

truncated remnants of mecR1, mecA, and another copy of IS431 in the opposite direction. Based on the 

combination of the mec complex class and the ccr complex type, SAC 8 could belong to 

SCCmec_type_V [64]. 
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Table 3. SCCmec types and predicted ccr gene. 

Strains SCCmec types Predicted ccr gene 

SAC 1 SCCmec_type_IVa(2B) ccrA2, ccrB2 

SAC 3 Not detected ccrC1-allele-2 

SAC 4 Not detected ccrC1-allele-2 

SAC 5 SCCmec_type_IVa(2B) ccrA2, ccrB2 

SAC 6 SCCmec_type_IVc(2B) ccrA2, ccrB2  

SAC 8 Not detected ccrC1-allele-2 

SAC 9 SCCmec_type_IVa(2B) ccrA2, ccrB2 

SAC 10 SCCmec_type_IVg(2B) ccrA2, ccrB2 

In this study, 100% of the studied S. aureus were found to be resistant to penicillin, cephalosporin, 

and monobactam class of antibiotics (Figure 1). Only two out of eight MRSA strains were either 

susceptible or intermediately susceptible to meropenem. The efficacy of penicillin, either amoxicillin 

or tazobactam, increased when tested along with beta-lactamase inhibitors (Table 1). The beta-

lactamase inhibitors improved the susceptibility test results from resistant to intermediately resistant 

only in 40%–50% of the strains when clavulanic acid was used with amoxicillin or piperacillin was 

used with tazobactam. All these strains harbored PC1 beta-lactamase blaZ (Figure 3).  

Aminoglycosides appear to be relatively successful in neutralization of the clinical strains, where 

only 1 out of the 8 strains showed intermediate resistance to amikacin, and two strains showed 

resistance to gentamicin (Table 1). The genes that are typically responsible for encoding the modifying 

enzymes conferring aminoglycoside resistance through antibiotic inactivation include AAC(6′)-

APH(2")-la, APH(3’)-IIIa, ANT(4’)-Ia, and aad (6) [65,66], each of which was detected only in SAC 10. 

However, SAC 10 was found to be sensitive to both the aminoglycosides amikacin and gentamicin. 

APH (3’)-IIIa, conferring resistance to amikacin [67], along with aad(6), were also detected in SAC 3, 

4, 8, and 10. Conversely, only SAC 4 showed intermediate resistance to amikacin. The strains SAC 6 

and 9, despite the absence of all of these aminoglycoside modifying enzymes (AMEs), showed 

resistance to gentamicin. Given the limited detection of AME-encoded genes and the lack of a clear 

phenotypic correlation with their presence, alternative resistance mechanisms might be responsible for 

the observed aminoglycoside resistance in these two isolates.  

The studied S. aureus strains harbored genes for various superfamilies of efflux pumps. Notably, 

NorA, NorC, and SDrM are described as the cause of fluoroquinolone antibiotic resistance in                    

S. aureus [68–70]. All but strain SAC 5 were resistant to the second-generation fluoroquinolone 

ciprofloxacin, and none of the strains were resistant to the third-generation fluoroquinolone 

levofloxacin. The efflux pump encoding genes norA, norC, and sdrM conferring resistance to 

fluoroquinolones were predicted in every strain, including the reference strain NCTC 8325. While the 

presence of genes encoding efflux pumps suggests a potential resistance mechanism for 

fluoroquinolones, the expression of these pumps likely requires prior exposure to fluoroquinolones. 

SAC 5, a clinical strain, may have undergone antibiotic exposure other than fluoroquinolones and thus 

developed resistance to those antibiotics.  

A previous study demonstrated a biphasic killing response of the reference strain S. aureus NCTC 

8325 to ciprofloxacin. At concentrations ≥ 5 µg/mL, NCTC 8325 exhibits persister formation [71]. 

However, this strain remains susceptible at lower concentrations (1 µg/mL) despite harboring genes 

predicted to encode efflux pumps [71]. This observed difference in susceptibility compared to clinical 
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isolates, which may have undergone selective pressure leading to efflux pump overexpression, 

suggests that these genes alone may not be sufficient for ciprofloxacin resistance in NCTC 8325. 

The contribution of the efflux pump and their elevated expression during antibiotic pressure in 

clinical settings, along with quinolone resistance determining region (QRDR) mutations, may 

contribute to the fluoroquinolone resistance of these strains. Among the QRDR mutations, the parC 

gene, predicted to carry a single nucleotide polymorphism S80F (Table S6), and the gyrA gene, 

predicted to carry S84L mutation, are known to confer resistance to fluoroquinolones [72,73], both of 

which were predicted in SAC 8. This may explain why SAC 8 exhibits complete or intermediate 

resistance to ciprofloxacin and levofloxacin, respectively (Table 1, Figure 1). SAC 1, 4, 9, and 10 also 

showed the same resistance pattern concerning fluoroquinolones as SAC 8 despite lacking the parC 

S80F mutation in the respective strains. The efflux pumps and the gyrA mutation may contribute to 

fluoroquinolone resistance. SAC 6, notably missing the gyrA mutation, was found to be resistant to 

ciprofloxacin yet sensitive to levofloxacin, thus attributing its ciprofloxacin resistance to the efflux 

pumps.  

The MFS efflux pump LmrS was also detected in all Bangladeshi-resistant strains and can efflux 

several structurally unrelated drugs, which include lincomycin, kanamycin, fusidic acid, etc. [68]. 

These strains also contained multidrug and toxic compound extrusion (MATE) superfamily efflux 

transporter gene mepA and small multidrug resistance (SMR) superfamily efflux transporter SepA. 

MepA confers resistance to tetracycline and contributes to decreased susceptibility to tigecycline 

antibiotics [74,75], whereas SepA is reported to efflux disinfecting agents and antiseptics [76]. 

A recent study on resistance to macrolide antibiotics of S. aureus strains confirmed the ermC gene 

to be the most common determinant of macrolides, lincosamides, and streptogramin B (MLSB) 

resistance, compared to msrA [77]. Our study consistently predicted the presence of the ermC gene in 

each of the clinical strains except SAC 6, which confer erythromycin resistance by methylating 23S 

rRNA [78]. Only SAC 10 was predicted to carry the msrA gene encoding the ATP-dependent efflux 

pump (ABC), conferring resistance to certain macrolides and streptogramin type B in Staphylococcus 

spp [79]. However, despite the absence of both ermC and msrA genes, SAC 6 was resistant to the tested 

macrolide erythromycin. The efflux pump encoding LmrS predicted in every strain could be the 

contributing factor since its role in multi-drug resistance including macrolides is well-established [68]. 

The tet(K) gene is one of the major genes associated with tetracycline resistance among Gram-

positive bacteria [80]. Among all the strains, only SAC 3 harbored tet(K) and showed resistance against 

this antibiotic. While both tet(45) (predicted only in SAC 4) and tet(38) (predicted in all strains) encode 

tetracycline efflux pumps [81,82], their presence did not correlate with resistance in our study. It is 

important to note that overexpression is often required for tet(38) and tet(K)-like efflux pumps to confer 

tetracycline resistance [75,83]. Additionally, S. aureus is intrinsically resistant to polymyxins [84]; 

each of our studied strains was found resistant to colistin. 

Finally, some genes were predicted whose associated antibiotics were not tested on our strains 

including sepA, fosB, fosY, sat-4, and dfrG. Among the two Fosfomycin-resistance enzymes predicted, 

fosB and fosY [85,86], the latter is a relatively novel member of the Fos family and has profound 

implications considering its predicted detection in 50% of our strains alongside fosfomycin being a 

treatment of choice in many cases [86]. The dfrG gene (predicted only in SAC 6) is validated to confer 

trimethoprim resistance [87].  
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Figure 3. Antibiotic resistance genes of all the isolated Bangladeshi S. aureus strains and 

the reference NCTC 8325. The red squares denote the presence of the genes, and the blue 

squares denote the absence of the genes listed. 

3.4. Virulence factors  

Numerous classes of genes for virulence factors were widely distributed among the Bangladeshi 

S. aureus clinical strains, which were completely absent from the reference strain. However, adsA, 

sdrC, cap8D, harA, esaA, essC, isdB, geh, and lip were present in each of the strains including the 

reference NCTC8325 (Figure 4). Most of the virulence factors predicted are responsible for either 

immune evasion or function as enterotoxins.  

In the isolated strains, the virulence genes associated with heme-uptake and clumping were 

predicted ubiquitously in the isolates, reflecting their significance (Figure 4). The Isd system works 

together for hemoglobin binding and heme-iron acquisition and is required for the colonization of the 

host and pathogenesis [88]. IsdB removes heme from bound hemoglobin and transfers this cofactor to 

other proteins of the Isd system, which import and degrade heme to release iron in the cytoplasm. 

Apart from differences with respect to the virulence factors like esxC, esaG, and essA, SAC 5 and 9 

were the only strains found to carry the gene for the virulence factor cna, collagen binding protein. 

Cna allows both SAC 5 and 9 to adhere to the host and bypass the host immune system, which piques 

interest as MLST characterized both the isolates in sequence type ST6. This result is consistent with 
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the findings of another study conducted using S. aureus strains in India, which established that the 

strains having the same sequence type tend to follow the same patterns of distribution of virulence 

factors and immune evasion factors [89]. Drawing further comparison, the virulence factors spa, set24 

are missing in SAC 4 but present in SAC 3, whereas the virulence factors vWbp, ssPC, and chp are 

present in SAC 4, yet missing in SAC 3. Moreover, SAC 3 demonstrates levofloxacin sensitivity and 

meropenem resistance (Table 1), while SAC 4 exhibits intermediate resistance to both. This suggests 

that the differential virulence genes pattern may also be responsible for the modest difference in the 

phenotypic antibiotic resistance pattern [90].  

 

Figure 4. Virulence factors of all the isolated Bangladeshi S. aureus strains and the NCTC 

8325. The red squares denote the presence of the genes, and the blue squares denote the 

absence of the genes listed. 
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3.5. Secondary metabolite cluster  

Secondary metabolites are not crucial for bacterial growth but play various roles in ensuring 

survival in natural environments [91]. Thus, the biosynthetic gene clusters could provide insight into 

potential targets to reduce the pathogenicity of the bacteria, as evidenced in numerous studies [92–95]. 

Nine types of secondary metabolite biosynthetic gene clusters (BGCs) were found (Figure 5). Six of the 

BGCs were present in each of the strains investigated: cylic-lactone autoinducer, opine-like-metallophore, 

non-ribosomal peptide synthase (NRPS), terpene, and type III Polyketide synthase (T3PKS). T3PKS was 

mostly found to be located in the same region as that of terpene. However, only SAC 5 was predicted 

to have the two genes in different regions based on antiSMASH results. Each strain was found to have 

two non-ribosomal peptide synthetase (NRPS)-independent IucA/IucC like (NI)-siderophore, with the 

most known cluster corresponding to either staphylofferin A or staphyloferrin B.  

The immune effector calprotectin can bind zinc with very high affinity, sequestering zinc away 

from the pathogen, which provides a layer of nutritional immunity [96]. However, with the 

metallophore staphylopine, S. aureus can compete with the host for zinc, enhancing its ability to cause 

a successful infection [96]. The (NRPS)-independent IucA/IucC like (NI)-siderophores (most similar 

with clusters staphyloferrin A and staphyloferrin B) also function in a similar fashion but chelate iron 

instead of zinc [97]. Lanthipeptide-class-i type was present in four (SAC 1, 5, 6, and 9) of the strains. 

SAC 1, 5, and 9 were found to carry unspecified ribosomally synthesized and post-translationally 

modified peptide product (RiPP)-like BGC, whereas lasso peptide was found only in SAC 4. T3PKS 

lacks investigations with a link to potentially enhanced virulence for S. aureus. It is believed that 

T3PKS may contribute to the persistence of mycobacterium infections through dynamic cell wall 

remodeling, despite the process not being well understood [98]. The possibility of the same process 

happening in S. aureus requires further research. However, BGCs of type NRPS, with 100% similarity 

with the known clusters aureusimine A/aureusimine B/aureusimine C are established not to be 

pathogenic [99]. Class I lanthipeptides, (RiPP)-like BGCs, and lasso peptides detected in the isolates 

are all ribosomally synthesized and post-translationally modified peptides (RiPPs), showing promise 

as natural therapeutic alternatives of antibiotics [100–102].  

3.6. Toxin-antitoxin (TA) identification 

TA systems were analyzed through toxin-antitoxin system mania (TASmania) (Figure 6). It 

revealed the ParE toxin of the type II TA, ParDE (as the most abundant toxin), with SAC 4 predicted 

to have nine of them (Figure 6A). An abundance of YoeB-like toxin of bacterial type II TA system 

was also seen among all the strains. However, Toxin YafO of type II TA system was only carried by 

SAC 1, whereas Toxin SymE, type I TA system, was carried only by SAC 1 and 9.  

The significance of the ParB-like nuclease domain as the most abundant antitoxin was   

ascertained (Figure 6B). SAC 4 was found to carry ten of the ParB-like nuclease domains as the most 

abundant antitoxin, whereas SAC 3 and 8 were found to carry eight of each. The most abundant toxin 

among the strains was ParE of the type II toxin-antitoxin system (Figure 6A), ParDE, which prevents 

the loss of antibiotic resistance by providing plasmid stability, eliminating the plasmid-free cells [103]. 

Usually, persister formation is linked to toxin-antitoxin modules only in the case of Gram-negative 

bacteria like Escherichia coli [104,105]. Besides, antitoxins usually counteract the toxicity of toxins, 

rendering their functions futile under normal physiological conditions [106]. Antitoxins are unstable 
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as they are continuously degraded and replenished in the Type II TA systems. However, during 

environmental stress (such as the application of antibiotics), replenishment of antitoxins is not 

sufficient, and toxins prevail in the toxin-antitoxin ratios [106,107]. Our study reflects that it is 

imperative to put more focus on the investigation of TA modules in the case of S. aureus. Zeta toxin, 

part of the Omega/Epsilon/Zeta three-component TA system, is considered the cognate of epsilon 

antitoxin in existing literature [108]. Though each strain showed hits for the presence of Zeta toxin, 

not a single instance of hits for Epsilon antitoxin was found (Figure 6B). 

 

Figure 5. Secondary metabolite biosynthetic gene clusters (BGCs) of the strains. Color 

intensity and circle size represent the number of gene clusters. Grey and smallest circles 

represent the absence of gene clusters; yellow and medium circles represent the presence 

of a single cluster; orange and larger circles represent a higher number of gene clusters. 

CLA–cyclic lactone autoinducer; LCI–lanthipeptide class I; NI-siderophore - NRPS-

independent, IucA/IucC-like siderophores; NRPS–non-ribosomal peptide synthase; 

OLM–opine-like metallophore; Ripp-like–ribosomally synthesized and post-

translationally modified peptide-like. 
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Figure 6. Toxin-antitoxin system of the isolated strains. Different colors represent 

different numbers of toxin genes (A). Different colors represent different numbers of 

antitoxin genes (B). The name of each of the strains is listed on the left. The toxin and 

antitoxins identified are shown at the bottom. 

3.7. Pan-genome analysis 

The pan-genome of the eight S. aureus isolates characterized in this study had 20,217 genes. It 

was estimated that the number of core genes shared by all the strains is 2007, whereas the number of 

accessory genes is 3932. Moreover, there were 229 unique genes in the isolates, where SAC 6, 1, and 10 

were found to have acquired the highest number of unique genes, that is, 120, 52, and 26, respectively. 

The core–pan plot (Figure 7A) represented that the pan-genome of the clinical S. aureus strains 

was "open" but soon to be closed as the trend curve almost reached a plateau with the addition of more 

genomes to the analysis. The functional adaptations of Bangladeshi S. aureus showed Bpan values (total 

expansion rate) of 0.0888959 (i.e., <1) for the number of gene families f(x) in the power-law equation 

f(x) = a.xb, also suggesting that the pan-genome may be closed soon [109,110]. This shows that the 

addition of newer genome sequences is unlikely to make a big difference to the pan-genome size, 

validating that the sequencing effort for MDR S. aureus was adequate. The core genome was 

considered "conserved" since its trendline leveled out. 
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Figure 7. Pan-genome analysis of the isolated S. aureus strains. [A] Core–pan plot of the 

eight S. aureus strains studied. [B] Cluster of orthologs groups (COG) distribution of the 

studied S. aureus strains. [C]: Energy production and conversion; [D]: Cell cycle control, 

cell division, chromosome partitioning; [E]: Amino acid transport and metabolism; [F]: 

Nucleotide transport and metabolism; [G]: Carbohydrate transport and metabolism; [H]: 

Coenzyme transport and metabolism; [I]: Lipid transport and metabolism; [J]: Translation, 

ribosomal structure, and biogenesis; [K]: Transcription; [L]: Replication, recombination, 

and repair; [M]: Cell wall/membrane/envelope biogenesis; [N]: Cell motility; [O]: Post-

translational modification, protein turnover, and chaperones; [P]: Inorganic ion transport 

and metabolism; [Q]: Secondary metabolites biosynthesis, transport, and catabolism; [R]: 

General function prediction only; [S]: Function unknown; [T]: Signal transduction 

mechanisms; [U]: Intracellular trafficking, secretion, and vesicular transport; [V]: Defense 

mechanisms. 
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The cluster of orthologs groups (COG) distribution (Figure 7B) reveals that the genes under the 

categories of different membrane biogenesis, defense mechanisms, replication, recombination, and 

repair are mostly unique. Despite having representation in core genomes, the percentage difference 

highlights the inter-species variations of these categories. Besides, the increasing multidrug resistance 

can be attributed to the enhanced defense mechanisms or mutations introduced during replication, 

recombination, and repair, each associated with unique genes. Thus, these categories also reflect the 

possible role of the addition of unique genes in the genome evolution of the strains in their development 

of multidrug resistance.  

The COG distribution (Figure 7B) predicted the core genomes of the eight investigated strains to 

be predominantly (about 37%) associated with functions of metabolism and transport of carbohydrates, 

amino acids, nucleotides, coenzymes, lipids, and inorganic ions. These categories also had a decent 

representation (about 26%) of accessory genomes. However, the unique genes predominate in 

categories of cell wall/membrane/envelope biogenesis, defense mechanisms, replication, 

recombination and repair, and general functions. 

 

Figure 8. Phylogenomic study of the isolated S. aureus strains. (A) Phylogenomic tree of 50 

S. aureus strains, including 8 Bangladeshi strains, 41 strains isolated worldwide, and 

reference strain NCTC8325. (B) Phylogenomic tree of 8 Bangladeshi SAC strains based 

on their single nucleotide polymorphism (SNP). 
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3.8. Phylogenomic analysis 

A phylogenomic tree based on the whole genome was performed with closely related MDR S. 

aureus strains (Figure 8A). SAC 1, 4, 8, and 10 are in the same clade; in contrast, SAC 5 and 9 are in 

the same clade. Meanwhile, SAC 6 is in the clade with reference strains NCTC 8525.  

Furthermore, the WGS-based phylogenomic tree (Figure 8A) places SAC 1 separately from the 

rest of the isolates, and it may have evolved from the same node as Dresden-275757 (isolated from 

Dresden, Germany), GR2 (isolated from Greece), and 11819-97 (isolated from Denmark). Besides, 

from the phylogenomic tree, it can be understood that strains originating from the same node (such as 

SAC 5 and SAC 9) and sharing a common ancestral origin exhibit very similar virulome and genotypic 

resistance patterns. 

Through single nucleotide polymorphism (SNP) analysis, an SNP tree was generated (Figure 8B). 

The SNP tree supports the phylogenomic tree based on the WGS of the strains further: SAC 5 and 9 

had a common ancestral origin, sharing a very close relationship reflected by their branch lengths. 

SAC 3, 4, 8, and 10 originate from the same root. However, unlike the whole-genome-based 

phylogenomic results, the SNP analysis shows a very close relationship between the strains SAC 1 and 

6, grouping them in the same clade. 

4. Conclusions 

The study consisted of eight clinical MDR S. aureus strains collected from two hospitals based 

in Dhaka, Bangladesh. We identified several antibiotic-resistance genes, virulence determinants, toxin-

antitoxin systems, and biosynthetic gene clusters in the studied strains through WGS analysis. Our 

study identified four different clonal complexes and the dominance of CC361, with four out of the 

eight strains belonging to ST361. Given the global prevalence of this sequence type, its rapid 

emergence in Bangladesh emphasizes the need for ongoing surveillance and research. 

The glycopeptide vancomycin remains the gold-standard antibiotic for many clinical cases in 

Bangladesh for infections caused by MRSA. Our data from antibiotic resistance profiling is coherently 

suggestive of its efficacy, as 100% of the tested strains were found to be sensitive. Moreover, 

tigecycline and amikacin exhibited sufficient potency against the tested strains, showing potential as 

better therapeutic options to combat such infections. However, despite the current phenotypical 

sensitivity of the strains to vancomycin, tigecycline, and amikacin, data highlighted that their 

cautionary application is imperative, as the detection of relevant resistance genes raises concerns about 

the potential for the emergence of resistance under selective pressure. Such a situation also underscores 

the need to mitigate the reliance on phenotypic assays alone and incorporate more integrative 

approaches, including genotypic and phenotypic data, to guide treatment decisions. The detected wide 

array of genes conferring antibiotic resistance in S. aureus mediates their actions in many ways, 

including antibiotic efflux, inactivation, target alteration, target protection, and target replacement.  

Notably, the almost-closed nature of the pan-genome reflected that the sequencing effort was 

sufficient and the WGS data have considerable practical utility. Further research should focus on 

identifying the most prevalent genes and their resultant proteins associated with resistance and 

pathogenicity of the species and target them for drug-designing experiments. Moreover, the studied 

strains allow for correlation with other clinical isolates of S. aureus in Bangladesh through 
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phylogenomic analyses, enriching the data of S. aureus genome variability and helping shed light on 

its epidemiology in the country.  
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