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Abstract: Nearly two million people die each year from fungal infections. Additionally, fungal crop 

infections jeopardize the global food supply. The use of 254 nm UVC radiation from mercury vapor 

lamps is a disinfection technique known to be effective against all microorganisms, and there are 

surveys of published UVC sensitivities. However, these mainly focus on bacteria and viruses. 

Therefore, a corresponding overview for fungi will be provided here, including far-UVC, UVB, UVA, 

and visible light, in addition to the conventional 254 nm UVC inactivation. 

The available literature was searched for photoinactivation data for fungi in the above-mentioned 

spectral ranges. To standardize the presentation, the mean log-reduction doses were retrieved and 

sorted by fungal species, spectral range, wavelength, and medium, among others. Additionally, the 

median log-reduction dose was determined for fungi in transparent liquid media. 

Approximately 400 evaluable individual data sets from publications over the last 100 years were 

compiled. Most studies were performed with 254 nm radiation from mercury vapor lamps on 

Aspergillus niger, Candida albicans, and Saccharomyces cerevisiae. However, the data found were 

highly scattered, which could be due to the experimental conditions. 

Even though the number of individual data sets seems large, many important fungi have not been 

extensively studied so far. For example, UV irradiation data does not yet exist for half of the fungal 

species classified as "high priority" or "medium priority" by the World Health Organization (WHO). 

In addition, researchers should measure the transmission of their fungal suspensions at the irradiation 

wavelength to avoid the undesirable effects of either absorption or scattering on irradiation results. 

Keywords: Candida albicans; Candida auris; Cryptococcus neoformans; Aspergillus fumigatus; 

Saccharomyces cerevisiae; Far-UVC; UVC; UVB; UVA; visible light 
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1. Introduction  

The importance of bacteria and viruses for human health with hundreds of thousands of infections 

or even fatalities per year worldwide is undisputed [1–4]. Besides the treatment of infected patients, 

the disinfection of air, surfaces, or liquid media by chemical or physical measures plays a major role. 

Among the physical means is the application of UVC radiation at a wavelength of 254 nm, which acts 

very efficiently by destroying either the DNA or RNA of various pathogens [5–7].  

However, the required irradiation doses are not the same for all microorganisms. There can be 

large differences. For example, vegetative bacterial cells such as Bacillus subtilis are much more 

sensitive than their spores [8]. Tabular overviews exist, which list the common irradiation doses 

required to reduce known pathogens [8,9]. However, these tables focus on bacteria and viruses. 

The radiation doses necessary for fungi are found only on a much smaller scale, although fungi 

pose a similar threat to human health as bacteria and viruses. Each year, approximately 150 million 

fungal infections occur, of which nearly two million are fatal [10–13]. Additionally, the World Health 

Organization (WHO) has recognized the problem of fungal infections, has called for research and 

action by researchers, and has even published a list of the most significant fungal pathogens [14] 

similar to the bacterial ESKAPE pathogens [15,16]. Cryptococcus neoformans, Candida auris, 

Aspergillus fumigatus, and Candida albicans have been identified as particularly important and 

constitute the “the critical priority group”. Seven additional fungi were named in the next most 

important “high priority group”, including three more Candida species. 

In addition to the direct impact of fungi on human health, fungi can also cause other very 

undesirable effects. It is estimated that fungi are largely responsible for food spoilage [17,18] and pose 

a threat to humans in this regard, as well as the annual amount of spoiled food which would have been 

sufficient to feed 600 million people. 

In principle, UVC radiation can be employed as a universal disinfection measure against all fungi 

via the DNA-destroying mechanism. In the study presented here, the results of already published UVC 

inactivation studies are compiled and standardized in their presentation. The existing overviews by 

Kowalski and Malayeri et al. [8,9] mainly presented data that was obtained with 254 nm UVC radiation 

from low-pressure mercury vapor lamps. However, other UV spectral ranges also exhibit antimicrobial 

properties, and the same is true for visible violet or blue light, if the applied dose is high enough [19,20]. 

Therefore, in this study, the relevant irradiation range is extended from Far-UVC–starting at 200 nm 

to visible blue light of wavelengths up to 480 nm. 

2. Materials and methods 

On Pubmed and Google scholar, different combinations of the following terms were searched for: 

fungi, mold, yeast, inactivation, photoinactivation, reduction, disinfection, antifungal, ultraviolet, UV, 

UVA, UVB, UVC, Far-UVC, UV-A, UV-B, UV-C, blue light, and violet light. When matching articles 

were found, the given references were searched for possible further studies. In addition, research was 

performed to find out which later publications the retrieved paper had cited.  

In particular, the mean log-reduction doses were determined for irradiation with either UV or 

visible light in the spectral range 200–480 nm. If not explicitly stated by the authors themselves, the 
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data were determined from given values or graphs of the respective study as far as possible by 

determining the mean log-reduction dose from 3 log-reductions. Publications in which either the 

wavelength or the dose information was either missing or could not be determined were not included. 

This also applied to experiments within liquid media such as cell culture media or fruit juices, which 

have very high absorptions, especially in the UV range [21–25], and thus prevent the determination of 

the irradiation dose or only partially irradiate contaminated samples. 

Additionally, studies with shorter wavelengths (below 200 nm), longer wavelengths (above 480 nm), 

very broadband irradiation (>50 nm), or the combination of radiation with other potentially 

antimicrobial measures including photosensitizers, heat, or extreme pH values were not included. Here, 

only experiments in the range between 10 and 40 °C and between pH 5 and 8 were included. 

When studies investigated different repair mechanisms after irradiation, the data of cultivation in 

the dark were selected. Studies on particularly radiation-sensitive or -insensitive fungal mutations were 

not considered. 

Then, a categorization was carried out between fungi in liquids, in the air, and on surfaces. 

Moreover, a distinction was made between vegetative cells, spores, and hyphae. The results were also 

sorted by spectral range: Far-UVC (200–230 nm), (residual) UVC (230–280 nm), UVB (280–315 nm), 

UVA (315–400 nm), violet (400–430 nm), and blue (430–480 nm). For each fungus and spectral range, 

the medians of the log-reduction dose for the liquid samples were determined. 

3. Results 

The literature survey revealed that the study of the disinfecting effect of UV radiation on fungi 

already started about 100 years ago [26,27]; for example, it was already recognized at that time that 

dark/pigmented fungi were relatively resistant to radiation [28] and that experiments that were 

performed in absorbing cell culture media falsified the measurements [29]. 

In total, over 100 reports on fungi irradiation were found that met the above criteria. The given 

or determined individual log-reduction doses can be found in Tables 1 and 2 alongside the obtained 

medians [for transparent liquids] for different fungi in different spectral ranges. Many investigations 

were performed on human pathogens, though there were also many plant pathogens and environmental 

species. The most results were found for Saccharomyces cerevisiae, Candida albicans, and Aspergillus 

niger. 

Over 70% of the individual data sets originated from the UVC spectral range 230–280 nm, which 

is not surprising since mercury vapor lamps, with their 254 nm emission, are efficient, cheap, easy to 

use, and have been available for more than 100 years [30].  

Table 1 provides the log-reduction doses in the spectral ranges Far-UVC (200–230 nm), (residual) 

UVC (230–280 nm), and UVB (280–315 nm) in mJ/cm2. The antifungal impact of UVA, visible violet, 

and blue light in Table 2 is several orders of magnitude lower; therefore, the log-reduction doses are 

given in J/cm2.   
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Table 1. Log-reduction doses in mJ/cm2 for Far-UVC, UVC and UVB for different fungi 

and various sample media. Besides the exact wavelength, additional information on strain, 

medium, temperature, and pH is given, if available. 

Fungus cell 

type 

Far-UVC (200–230 nm) 

[mJ/cm2] 

UVC (230–280 nm) [mJ/cm2] UVB (280–315 nm) 

[mJ/cm2] 

Acremonium sp. TC-1-

N1-1 

s  median liquid: 15.4 

15.4 (254 nm, PBS, [31]);  

 

Allescheria boydii s  56 (254 nm, agar, [32]);  

 h  28 (254 nm, agar, [32]);  

Alternaria japonica s  5.4 (280, ATCC 44897, air, [33]);  

Alternaria tenuissima s  642 (254 nm, agar, [34]);  

Aspergillus 

amstelodami 

s  63.8 (254 nm, air (RH 67%), [35]); 

49.8 (254 nm, agar, [35]); 

 

Aspergillus awamori s  57.6 (254 nm, filter, [36]); 129 (283 nm, filter, [36]); 

Aspergillus brasiliensis s  median liquid: 225 

225 (254 nm, DSM 1988, water, [37]); 

413 (254 nm, DSM 1988, polystyrene, [37]); 

 

Aspergillus flavipes s  median liquid: 30.6 

30.6 (254 nm, liquid, 20 °C, pH 7.9, [38]); 

 

Aspergillus flavus s  median liquid: 163.3 

5.2 (254 nm, JCM 2061, water, [39]); 

35.6 (254 nm, liquid, 20 °C, pH 7.9, [38]); 

291 (254 nm, KCCM 60330, liquid, [40]); 

331 (254 nm, FRR 5660, liquid, [41]); 

6.1 (280 nm, ATCC 46110, air, [33]); 

35 (254 nm, ATCC 9296, agar, [42]);  

85.3 (254 nm, FRR 5660, agar, [41]); 

3429 (254 nm, KCCM 60330, round coffee 

beans, [40]); 

 

Aspergillus fumigatus s  median liquid: 16.8 

3.1 (254 nm, JCM 10253, water, [39]); 

30.4 (254 nm, liquid, 20 °C, pH 7.9, [38]); 

54 (254 nm, ATCC 14109, agar, [42]);  

60.8 (254 nm, agar, [43]); 

224 (254 nm, agar, [32]); 

2437 (254 nm, ATCC 34506, air filter, [44]); 

 

Aspergillus fumigatus h + s  median liquid: 4.6 

5.8 (255 nm, water, 20 ℃, pH 7.3, [45,46]); 

3.3 (265 nm, water, 20 ℃, pH 7.3, [46]); 

 

h  56 (254 nm, agar, [32]);  

Continued on next page 
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Fungus cell 

type 

Far-UVC (200–230 nm) 

[mJ/cm2] 

UVC (230–280 nm) [mJ/cm2] UVB (280–315 nm) 

[mJ/cm2] 

Aspergillus niger s median liquid: 72.5 

25.0 (222 nm, buffered 

deionized water, [47]);  

72.5 (222 nm, IFM 

63883, PBS, [48]); 

108.3 (222 nm, ATCC 

32625, water, [49]); 

 

 

median liquid: 107.5 

4.2 (254 nm, JCM 10254, water, [39]); 

26.5 (254 nm, buffered deionized water, [47]);  

33.5 (254 nm, liquid, 20 ℃, pH 7.9, [38]); 

43.1 (254 nm, PBS, [50]); 

50.8 (254 nm, IFM 63883, PBS, [48]); 

103.8 (254 nm, N402, saline, [51]); 

111.1 (254 nm, PBS, [52];) 

122.0 (254 nm, ATCC 16404, PBS, [53]); 

123.0 (254 nm, ATCC 32625, water, [49]); 

241.4 (254 nm, water, [54]); 

464.4 (254 nm, liquid, [41]); 

1157 (254 nm, CON1 40539, liquid, [55]); 

28.5 (265 nm, PBS, [50]); 

27.1 (280 nm, PBS, [50]); 

359 (254 nm, air [RH 55%], [35]); 

12.4 (254 nm, vacuum/filter, [56]); 

187 (254 nm, agar, [34]); 

189.3 (254 nm, FRR 5664, agar, [41]); 

214 (254 nm, cellophane, [57]); 

259 (254 nm, agar, [35]); 

375 (254 nm, steel, [58]); 

>448 (254 nm, agar, [32]); 

 

1118 (302 nm, cellophane, 

[57]); 

12000 (313 nm, cellophane, 

[57]); 

 

Aspergillus niger h + s  median liquid: 7.3 

7.3 (265 nm, water, 20 ℃, pH 7.3, [45,46]); 

 

h  >448 (254 nm, agar, [32]);  

Aspergillus parasiticus s  median liquid: 183 

183 (254 nm, KCCM 60330, liquid, [40]); 

6528 (254 nm, KCCM 60330, round coffee 

beans, [40]); 

 

Aspergillus terreus s  median liquid: 13 

13 (254 nm, liquid, 20 ℃, pH 7.9, [38]); 

 

h + s  median liquid: 3.7 

4.0 (255 nm, water, 20 ℃, pH 7.3; [46]); 

3.3 (265 nm, water, 20 ℃, pH 7.3, [46]); 

 

Aspergillus versicolor s  median liquid: 28.2 

28.2 (254 nm, liquid, 20 ℃, pH 7.9, [38]); 

16.7 (254, air (RH 85%), [59]); 

33.3 (254, air (RH 55%), [59]); 

55.2 (254 nm, agar, [43]); 

 

Continued on next page 
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Fungus cell 

type 

Far-UVC (200–230 nm) 

[mJ/cm2] 

UVC (230–280 nm) [mJ/cm2] UVB (280–315 nm) 

[mJ/cm2] 

Blastocladiella 

emersonii 

s  4.6 (240 nm, agar, [60]); 

3.4 (248 nm, agar, [60]); 

2.5 (254 nm, agar, [61]); 

2.9 (254 nm, agar, [60]); 

2.0 (265 nm, agar, [60]); 

2.6 (265 nm, agar, [61]); 

1.9 (275 nm, agar, [60]); 

2.0 (280 nm, agar, [60]); 

5.2 (293 nm, agar, [60]); 

12.1 (297 nm, agar, [60]); 

Blastomyces 

dermatitides 

v  <14 (254 nm, agar, [32]);  

h  <14 (254 nm, agar, [32]);  

Botrytis cinerea s  

3.5 (222 nm, agar, [62]); 

median liquid: 33.1 

26 (254 nm, MUCL 18864, PBS, pH 7.2, [63]); 

40.2 (254 nm, liquid, [64]); 

2.1 (254 nm, agar, [62]); 

median liquid: 109 

109 (302 nm, liquid, [64]); 

 

Candida albicans v median liquid: 9.9 

9.6 (222 nm, NBRC 

1385, PBS, [48]); 

9.9 (222 nm, DSM 1386, 

liquid, [65]); 

10.4 (222 nm, ATCC 

MYA-273, PBS, 37 °C, 

[66]); 

4.9 (222 nm, agar, [67]); 

8.6 (222 nm, ATCC 

10231, glass, [68]); 

7.4 (233 nm, agar, [67]); 

 

 

median liquid: 9.0 

6.4 (254 nm, CEC 749, PBS, [69]);  

7.6 (254 nm, DSM 1386, liquid, [65]); 

8.0 (254 nm, 207 (wt), saline, 25° C, [70]); 

8.0 (254 nm, 526 (wt), saline, 25° C, [70]); 

8.2 (254 nm, 792 (wt), saline, 25° C, [70]); 

8.3 (254 nm, ATCC 18804, water, [71]); 

9.7 (254 nm, ATCC 10231, water, [71]); 

11.8 (254 nm, NBRC 1385, PBS, [48]); 

 18 (254 nm, PBS, [72]); 

21.1 (254 nm, saline, [73]); 

30.7 (254 nm, ATCC 10231, water, [54]); 

44.7 (254 nm, ATCC 10231; saline, [74]); 

283 (272 nm, SC 5314, PBS, [75]); 

2.4 (275 nm, ATCC 90028, liquid, [76]); 

2.2 (254 nm, ATCC 18804, surface, [77]);  

9.3 (254 nm, agar, [67]); 

14.0 (254 nm, ATCC 90028, agar, [78]); 

21.1 (254 nm, agar, [43]); 28 (254 nm, agar, [32]); 

29 (254 nm, ATCC 90028, biofilm on 

polymethylmethacrylate, [79]); 

183 (254 nm, glass, [80]); 

217 (254 nm, ATCC 10231, agar,  [81]); 

3200 (254 nm, CEC 749, wound, [69]);  

78.3 (255 nm, ATCC 10231, agar, [82]); 

<300 (272 nm, liquid, [75]); 

<500 (272 nm, different surfaces, [75]); 

82.3 (275 nm, ATCC 10231, agar, [82]); 

 

862 (“UVB“, H29, agar,  

[83]); 

 

Continued on next page 
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Fungus cell 

type 

Far-UVC (200–230 nm) 

[mJ/cm2] 

UVC (230–280 nm) [mJ/cm2] UVB (280–315 nm) 

[mJ/cm2] 

Candida auris v  

4.3 (222 nm, DSM 

21092, PBS, [84]); 

median liquid: 14.5 

14.5 (252 nm, ATCC MYA-5001, PBS, [85]); 

6.1 (254 nm, DSM 21092, PBS, [84]); 

13.2 (254 nm, ARB 0381, water, [71]); 

18.1 (254 nm, ARB 0385, water, [71]); 

22.1 (254 nm, ARB 0382, water, [71]); 

17.7 (261 nm, ATCC MYA-5001, PBS, [85]);  

18 (254 nm, PBS, [72]); 

7.9 (270 nm, ATCC MYA-5001, PBS, [85]);  

11.2 (279.5 nm, ATCC MYA-5001, PBS, [85]);  

 

51.3 (302 nm, DSM 21092, 

PBS, [84]); 

Candida davisinia v  20 (254 nm, agar, [86]);  

Candida glabrata v  median liquid: 10.4 

2.8 (275 nm, ATCC MYA-2950, liquid, [76]); 

18 (254 nm, PBS, [72]); 

 

Candida guilliermondii 

 

v 

 

 median liquid: 35 

35 (254 nm, liquid, [87]); 

median liquid: 3850 

3850 (313 nm, liquid, [87]); 

Candida krusei v  median liquid: 2.4 

2.4 (275 nm, ATCC 6258, liquid, [76]); 

26.2 (255 nm, ATCC 6258, agar, [82]); 

63.9 (275 nm, ATCC 6258, agar, [82]); 

 

Candida parapsilosis v  

4.7 (222 nm, agar, [67]); 

7.8 (233 nm, agar, [67]); 

median liquid:  18  

18 (254 nm, PBS, [72]); 

5.8 (254 nm, agar, [67]); 

 

Candida sp (similar to 

Candida pomicola) 

v  median liquid: 11.9  

11.9 (254 nm, PYCC 5991, water, [88]); 

 

Candida tropicalis v  median liquid:  18  

18 (254 nm, PBS, [72]); 

 

Candida utilis v  median liquid: 40.3  

36.5 (254 nm, ATCC 9950, water, 25 ℃, [89]); 

44 (254 nm, liquid, [87]); 

median liquid: 3350  

3350 (313 nm, liquid, [87]); 

Cephalosporium sp. h  28 (254 nm, agar, [32]);  

Cladosporium 

cladosporiodes 

s  

21.2 (222 nm, DSM 

19653, PBS, [84]); 

median liquid: 169.3  

44.1 (254 nm, DSM 19653, PBS, [84]); 

52.6 (254 nm, water, [31]);  

286 (254 nm, water, [54]); 

368 (254 nm, liquid, [64]); 

100 (254 nm, NBRC 30313, agar, [90]); 

313 (254 nm, agar, [43]); 

750 (254 nm, steel, [58]); 

20.9 (275 nm, KTC 26803, agar, 27 °C, [91]); 

median liquid: 493 

435 (302 nm, DSM 19653, 

PBS, [84]); 

550 (302 nm, liquid, [64]); 

 

Continued on next page 
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Fungus cell 

type 

Far-UVC (200–230 nm) 

[mJ/cm2] 

UVC (230–280 nm) [mJ/cm2] UVB (280–315 nm) 

[mJ/cm2] 

Cladosporium 

halotolerans 

s  90,0 (252, ATCC 10391, metal, [92]); 

88.9 (261, ATCC 10391, metal, [92]); 

66.7 (270, ATCC 10391, metal, [92]); 

67.2 (280, ATCC 10391, metal, [92]); 

 

Cladosporium 

herbarum 

  median liquid: 288  

288 (254 nm, liquid, [64]); 

35.9 (254 nm, air (RH 53%), [35]); 

23.9 (254 nm, agar, [35]); 

median liquid: 307  

307 (302 nm, liquid, [64]); 

 

Cladosporium 

trichoides 

s  112 (254 nm, agar, [32]);  

h  56 (254 nm, agar, [32]);  

Cladosporium wernecki s  448 (254 nm, agar, [32]);  

h  56 (254 nm, agar, [32]);  

Colletotrichum 

acutatum 

v 2.7 (222 nm, agar, [62]); 1.4 (254 nm, agar, [62]); 

2.9 (254 nm, JN 543063, lupin seeds, [93]); 

 

Colletotrichum fioriniae s 1.5 (222 nm, F44, agar, 

[62]); 

6.6 (254 nm, F44, agar, [62]);  

Colletotrichum 

gloeosporioides 

s 3.6 (222 nm, CG 162, 

agar, [62]); 

1.0 (222 nm, GMAL 

4049, agar, [62]); 

4.1 (254 nm, CG 162, agar, [62]); 

5.1 (254 nm, GMAL 4049, agar, [62]); 

 

Colletotrichum 

nymphaeae 

s < 1.5 (222 nm, SL 566, 

agar, [62]); 

6.2 (254 nm, SL 566, agar, [62]);  

Colletotrichum sp. s 2.5 (222 nm, SK-1, agar, 

[62]); 

3.9 (254 nm, SK-1, agar, [62]);  

Cryptococcus 

carnescens 

v  median liquid: 14.5  

14.5 (254 nm, PYCC 5988, water, [88]); 

 

Cryptococcus 

neoformans 

v  

27 (222 nm, var grubii, 

glass, [68]); 

median liquid: 45.8 

45.8 (254 nm, ATCC B3501, liquid, [94]); 

2.4 (254 nm, KN99, surface, [77]);  

14.4 (254 nm, ATCC 24067, agar, [95]); 

28 (254 nm, agar, [32]); 

 

Cryptococcus terricola v  17 (254 nm, agar, [86]);  

Cryptococcus victoriae v  12 (254 nm, agar, [86]);  

Curvularia lunata h  56 (254 nm, agar, [32]);  

Epidermophyton 

floccosum 

s  median liquid: 26.3 

6.3 (254 nm, water, 30 °C, [96]); 

46.2 (254 nm, PBS, [97]); 

<14 (254 nm, agar, [32]); 

 

h  <14 (254 nm, agar, [32]);  

Continued on next page 
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Fungus cell 

type 

Far-UVC (200–230 nm) 

[mJ/cm2] 

UVC (230–280 nm) [mJ/cm2] UVB (280–315 nm) 

[mJ/cm2] 

Eurotium rubrum s  median liquid: 125.5  

125.5 (254 nm, FRR 5666, liquid, [41]); 

43.4 (254 nm, FRR 5666, agar, [41]); 

 

Exophiala xenobiotica v  20 (254 nm, agar, [86]);  

Fusarium graminearum s  90.1 (254 nm, DAOM 178148, agar, [98]); 77.0 

(277 nm, DAOM 178148, agar, [98]); 

 

Fusarium oxysporum s  median liquid: 38.4 

38.4 (254 nm, ATCC 36576, liquid, [99]); 

 

Fusarium solani s  median liquid: 34.9  

34.9 (254 nm, Saccardo, liquid, [99]); 

 

Fusarium sp. s  56 (254 nm, agar, [32]);  

h  112 (254 nm, agar, [32]);  

Geotrichum candidum v  17.3 (254 nm, agar, [43]);  

Giberella fujikuroi s  56 (254 nm, agar, [32]);  

h  56 (254 nm, agar, [32]);  

Glomerella cingulata s  median liquid: 24.8 

24.8 (254 nm, liquid, [100]); 

 

Hormondendrum 

pedrosoi 

s  56 (254 nm, agar, [32]);  

h  28 (254 nm, agar, [32]);  

Histoplasma 

capsulatum 

v  <14 (254 nm, agar, [32]);  

h  <14 (254 nm, agar, [32]);  

Leucosporidiella 

muscorum 

v  12 (254 nm, agar, [86]);  

Malassezia furfur 

(=Pityrosporum 

orbiculare) 

v   63.1 (UVB, ATCC 44341, 

agar, [83]); 

87.9 (UVB, ATCC 42132, 

agar, [83]); 

348 (300 nm; ATCC 44341, 

agar, [83]); 

Melampsora lini s  170 (254 nm, agar, [101]);  

Metschnikowia viticola 

similar to Candida 

kofuensis 

v  median liquid: 9.4 

9.4 (254 nm, PYCC 5993, water, [88]); 

 

Microsporum canis s  median liquid: 20.0  

20.0 (254 nm, PBS, [97]); 

<14 (254 nm, agar, [32]); 

 

h  <14 (254 nm, agar, [32]);  

Microsporum gypseum s  56 (254 nm, agar, [32]);  

h  <14 (254 nm, agar, [32]);  

Continued on next page 
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Fungus cell 

type 

Far-UVC (200–230 nm) 

[mJ/cm2] 

UVC (230–280 nm) [mJ/cm2] UVB (280–315 nm) 

[mJ/cm2] 

Monilinia fructigena s  median liquid: 16  

16 (254 nm, CBS 101499, PBS, pH 7.2, [63]); 

 

Mucor mucedo s  67.8 (254 nm, air [RH 63%], [35]); 

39.9 (254 nm, agar, [35]); 

 

Mucor sp. s  <14 (254 nm, agar, [32]);  

h  28 (254 nm, agar, [32]);  

Neurospora crassa c  median liquid: 16.4 

17.5 (238 nm, saline, [102]); 

16.4 (254 nm, saline, [102]); 

9.7 (265 nm, saline, [102]); 

15.6 (280 nm, saline, [102]); 

 

31.5 (302 nm, saline, [102]); 

Nocardia asteroides h  28 (254 nm, agar, [32]);  

Penicillium 

chrysogenum 

s  33.9 (254 nm, air [RH 41%], [35]); 

23.9 (254 nm, agar, [35]); 

82.7 (254 nm, agar, [43]); 

16.4 (275 nm, KTC 6933, agar, 27 °C, [91]); 

 

Penicillium commune s  300 (254 nm, steel, [58]);  

Penicillium 

corylophilum 

s  median liquid: 160 

160 (254 nm, FRR 5661, liquid, [41]); 

38.1 (254 nm, FRR 5661, agar, [41]); 

 

Penicillium digitatum s  median liquid: 40.0  

40.0 (254 nm, ATCC 10030; liquid, [99]); 

19.1 (254 nm, agar, [103]); 

19.2 (254 nm, NBRC 33116, agar, [90]); 

25.3 (254 nm, orange, [104]); 

110.5 (254 nm, orange, [103]); 

 

Penicillium expansum s median liquid: 14.0  

14.0 (222 nm, ATCC 

36200, water, [49]); 

1.7 (222 nm, agar, [62]); 

 

median liquid: 16.3  

16.3 (254 nm, ATCC 36200, water, [49]); 

21.3 (254 nm, P99418, saline, 25 °C, [105]); 

15.3 (277 nm, P99418, saline, 25 °C, [105]); 

1.0 (254 nm, agar, [62]); 

55.2 (254 nm, P99418, apple, 25 °C, [105]); 

60.7 (254 nm, CLX 1499, pear, [106]); 

66.7 (254 nm, CLX 1499, apple, [107]); 

84.0 (254 nm, CLX 1499, strawberry, [107]); 

87.5 (254 nm, CLX 1499, cherry, [107]); 

118 (254 nm, CLX 1499, raspberry, [107]); 

33.5 (277 nm, P99418, apple, 25 °C, [105]); 

 

Continued on next page 

 

 

 



704 

AIMS Microbiology  Volume 10, Issue 3, 694–722. 

Fungus cell 

type 

Far-UVC (200–230 nm) 

[mJ/cm2] 

UVC (230–280 nm) [mJ/cm2] UVB (280–315 nm) 

[mJ/cm2] 

Penicillium italicum s  median liquid: 46.8  

46.8 (254 nm, ATCC 48814; liquid, [99]); 

17.1 (254 nm, agar, [103]); 

241 (254 nm, orange, [104]); 

420 (254 nm, orange, [103]); 

 

Penicillium multicolor s  median liquid: 49.2  

49.2 (254 nm, water, [54]); 

 

Penicillium oxalicum s  462 (254 nm, steel, [58]);  

Penicillium pinophilum s  median liquid: 117.7  

117.7 (254 nm, NBRC 6345, water, pH 6.7, 

[108]); 

 

Penicillium polonicum s  median liquid: 21.5  

16.1 (254 nm, water, [31]);  

27.1 (254 nm, PBS, [50]); 

21.3 (265 nm, PBS, [50]); 

21.7 (280 nm, PBS, [50]); 

 

Penicilium sp. s  median liquid: 142.3  

60.5 (254 nm, PBS, [52]); 

224 (254 nm, agar, [32]); 

 

h  28 (254 nm, agar, [32]);  

Pestalotiopsis 

clavispora 

s  median liquid: 122  

122 (254 nm, liquid, [64]);  

median liquid: 167  

167 (302 nm, liquid, [64]); 

Pichia 

membranaefaciens 

v  median liquid: 0.18  

0.15 (266 nm, KCCM 12470, peptone water, 

22 °C, [109]); 

0.2 (279 nm, KCCM 12470, peptone water, 

22 °C, [109]); 

 

Puccinia coronata s  600 (254 nm, agar, [101]);  

Puccinia graminis s  2400 (254 nm, agar, [101]);  

Rhizopus oryzae s  median liquid: 12.7  

12.7 (254 nm, ATCC 9363, liquid, [110]); 

31.6 (254 nm, agar, [34]); 

>448 (254 nm, agar, [32]); 

 

Rhodosporodium 

babjevae 

v  median liquid: 47.6  

47.6 (254 nm, PYCC5996, water, [88]); 

 

Rhodosporidium 

kratochvilovae 

v  12 (254 nm, agar, [86]);  

Rhodotorula minuta v  median liquid: 28.6  

28.6 (254 nm, PYCC5990, water, [88]); 

 

Continued on next page 
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Fungus cell 

type 

Far-UVC (200–230 nm) 

[mJ/cm2] 

UVC (230–280 nm) [mJ/cm2] UVB (280–315 nm) 

[mJ/cm2] 

Rhodotorula 

mucilaginosa  

v  median liquid: 47.1  

38.5 (254 nm, PYCC5989, water, [88]); 

55.6 (254 nm, PYCC5995, water, [88]); 

13.3 (254 nm, agar, [43]); 

 

Rhodotorula sp. v  112 (254 nm, agar, [32]);  

Saccharomyces 

cerevisiae 

v median liquid: 5.0  

5.0 (222 nm, DSM 

70449, PBS, [84]); 

18.7 (200 nm, wt 

(diploid), vacuum / 

filter, [111]); 

22.1 (210 nm, C420-3B 

RAD (wt, haploid), 

filter, [112]); 

14.7 (210 nm, C420-3B 

RAD (wt, haploid, 

dried), filter, [112]); 

21.6 (220 nm, XS1972 

RAD/RAD (wt, diploid), 

vacuum/filter, [113]); 

22.5 (222.5 nm, ATCC 

2335, agar, [114,115]); 

12.0 (230 nm, C420-3B 

RAD (wt, haploid), 

filter, [112]); 

10.8 (230 nm, C420-3B 

RAD (wt, haploid, 

dried), filter, [112]); 

median liquid: 12.5  

2.5 (254 nm, diploid, liquid, [116]); 

5.2 (254 nm, wt (diploid), liquid, [117]); 

5.4 (254 nm, RC43a (haploid), liquid, [117]); 

6.3 (254 nm, NBRC 1046, water, pH 6.7, [108]); 

7.1 (254 nm, DSM 70449, PBS, [84]); 

8.3 (254 nm, RAD+ (wt), water, [118]); 

17.4 (254 nm, „RAD-RAD“ (wt/diploid); [119]); 

21.2 (254 nm, XS800 (wt, diploid), water, 20 °C, 

[120]); 

30.2 (254 nm, T1 (wt, diploid), [121]); 

33 (254 nm, XS800 (wt, diploid), liquid, [122]); 

72.9 (254 nm, KE 162, liquid, [123]); 

16.7 (266 nm pulsed, wt, PBS, [124]); 

38.4 (238 nm, ATCC 2335, agar, [114,115]); 

11.3 (240 nm, C420-3B RAD (wt, haploid), filter, 

[112]); 

3.2 (240 nm, C420-3B RAD (wt, haploid, dried), 

filter, [112]); 

23.1 (248 nm, l ATCC 2335, agar, [114,115]); 

3.7 (250 nm, XS1972 RAD/RAD (wt, diploid), 

vacuum/filter, [113]); 

1.8 (254 nm, C420-3B RAD (wt, haploid, dried), 

filter, [112]); 

3.7 (254 nm, C420-3B RAD (wt, haploid), filter, 

[112]); 

16.7 (254 nm, ATCC 2335, agar, [114, 115]); 

48.5 (254 nm, 211-1a (wt, haploid), agar, [125]); 

51.1 (254 nm, D7 (diploid), agar, [126]); 

3.0 (263 nm, C420-3B RAD (wt, haploid, dried), 

filter, [112]); 

5.5 (263 nm, C420-3B RAD (wt, haploid), filter, 

[112]); 

25.2 (263 nm, 211-1a (wt, haploid), agar, [125]); 

15.2 (265 nm, ATCC 2335, agar, [114, 115]); 

30.3 (265 nm, D7 (diploid), agar, [126]); 

median liquid: 6842  

47.8 (302 nm, DSM 70449, 

PBS, [84]); 

6842 (308 nm pulsed, wt 

211 (diploid), liquid, [127]); 

9220 (UVB, D7 (diploid), 

water, [128]); 

18.5 (280,4 nm, ATCC 2335, 

agar, [114,115]);  

9.0 (282 nm, C420-3B RAD 

(wt, haploid), filter, [112]); 

2.0 (282 nm, C420-3B RAD 

(wt, haploid, dried), filter, 

[112]); 

42.9 (283 nm, 211-1a (wt, 

haploid), agar, [125]); 

41.5 (285 nm, D7 (diploid), 

agar, [126]); 

122.9 (293 nm, 211-1a (wt, 

haploid), agar, [125]); 

166 (295 nm, D7 (diploid), 

agar, [126]); 

43.2 (297 nm, C420-3B 

RAD (wt, haploid), filter, 

[112]); 

11.2 (297 nm, C420-3B 

RAD (wt, haploid, dried), 

filter, [112]); 

781 (302 nm, ATCC 2335, 

agar, [114, 115]); 

884 [303 nm, 211-1a (wt, 

haploid), agar, [125]); 

7726 (305 nm, D7 (diploid), 

agar, [126]); 

25554 (310 nm, D7 

(diploid), agar, [126]); 

Continued on next page 
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Fungus cell 

type 

Far-UVC (200–230 nm) 

[mJ/cm2] 

UVC (230–280 nm) [mJ/cm2] UVB (280–315 nm) 

[mJ/cm2] 

Saccharomyces 

cerevisiae 

  34.5 (273 nm, 211-1a (wt, haploid), agar, [125]); 

24.8 (275 nm, D7 (diploid), agar, [126]); 

14285 (313 nm, 211-1a (wt, 

haploid), agar, [125]); 

9200 (313 nm, C420-3B 

RAD (wt, haploid), filter, 

[112]); 

621 (313 nm, C420-3B RAD 

(wt, haploid, dried), filter, 

[112]); 

 s  median liquid: 5.0  

5.0 (254 nm, diploid, liquid, [117]); 

 

Saccharomyces 

pastorianus 

v  median liquid: 0.7  

1.0 (266 nm, KCCM 11523, peptone water, 

22 ℃, [109]); 

0.4 (279 nm, KCCM 11523, peptone water, 

22 ℃, [109]); 

 

Saccharomycopsis 

lipolytica 

v  median liquid: 330.5  

297 (254 nm, H195-5, saline, [129]); 

364 (254 nm, H194-15, saline, [129]); 

 

Scopulariopsis 

brevicaulis 

s  53.8 (254 nm, air [RH 79%], [35]); 

41.9 (254 nm, agar, [35]); 

 

Sporotrichum schenckii v  28 (254 nm, agar, [32]);  

Stachybotrys chartarum   572 (254 nm, ATCC 208877, agar, [130]);  

Torula bergeri h  448 (254 nm, agar, [32]);  

Torula sphaerica v  1.4 (254 nm, air [RH 65%], [35]); 

14 (254 nm, agar, [35]); 

 

Trichoderma harzianum   median liquid: 25.0  

14.3 (254 nm, water, [31]);  

30.1 (254 nm, PBS, [50]); 

25.5 (265 nm, PBS, [50]); 

24.5 (280 nm, PBS, [50]); 

 

Trichophyton 

mentagrophytes 

s  median liquid: 42.9  

35.7 (254 nm, PBS, [97]); 

50 (254 nm, water, 30 °C, [96]); 

 

Trichophyton rubrum s median liquid: 13.6  

13.6 (222 nm, IFM 

64661, PBS, [48]); 

 

median liquid: 27.6  

8.6 (254 nm, IFM 64661, PBS, [48]); 

27.6 (254 nm, PBS, [97]); 

40.1 (254 nm, water, 30 ℃, [96]); 

56 (254 nm, agar, [32]); 

 

h  56 (254 nm, agar, [32]);  

Trichophyton 

schoenleinii 

s  median liquid: 53.3  

53.3 (254 nm, water, 30 ℃, [96]); 

 

Continued on next page 
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Fungus cell 

type 

Far-UVC (200–230 nm) 

[mJ/cm2] 

UVC (230–280 nm) [mJ/cm2] UVB (280–315 nm) 

[mJ/cm2] 

Trichophyton tonsurans s  median liquid: 58.7  

58.7 (254 nm, water, 30 ℃, [96]); 

 

Trichophyton violaceum s  median liquid: 9.3  

9.3 (254 nm, water, 30 ℃, [96]); 

 

Ustilago zeae s  1000 (230 nm; glass; 

[131]); 

1330 (240 nm; glass; [131]); 

741 (248 nm; glass; [131]); 

565 (254 nm; glass; [131]); 

112 (254 nm, agar, [32]); 

432 (265 nm; glass; [131]); 

532 (280 nm; glass; [131]); 

1163 (290 nm; glass; [131]); 

3322 (298 nm; glass; [131]); 

13300 [303 nm; glass; 

[131]); 

v  112 (254 nm, agar, [32]);  

v: vegetative cells; s: spores including conidia; h: hyphae including mycelium; PBS: phosphate buffered saline; wt: wild-type 

Table 2. Log-reduction doses in J/cm2 for UVA and visible violet and blue light for 

different fungi and various sample media. Besides the exact wavelength, additional 

information on strain, medium, temperature, and pH is given, if available.  

Fungus cell 

type 

UVA (315–400 nm) [J/cm2] Violet (400–430 nm) [J/cm2] Blue (430–480 nm) [J/cm2] 

Aspergillus flavus s  median liquid: 628 

628 (405 nm, PBS, [132]); 

 

Aspergillus fumigatus s  median liquid: 295 

295 (405 nm, PBS, [132]); 

250 (405 nm, wound, [132]); 

 

Aspergillus niger s  median liquid: 438.9 

438.9 (405 nm, MUCL 38993, PBS, 

29 ℃, [133]); 

 

Candida albicans v  

9.7 (365 nm, ATCC 90028, 

agar, [78]); 

727 (“UVA“, H29, agar, [83]); 

 

median liquid: 94.3 

73.5 (405 nm, liquid, [134]); 

115 (405 nm, MUCL 29903, PBS, 

29 ℃, [133]);  

232.3 (405 nm, SN152, PBS, 37 ℃, 

[135]);  

13.0 (415 nm, CEC 749, PBS, 

[136]); 

33.3 (405 nm, agar, [137]); 

63.3 (405 nm, ATCC 18804, biofilm 

on resin, [138]); 

94.8 (405 nm, ATCC 18804, biofilm 

on resin, [139]); 

 

1.5 (420 nm, ATCC 90028, agar, 

[78]); 

571 (450 nm, ATCC 10231, 

agar, [140]); 

45.2 (455 nm, ATCC 18804, 

biofilm on bones, [141]); 

99 (460 nm, ATCC 10231, agar, 

[142]); 

 

Continued on next page 
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Fungus cell 

type 

UVA (315–400 nm) [J/cm2] Violet (400–430 nm) [J/cm2] Blue (430–480 nm) [J/cm2] 

Candida albicans v  100.0 (405 nm, ATCC 10231, agar, 

[140]); 

26.0 (406 nm, ATCC 90028, agar, 

[78]); 

109.8 (415 nm, ATCC 10231, agar, 

[140]); 

247 (415 nm, CEC 749, wound, 

[136]); 

 

Candida auris v median liquid: 77.5 

77.5 (365 nm, DSM 21092, 

PBS, [143]); 

13 (365 nm, ARB 0381, steel, 

[144]); 

median liquid: 104.2 

104.2 (400 nm, DSM 21092, PBS, 

[143]); 

 

median liquid: 769 

769 (450 nm, DSM 21092, 

PBS, [143]); 

 

Candida glabrata v  94.8 (405 nm, ATCC 90030, 

biofilm on resin, [139]); 

 

Cladosporium 

cladosporiodes 

s median liquid: 92.6  

92.6 (365 nm, DSM 19653, 

PBS, [143]); 

14.4 (370 nm, KTC 26803, 

agar, 25.7 ℃, [91]); 

45.1 (385 nm, KTC 26803, 

agar, 25.7 ℃, [91]); 

median liquid: 1000  

1000 (400 nm, DSM 19653, PBS, 

[143]); 

54.8 (405 nm, KTC 26803, agar, 

25.7 ℃, [91]); 

 

median liquid: 7992  

7992 (450 nm, DSM 19653, 

PBS, [143]); 

 

Fusarium oxysporum s  median liquid: 443.5  

313 (405 nm, IHEM 25499, PBS, 

37 ℃, [135]); 

574 (405 nm, PBS, [132]); 

 

 

 

Fusarium solani s  median liquid: 175.6  

175.6 (405 nm, IHEM 6092, PBS, 

37 ℃, [135]); 

 

Malassezia furfur 

(Pityrosporum 

orbiculare) 

v 22.7 (“UVA“, ATCC 44341, 

agar, [83]); 

35.7 (“UVA“, ATCC 42132, 

agar, [83]); 

14.2 (330 nm; ATCC 44341, 

agar, [83]); 

235.3 (360 nm; ATCC 44341, 

agar, [83]); 

  

Continued on next page 
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Fungus cell 

type 

UVA (315–400 nm) [J/cm2] Violet (400–430 nm) [J/cm2] Blue (430–480 nm) [J/cm2] 

Penicillium 

chrysogenum 

s 11.8 (370 nm, KTC 6933, 

agar, 27 ℃, [91]); 

39.0 (385 nm, KTC 6933, agar, 

27 ℃, [91]); 

41.1 (405 nm, KTC 6933, agar, 

27 ℃, [91]); 

 

Penicillium digitatum s median liquid: 56.3  

56.3 (385 nm, liquid, [145]); 

median liquid: 57.6  

57.6 (405 nm, liquid, [145]); 

 

Penicillium expansum s median liquid: 127  

127 (385 nm, liquid, [145]); 

median liquid: 168  

168 (405 nm, liquid, [145]); 

 

(Eu-) Penicillium 

lapidosum 

v median liquid: 90.9  

90.9 (365 nm, NBRC 6100, 

liquid, [146]); 

  

Rhizopus microsporus s  median liquid: 2274  

2274 (405 nm, “12.6652333”, PBS, 

37 ℃, [135]); 

 

Saccharomyces 

cerevisiae 

v median liquid: 37.0  

0.5 (365 nm, X174 (haploid), 

liquid, [147]); 

12.5 (355 nm pulsed, wt, 

PBS, [124]); 

37.0 (400 nm, DSM 70449, 

PBS,[143]); 

47.6, (365 nm, NBRC 1136, 

liquid, [146]); 

66 (364 nm (laser), water, 

[148]); 

median liquid: 62.5  

62.5 (400 nm, DSM 70449, PBS, 

[143]); 

56 (405 nm, MUCL 28749, PBS, 

29 ℃, [133]); 

182 (405 nm, DSM 70449, PBS, 

30 ℃, pH 7, [149]); 

median liquid: 596.4  

526 (450 nm, DSM 70449, PBS, 

30 ℃, pH 7, [149]); 

666.7 (450 nm, DSM 70449, 

PBS, [143]); 

 

Scedosporium 

apiospermum 

s  median liquid: 154.3  

154.3 (405 nm, IHEM 14462, PBS, 

37 ℃, [135]); 

 

Scedosporium 

prolificians 

s  median liquid: 144.0  

144.0 (405 nm, IHEM 5608, PBS, 

37 ℃, [135]); 

 

Trichophyton rubrum s  median liquid: <157  

<157 (405 nm, MUCL 38993, 

liquid, [150]); 

 

v: vegetative cells; s: spores including conidia; h: hyphae including mycelium; PBS: phosphate buffered saline; wt: wild-type 

The median and average UVC log-reduction doses for fungal suspensions from the WHO “critical 

priority group”—A. fumigatus (spores), C. albicans, C. auris, and C. neoformans—are also illustrated 

as boxplots in Figure 1 alongside boxplots for S. cerevisiae and A. niger (spores) for comparison. 

Besides C. neoformans, the median log-reduction doses in the WHO “critical priority group” are   

below 20 mJ/cm2; the C. neoformans value is based on a single investigation. For most members of 

the "critical priority group", the median log-reduction doses are in the same order of magnitude as the 
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median log-reduction dose of the non-pathogenic S. cerevisiae.  

With the help of fungi for which the log-reduction dose medians are available for different spectral 

ranges, a rough comparison of the antifungal effect of radiation from different spectral ranges can be 

provided. The determined median far-UVC log-reduction doses are mostly slightly lower than the 

corresponding log-reduction dose observed with conventional UVC irradiation for the same fungus; 

however, this statement is based on a rather low number of far-UVC results. No major difference in 

photosensitivity or log-reduction doses can be observed between both ranges.  

In contrast, a comparison between UVC and the visible spectral range displays large differences. 

The violet log-reduction doses are 3 to 4 orders of magnitude higher than those in the UVC range. On 

the other hand, the differences between violet and UVA are, in most cases, less than a factor of 2, with 

Cladosporium cladosporiodes (spores) as the only determined exception. 

 

Figure 1. Box-Plots of published fungal UVC log-reduction doses for the WHO “critical 

priotity group” together with the number of reported single log-reduction doses in brackets. 

For comparison, the corresponding data for S. cerevisiae and A. niger (spores) are added. 

(Two outliers for A. niger (spores) are above 250 mJ/cm2 and not displayed here.) 

4. Discussion 

Although Tables 1 and 2 may seem rather lengthy, it can be noted that not much has been studied 

thus far. For example, UVC data are even missing for half of the fungi named in the WHO "high 

priority group" and the “medium priority group” [14]–even though inexpensive UVC sources (mercury 

vapor lamps) have been available for more than one hundred years.  

In the other spectral ranges, even less fungal inactivation data have been published, although these 
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ranges are also very interesting and allow for disinfection applications without posing a major hazard 

to humans. This is true for UVA and visible light [151]; however, the radiation has a strong 

antimicrobial effect, especially for the far-UVC range, and has been considered to be relatively 

harmless to humans thus far [152,153]. Therefore, far-UVC has a great potential to contain the spread 

of fungi in the future.  

The individual values in Tables 1 and 2 displayed a large scatter of the log-reduction doses, even within 

one species and one wavelength range. For A. niger, C. albicans, and S. cerevisiae, there were 1–2 orders 

of magnitude between each the smallest and the largest UVC log-reduction dose in the liquid samples.  

One reason for this is the biological variations or differences between the individual strains and 

possibly different physiological states. Another reason is probably the differing experimental set-ups 

and experimental conditions. One important aspect is the culturing condition after antimicrobial 

irradiation because illumination can lead to photoreactivation [52,60,154–156], which results in higher 

log-reduction doses compared to dark cultivation. As mentioned above, if results of the different 

illuminations after the antimicrobial irradiation were published, the dark cultivation results were 

selected. However, in most cases, no statements on the illumination conditions were provided.  

Besides this, even for standard irradiation with low-pressure mercury vapor lamps, which all 

mainly emit at 254 nm, different temperatures, irradiances, and durations have been mentioned. The 

latter does not lead to major effects due to the Roscoe-Bunsen law; however, there is another very 

critical point, which, by itself, can lead to variations in the determined log-reduction doses by a factor 

of 10. As already observed by Coblentz in 1924 [29], and as already mentioned above, absorption [and 

scattering] in the irradiated medium can lead to lower disinfection success. This would manifest itself, 

for example, in larger log-reduction doses and a stronger non-mono-exponential behavior. Some 

authors seem to be aware of the problem [39,43,45,53,73,100,109,150,157], though most published 

studies did not comment on transmission at the irradiation wavelength. This does not only concern the 

pure medium, but also fungal suspensions. A double-digit number of authors provided cell or spore 

concentrations of  107 CFU/mL. In our own (unpublished) measurements on 107 S. cerevisiae per mL, 

we observed an optical density at 600 nm of OD600 = 0.3. For 254 nm, the optical density under these 

conditions was OD254 = 1.7. For a path length of 10 mm, this resulted in an irradiance decrease by 

almost 2 orders of magnitude to about 2% of the initial value. Many authors applied thinner layers of 

fungal suspensions; however, even behind a 2 mm thin layer, the irradiance would have dropped by 

about 50%. 

5. Conclusions 

Up to now, the topic of radiation disinfection of fungi did not seem to be of great importance. 

Even the photoinactivation properties of many health-endangering fungi have been insufficiently 

studied thus far. Hopefully, this may now somewhat change with the WHO report on the most 

dangerous fungi [14]. These should be preferentially examined in detail, and for all fungi-or even all 

pathogens-the far-UVC range seems particularly promising. 

Regarding the implementation of the required irradiation experiments, we would recommend 

always measuring at least the transmission of the fungal suspension to be irradiated at the respective 

wavelength and, if possible, to achieve a high transmission of more than 50% better 90%.   
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