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Abstract: Climate change enhances stress in food crops. Recently, abiotic stress such as metalloid 

toxicity, salinity, and drought have increased in food crops. Mycorrhizal fungi can accumulate several 

nutrients within their hyphae through a symbiotic relationship and release them to cells in the root of 

the food crops under stress conditions. We have studied arbuscular mycorrhizal fungi (AMF)-enriched 

biofertilizers as a climate-smart technology option to increase safe and healthy food production under 

abiotic stress. AMF such as Glomus sp., Rhizophagus sp., Acaulospora morrowiae, Paraglomus 

occultum, Funneliformis mosseae, and Claroideoglomus etunicatum enhance growth and yield in food 

crops grown in soils under abiotic stress. AMF also works as a bioremediation material in food crops 

grown in soil. More precisely, the arsenic concentrations in grains decrease by 57% with AMF 

application. In addition, AMF increases mineral contents, and antioxidant activities under drought and 

salinity stress in food crops. Catalase (CAT) and ascorbate peroxidase (APX) increased by 45% and 70% 

in AMF-treated plants under drought stress. AMF-enriched biofertilizers are used in crop fields like 

precision agriculture to reduce the demand for chemical fertilizers. Subsequently, AMF-enriched 

climate-smart biofertilizers increase nutritional quality by reducing abiotic stress in food crops grown 

in soils. Consequently, a climate resilience environment might be developed using AMF-enriched 

biofertilizers for sustainable livelihood. 
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1. Introduction  

Microbial biofertilizer is an essential part of climate-smart agriculture (CSA). It improves 

agricultural productivity, farmer incomes, and resilience to climate change, and reduces greenhouse 

gas emissions [1]. Microbial strains like arbuscular mycorrhizal fungi (AMF) can be used in 

biofertilizers that improve soil quality and reduce the demand for chemical fertilizers in food crops 

grown under abiotic stress. Consequently, AMF-enriched fertilizers can be considered climate-smart 

biofertilizers for increasing biomass growth in food crops grown under climate-change-induced stress 

conditions [1]. Ectomycorrhiza, Ectendomycorrhiza, and Endomycorrhizal fungi are available in the 

environment. Arbuscular mycorrhizal fungi (AMF) are known as Endomycorrhiza under the phylum 

Glomeromycota [2]. 

AMFs are vastly associated with over 80% of plant species through symbiotic relations [3–5]. 

Hyphae of AMF can easily penetrate smaller pores of root cells [6]. They can exchange carbohydrates 

and minerals between each other inside the roots. AMF hyphae form a branched structure in the root 

cortex known as arbuscules. These arbuscules work as the functional site of nutrient exchange for 

increasing plant growth [7–10]. AMF receives lipids from food crops for survival [11,12]. Several food 

crops (onions, leeks, garlic, carrots, lettuce, cucumbers, lentils, rice, mung beans, peas, tomatoes, and 

peppers) form symbiotic associations with AMF [13]. AMF increases the availability of nutrients 

through their hyphal network [3,14]. This increased nutrient content [15] improves yield and biomass 

growth under stress conditions in food crops [16–19]. For instance, leaves, roots, and shoots increased 

significantly under stress conditions in AMF-inoculated plants [20]. Consequently, productivity in 

food crops has increased remarkably under stress conditions [21].  

In addition, mycorrhizae increase root surface area for water and nutrient uptake in crops. Plants 

with mycorrhizal association will have higher efficiency for nutrient absorption, such as nitrogen, 

potassium, calcium, magnesium, zinc, and copper; and also increase plant resistance to stress [22]. 

Mycorrhizal fungi can supply phosphate nutrients through hyphae to plant cells [23]. AMF grows 

widely in the soil to form a well-developed hyphal network that absorbs inorganic phosphorus (Pi) (via 

fungal high-affinity PiTs). AMF fungus forms arbuscules with coiled hyphae in the root cortex. This 

structure is enclosed with a plasma membrane and is potentially important to control nutrient transfers 

between the symbionts. This character of AMF increases phosphorus (P) uptake and plant biomass 

growth [24]. 

The extra-radical mycelium (ERM) of AMF can effectively improve nutrient uptake, thus 

improving plant growth and development [15]. Both macro- and micro-nutrients are increased 

significantly for plant growth in nutrient-deficient soils through symbiosis [25]. It is believed that AMF 

improves nutrients and decreases the uptake of Na and Cl, leading to growth stimulation [3,26]. In this 

regard, mycorrhizae can be used as a nutrient stimulator in the farmer’s field. Literature showed that 

crop yield improved by more than 50%, and the farmers’ income increased by 61% with the 

recommended doses of chemical fertilizer and mycorrhizal biofertilizer compared to chemical fertilizer 

alone [27]. Mycorrhizal association in plant roots resists root and collar rot diseases caused by other 

fungi. It can be used together with other agricultural chemicals. Mycorrhizae are tolerant to several 

chemical substances; for example, pesticides such as endrin, chlordane, methyl parathion, and 

methomyl carbofuran. In this regard, mycorrhizae containing biofertilizers are highly recommended 

in food crops grown under abiotic stress [22].   
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Environmental hazards like drought, salinity, metalloid toxicity, and disease epidemics have 

increased significantly. Climate-smart AMF-enriched biofertilizers can be used as an effective tool in 

reducing abiotic stress in food crops [20,21]. Research has shown that climate-smart biofertilizers 

using Acaulospora morrowiae, Paraglomus occultum, Funneliformis mosseae, Rhizophagus clarus, 

and Rhizophagus intraradices increase yield, chlorophyll, carotenoids, catalase (CAT), ascorbate 

peroxidase (APX), and minerals, and reduces hydrogen peroxide (H2O2) and malondialdehyde (MDA) 

in tomatoes (Solanum lycopersicum L.) grown in soil under drought stress [28–29]. However, drought 

reduction in plants using AMF is a complex process [30].   

AMF is a dispersed fungus [31–34]. It expands the availability of water [35], increases the gas 

changes abilities in the host plant [30], changes root morphology [34], controls hormones [36], and 

decreases ROS [37]. Thus, reduces the hostile environments for food crops. Glomalin-related soil 

proteins (GRSP) are produced by AMF which work as a glue and improve water-holding capacity [38]. 

Also, AMF colonization significantly increases the accumulation of auxins (IAA), gibberellic acid (GA), 

and jasmonic acid (JA), which improves plant growth under drought stress [39–40]. AMF improves 

anti-oxidant activities, regulates osmolytes, and increases the photosynthetic performance under 

drought stress [41]. 

Salinity creates an antagonistic environment for crop production. Twenty-six percent of salinity has 

increased over the last three decades in the coastal region of Bangladesh [42]. Globally, more than 3 to 6% 

of soils are altered by salinity. These saline soils are extremely noticeable [43]. AMF can be 

recommended for decreasing salinity levels in food crops [44,45]. AMF provides numerous ways to 

alleviate salinity stress. For instance, AMF can improve nutrient uptake, osmotic balance, 

antioxidant activities, and hormonal balance in plants grown in saline soils [45]. AMF reduces 

reactive oxygen species (ROS) in food crops by alleviating salinity [46]. It also increased the 

activities of peroxidase (POD), superoxide dismutase (SOD), ascorbate peroxidase (APX), and 

catalase (CAT) in food crops [40,47]. It is strongly demonstrated that Rhizophagus irregularis SA 

and Funneliformis mosseae BEG95 (1:1) can alleviate salinity stress. In contrast, biofertilizers are 

prepared using alive cells of microbes that increase available nutrients for plants in saline soil [48]. 

AMF effectively enhances the salinity tolerance of plants by enhancing leaf gas exchanges, peroxidase, 

catalase, and superoxide dismutase activities, decreasing malondialdehyde contents, increasing the P/N 

ratio, and absorbing less Na+ and more Ca2+ in their tissues [48].  

In contrast, arsenic (As) is a deadly metalloid [49]. More than 60 million people are at risk of 

arsenic poisoning in Bangladesh [50]. A hundred million individuals are often in contact with As from 

potable water. The situation is overwhelming in South Asia [3]. Human and natural activities are 

responsible for the release of As into the environment. Groundwater, mineral ore, geothermal processes, 

and pesticides are the main sources of As [51–54]. Literature has shown that As could contribute to 

about 30% of the total As ingestion in food sources [54]. AMF remarkably reduces As in lentil plants 

grown at 8 and 45 mg kg-1 As soils [21]. The extended hyphal network of AMF reduces As toxicity in 

plants by modifying the metal acquisition [21].  

AMF decreases As phytoavailability by stabilizing As through mycelium and glomalin [34,55]. 

Mycelium forms a network in the soil, effectively immobilizing and trapping As to prevent its uptake 

by plants. In addition, glomalin is a glycoprotein produced by AMF, which reduces the availability of 

arsenic [56]. These mechanisms, adopted by AMF to stabilize As, significantly contribute to lowering 

its potential impact on plants, enhancing agricultural sustainability, and mitigating the risks associated 
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with As contamination. It can be well-defined that AMF is a significant element for nutrients and 

bioremediation of As in food crops [57].   

AMF is an obligate biotroph that exchanges mutual benefits with plants. In this context, AMF can 

be considered as a natural biofertilizer. Although, naturally AMF richness can represent an effective 

substitute for conventional fertilization practices [58]. The production of AMF inoculum is highly 

laborious due to its obligate biotrophic nature. However, endomycorrhiza-enriched biofertilizers have 

already been explored in different countries. The mycorrhizae biofertilizer was used in economic crops 

such as fruit trees. Now, this biofertilizer can be used for food crops grown in stress soils. Therefore, 

AMF-enriched climate smart biofertilizers might be developed to increase the nutritional quality and 

antioxidants by reducing abiotic stress in food crops grown in soils.  

2. AMF effectiveness differs with climatic and soil conditions 

Arbuscular mycorrhizal fungi are widely characterized by geographical variability [59]. Soil 

type is a major factor in shaping AMF communities [60]. AMFs are variable in acidic and 

calcareous soils [61]. Literature shows that AMF communities can be affected by organic carbon and 

nitrogen contents in soils [62]. AMF with plants changes by edaphic factors such as nitrogen (N), 

phosphorus (P), magnesium (Mg), and potassium (K) contents and soil texture [36]. Still, 

comparatively little evidence is known about the impact of climate variables on AMF communities. 

The density and diversity of the AMF population were positively correlated with rainfall during the 

growing season [60]. Soil factors (especially pH, N, Zn, and Cu) mostly affected the variation in AMF 

communities associated with Chenopodium ambrosioides, while geographic and climate factors 

affected smaller variations [63]. Temperature, precipitation, N, and K strongly affected the abundance 

of AMF species associated with Robinia pseudoacacia [64]. AMF colonization was lower in sand than 

in gypsum or limestone soils and was largely explained by environmental factors. Soil physical stress 

also interrupted the variability of AMF with root colonization [64].  

3. Inorganic fertilizers vs. biofertilizers 

Inorganic fertilizers are classified based on the content of the nutrient element and their physical 

form can vary (solid or liquid) [65]. The most common traditional fertilizers include potassium (K), 

nitrogen (N), and phosphorus (P). Some fertilizers contain single nutrients that may be known as 

simple fertilizers. They have active ingredients that are easily soluble in water, rapidly decomposable, 

and easily absorbable by roots [65].   

In contrast, biofertilizers are prepared using alive cells of microbes that increase nutrient solubility 

or plant access to nutrients. Biofertilizers are one of the vital components in integrated nutrient 

management in terms of cost-benefits and environmental friendliness. Several microorganisms are 

used for the production of biofertilizers. Table 1 shows the development of different types of biofertilizers 

using microorganisms such as algae, fungi, or bacteria [66]. Bacterial biofertilizers are used in crops as 

nitrogen fixers, symbiotic and non-symbiotic associative, and phosphate solubilizers (Table 1). Fungal 

biofertilizers might have different characteristics such as phosphate solubilizers, non-symbiotic, 

nutrient mobilizers, and symbiotic. Algal biofertilizers may have symbiotic, non-symbiotic, and 

nitrogen-fixing characteristics in food crops (Table 1).   
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Table 1. Biofertilizers and their character with examples are described below [66]. 

Types  Character  Example  

Bacterial 

biofertilizer 

Nitrogen Fixer This type of biofertilizer contains bacteria that can fix nitrogen. The bacteria 

produce nodules in the roots of the leguminous crops and add nitrogen to the 

soil. Free-living bacteria also fix the nitrogen from the atmosphere. 

Symbiotic Mesorhizobium, Azorhizobium, Sinorhizobium, Allorhizobium, 

Bradyrhizobium, Rhizobium, etc. 

Associative Herbaspirillum, Azospirillum, etc. 

Non-symbiotic Azotobacter, Derxia, Rhodospirillum, Rhodopseudomonas, Chromatium, 

Beijerinckia, Acetobacter, etc. 

Phosphate Solubilizer This type of biofertilizer fixes phosphorous through phosphorus-solubilizing 

microorganisms. Phosphorus is converted into a soluble form by organic 

acids and enzymes. 

Non-symbiotic Pseudomonas striata, Bacillus pseudomonas, Bacillus circulans, etc. 

Fungal 

Biofertilizer 

Phosphate Solubilizer This biofertilizer comprises fungi. The mechanism is also the same as 

phosphate solubilizer biofertilizer. 

Non-symbiotic  Penicillium, Aspergillus, Trichoderma, etc. 

Nutrient Mobilizer This biofertilizer transfers nutrients such as phosphorus from the soil to the 

cortical cells of the roots. They also perform as carriers of nutrients.  

Symbiotic  Arbuscular mycorrhizal fungi (AMF) 

Algal 

Biofertilizer 

Nitrogen Fixer This type of biofertilizer contains algae that can fix nitrogen.  

Symbiotic Blue-green algae or cyanobacteria 

Non-symbiotic Azolla 

However, arbuscular mycorrhizal fungi (AMF) can be applied as biofertilizers [58]. The tree-

shaped structures, arbuscules, and fungal hyphae are used in AMF-enriched biofertilizers [3,5,6]. In 

addition, the extended extraradical mycelia and hyphae of AMF increase phosphorus, nitrogen, copper, 

and zinc under stress conditions [6]. Consequently, AMF might reduce the demand for chemical 

fertilizer in crop fields [58]. AMF is undoubtedly promising in sustainable farming for its various 

beneficial purposes such as augmented productivity, nutrient uptake, plant biomass, and yield. 

Consequently, AMF increases healthy foods for human beings [58]. Table 2 shows that AMF species 

of Glomus mosseae, Rhizophagus irregularis, Glomus intraradices, Acaulospora morrowiae, 

Paraglomus occultum, Funneliformis mosseae, Rhizophagus clarus, and Rhizophagus intraradices 

enhance biomass growth, yield, antioxidant activities, and mineral and bioactive compounds under 

abiotic stress in food crops [28,67–69]. Glomus mosseae reduces arsenic stress in lentils, mung bean, 

and pea crops [70]. AMF species of Glomus etunicatum, Glomus intraradices, Glomus mosseae, and 

Claroideoglomus etunicatum reduce salinity stress in rice and cucumber crops [40,71].   
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Table 2. AMF reduces abiotic stress in food crops grown in soils. 

Abiotic 

Stress  

Host  AMF Benefits  References 

Drought   Glycine max L. AMF mixed  It boosted proline, photosynthesis, leaf 

area, growth, and biomass production  

[67] 

Drought Triticum 

aestivum 

Glomus mosseae Reduced osmotic damage, increased 

chlorophyll, antioxidants, ascorbic acid, 

and nutrients  

[68] 

Drought Lactuca sativa, 

Solanum 

lycopersicum 

Rhizophagus irregularis, 

Glomus intraradices 

Increased biomass and abscisic acid 

(ABA) accumulation  

 

[69] 

Metal-

general 

Sesbania 

rostrata 

Glomus mosseae Enhanced the formation of nodules with 

root, and increased N and P uptake 

[72] 

Arsenic  Lens culinaris,  

Vigna radiata,  

Pisum sativum 

Glomus mosseae Increased biomass and antioxidant  [19–21,49,70,73]  

Drought  Solanum 

lycopersicum 

Acaulospora morrowiae, 

Paraglomus occultum, 

Funneliformis mosseae, 

Rhizophagus clarus, and 

Rhizophagus intraradices 

Increased biomass and antioxidant 

activities 

[69] 

Salinity Cucumis 

sativus 

Glomus etunicatum, 

Glomus 

intraradices, Glomus 

mosseae 

Increased biomass, photosynthetic 

pigment, and antioxidant enzymes 

[40] 

Salinity  Oryza sativa L. Claroideoglomus 

etunicatum 

Improved yield, photosynthetic 

rate, and stomatal conductance 

[71] 

3.1. Comparative analysis between inorganic and mycorrhizae-enriched biofertilizer   

The plant height, grain weight, and yield were 125.73 cm, 151.62 g, and 3536.83 kg ha−1 with the 

treatment of mycorrhiza and recommended doses of chemical fertilizers. In contrast, the application of 

mycorrhiza and rhizobium showed a thousand-grain weight, and yield was 167.19 g and 4321.41 kg ha−1, 

respectively, in cowpea crops. Mycorrhizae-enriched biofertilizers increase yield by 23% compared to 

chemical fertilizers [74]. AMF and nitrogen-fixing bacteria have been widely used to improve soil 

fertility [75]. Also, this type of biofertilizer plays a crucial role in plant metabolism and nutrient 

availability, facilitating nutrient uptake from the soil [76]. The symbiotic association of rhizobium 

species with legumes promotes biological nitrogen fixation, phosphate solubilization, and Indole-3-

acetic acid (IAA). AMF-containing biofertilizers enhance nutrient mineralization and the root area of 

crops [77]. In addition, AMF-enriched biofertilizer interacts with other microorganisms in the 

rhizosphere. It enhances Zn, Cu, Fe, Mn, and other nutrient uptake by expanding the network of hyphae 

in their cells. AMF improves the storage of carbon and nutrients and provides a favorable habitat for 

the survival and development of soil microorganisms. AMF also reduces soil-borne diseases, including 

Aphanomyces, Cylindrocladium, Fusarium, Macrophomina, Phytophthora, Pythium, Rhizoctonia, 

Sclerotinium, Verticillium, and Thielaviopsis sp. [78]. G. intraradices and G. mosseae improved K 



680 

AIMS Microbiology  Volume 10, Issue 3, 674–693. 

absorption in maize crops. This K-solubilizing AMF improves the growth of cotton, rape, pepper, 

cucumber, sorghum, wheat, tomato, chili, sudan grass, and tobacco [79]. Therefore, AMF-enriched 

biofertilizers are economically viable and environment friendly. Soil health and crop productivity also 

improved using AMF. It could be applied as a supplementary substance with chemical fertilizers [80]. 

AMF also reduces the demand for phosphorus fertilizers [81]. Incessant application of chemical 

fertilizers and pesticides creates environmental problems for soil, plants, and human health [82]. AMF 

enhances nutrients that augment photosynthate production [83,84]. For example, biomass growth and 

mineral contents were higher in AMF-inoculated plants [85].      

Arbuscules of AMF are highly helpful for increasing nutrients, carbon, and phosphorus-

containing compounds, finally improving the growth of host plants [86]. It is also detected that AMF 

maintains P and N uptake in plants for their development under stress conditions. AMF can reduce the 

demand for chemical fertilizers by up to 50% during crop production. Figure 1 shows that AMF 

increases biomass growth and microbial activities in soils compared to non-AMF plants [87,88].  

 

Figure 1. AMF increases other microbial activities and nutrient availability in the 

rhizosphere soil (adapted from [88]). 

4. Development of AMF-enriched biofertilizers 

AMF-enriched biofertilizers can be prepared using rhizosphere soils, and root-containing spores, 

hyphae, mycelium, vesicles, and arbuscules [58]. AMF production is easier than other methods through 

greenhouse experiments. The purity of the AMF strain is a major issue in developing mycorrhizae-

enriched biofertilizers. In vitro is the more recognized method for pure culture of AMF [89]. Quite a 

lot of companies around the world are producing AMF spores. Accordingly, the production of 

mycorrhizal inoculants has been increasing globally for the last decades. Generally, the suppliers may 

have their AMF products mostly within their territories. Currently, ectomycorrhizal fungi are exported 

by a couple of multinational companies globally. This type of mycorrhizal inoculum is used in trees, 

shrubs, and precious fruit trees.  

Also, AMFs are applied in vegetables, forests, and ornamental trees under abiotic stress [90]. 

AMF inoculation is highly used in food crops grown under drought stress. However, the production of 

AMF inocula with climate-smart technology is rarely visible; but, it is recognized that mycorrhizal 
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fungi flourish crop yield under stress soils. However, quantity and genetic diversity may impact the 

colonization of AMF with host plants [91]. It is challenging to judge the cost-effectiveness of the AMF 

product and its rate [58]. However, inspection of the AMF inoculant is not easy due to its 

fundamentally multifaceted heritable structure [58]. So, molecular techniques are needed to 

characterize them [58]. Abiotic stress is focused on the crops’ responses in the field crops [58]. Meta-

analyses have been suggested for growth responses to AMF inoculations, based on the greenhouse and 

field conditions [91]. AMF has already been used in manufacturing biofertilizers for their constructive 

response in terms of stress. The collection of AMF spores, culturing them with host plants, 

identification, and use against stress in food crops are the main procedures for the preparation of AMF-

enriched climate smart biofertilizer. The methods for the preparation of AMF-enriched biofertilizer 

are shown in Figure 2.  

 

Figure 2. Climate-smart technology: Arbuscular mycorrhizal fungi (AMF)-enriched biofertilizer. 

5. AMF-enriched biofertilizers reduce abiotic stress 

Arsenic (As) stress has been a global problem in food crops for the last three decades [92]. Arsenic 

in soils is one of the most important abiotic stresses that reduce plant biomass growth and the quality 

of food production. Arsenic reduces growth, pigment, total chlorophyll, catalase (CAT), and ascorbic 

acid content in food crops [93]. For this reason, AMF is recommended to increase chlorophyll and 

CAT activity, and reduce oxidative stress in As-stressed crops (Figure 3). AMF enhances antioxidant 

defense mechanisms and the nutritional quality of food crops grown in As soils [20]. AMF has great 

potential in reducing As transfer in biomass and grains of food crops [21]. More precisely, the As in 

grains of food crops decreased by 57% with AMF application [70]. Arsenic (As) is stored in the 

vacuole through fungal hyphae [94,95]. This hypha of AMF improves the growth, yield, and nutrient 

status of food crops under As stress [96–99].  

Under drought stress, AMF also increases nutritional quality and antioxidant activities in food 

crops grown in soil (Figure 4). Many studies show that AMF reduces drought stress in food crops [100]. 

The plant’s tolerance to drought increased using the extra-radical hyphae of the AMF [101]. As a result, 

biomass production increased under drought stress [102,103]. Gas exchange, leaf water potential, 

stomatal conductance, and transpiration rate are increased through the symbiosis of AMF [104–106]. 

Photosynthesis in C3 (Leymus chinensis) and C4 (Hemarthria altissima) plants increased using AMF 
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under stress conditions. The biomass growth with AMF-treated plants was significantly higher than 

that of the control in tomatoes (non-AMF). In AMF-treated tomatoes, CAT and APX increased by 42% 

and 66%, respectively, compared to non-AMF under drought conditions. MDA and H2O2 (ROS) in 

AMF-treated tomato plants were also reduced by 50% and 2% compared to the control. Minerals of tomato 

fruits improved by 36% with AMF treatment than that of the control [28]. AMF significantly enhanced 

drought tolerance and biomass production in plants over the activity of N metabolizing enzymes [107].   

 

Figure 3. Arbuscular mycorrhizal fungi (AMF) improve photosynthetic pigments and 

antioxidant activity under arsenic stress in food crops (adapted from [19]). 

 

Figure 4. Arbuscular mycorrhizal fungi increase biomass growth and antioxidants and 

reduce climate change-induced drought in plants.   
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Global food security is affected due to soil salinity [108]. Reactive oxygen species (ROS) are 

enhanced in food crops grown in saline soils [109,110]. The biomass growth, photosynthetic rate, 

stomatal conductance, leaf water potential, and water use efficiency enhanced using AMF in plants 

grown under salinity stress [111,112]. AMF also enhanced gas exchange, leaf area index, fresh and 

dry biomass, and chlorophyll content in food crops under saline conditions [113–115]. In addition, P, 

N, Ca, and K were higher in the AMF-treated plants under salt-stress conditions [116–118]. 

Malondialdehyde (MDA), superoxide dismutase (SOD), proline, peroxidase (POD), superoxide 

dismutase (SOD), and catalase (CAT) are changed in plants through AMF under salinity stress. 

Therefore, the effect of AMF on plant growth and physiology is more notable under salinity stress [119]. 

The production of AMF inoculum is a bit tough due to its obligate symbiotic behavior with host plants. 

As a consequence, a methodology is needed for the production of AMF on a large scale. However, 

AMF-enriched climate-smart biofertilizers might be developed to improve the nutritional quality and 

antioxidants in food crops grown in soils under abiotic stress conditions (Figure 5).  

 

Figure 5. Differential response of an AMF and non-AMF plant under salinity stress 

(adapted from [119,121]). 

It is already clear that AMF increases biomass growth, yield, and antioxidant activities under 

arsenic, drought, and salinity stress in food crops grown in soil [28]. Therefore, AMF-enriched 

biofertilizers might be recognized as climate-smart biofertilizers.  

6. Future outlook and research gaps as an emerging technology 

Global food production is required to double by 2050 to feed the increasing human population. 

Synthetic fertilizers in agriculture have lost soil quality due to many environmental consequences. 

Biofertilizers are recognized as an advanced approach to reducing environmental stress and 

maintaining sustainability in agriculture. There is much evidence that beneficial microbes improve soil 

productivity and quality. Of many microbial contestants, AMF has been shown potential to be used as 
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a biofertilizer due to its numerous benefits. Plant growth and yield, nutrient availability, water-holding 

capacity, and disease resistance increased by the application of AMF-enriched biofertilizers. In 

addition, AMF could also play a role in controlling soil erosion, improving the initial growth of 

seedlings, remediating soil pollutants, and eradicating harmful organisms. In the future, a diverse pool 

of AMF species should be used in crop fields based on their host and environmental preferences. So, 

the selection of the best inoculum is highly recommended for crops. Technologies and protocols should 

be used to select the effective inocula. Maintaining quality control of products is also significantly 

important to commercializing AMF inoculants to meet the needs of the farmers. Once these challenges 

are addressed properly, AMF has more potential as a natural biofertilizer in future agriculture. This 

AMF-enriched biofertilizer will be used in crop fields like precision agriculture, which reduces the 

demand for chemical fertilizers and the impacts of climate change in crop fields. Finally, a climate 

resilience environment will be developed by AMF-enriched biofertilizers in the crop field [120,121].  

Climate change induces an unexpected environment for crop cultivation. The symbiosis of 

microbial inoculants depends on the crop species, native microbial communities, soil type, and nutrient 

availability in soils. A study is needed on how the pathogen, temperature, rainfall, and antimicrobial 

activities affect the efficacy of AMF inoculant in mycorrhiza-enriched biofertilizers. Further field trials 

are essential to understand the factors hindering consistently positive plant responses to AMF 

inoculants and help farmers determine whether they are appropriate for their system. The viability of 

hyphae, mycelia, and spores in the mycorrhiza-enriched biofertilizers depends on the temperature. 

Further study is needed about the viability of AMF spores under specific temperatures.  

7. Conclusions  

A few researches have been done regarding the positive effect of AMF in increasing plant biomass 

under abiotic stress. Still, the role of AMF on plant growth is unknown in stressful environments. AMF 

has been mainly used as a valuable material for increasing nutrients in food crops. Recently, AMF can 

effectively reduce salinity, drought, and arsenic stress in food crops, thus increasing the yield of crops 

and vegetables. Therefore, AMF practice is tremendously important for its consistent sustainability in 

modern agricultural systems. AMFs must be explored at all levels to prepare as a natural climate-smart 

biofertilizer to reduce abiotic stress in sustainable agriculture. AMF-enriched biofertilizer may be 

applied to field crops. Thus, this type of fertilizer will be able to make a mutual relationship with food 

crops to supply them with nutrients under stressful conditions. A quality and regulation framework 

should be forwarded by an expanded list of authors to ensure that microbial products contain viable 

propagules, and an absence of pathogens, and are packaged with labels describing their contents and 

nutrient adjuncts. The benefits of introducing AMF into agricultural soils will be more predictable, 

which will turn them into more reliable and less environmentally damaging methods of improving crop 

productivity. 
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