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Abstract: Endophytic bacteria live asymptomatically inside the tissues of host plants without 

inflicting any damage. Endophytes can confer several beneficial traits to plants, which can contribute 

to their growth, development, and overall health. They have been found to stimulate plant growth by 

enhancing nutrient uptake and availability. They can produce plant growth-promoting substances 

such as auxins, cytokinins, and gibberellins, which regulate various aspects of plant growth and 

development. Endophytes can also improve root system architecture, leading to increased nutrient 

and water absorption. Some endophytes possess the ability to solubilize nutrients, such as 

phosphorus and potassium, making them more available for plant uptake, and fixing atmospheric 

nitrogen. Chickpea (Cicer arietinum) is a major legume crop that has mutualistic interactions with 

endophytes. These endophytes can benefit the chickpea plant in various ways, including higher growth, 

improved nutrient uptake, increased tolerance to abiotic and biotic stressors, and disease suppression. 

They can produce enzymes and metabolites that scavenge harmful reactive oxygen species, thus 

reducing oxidative stress. Moreover, several studies reported that endophytes produce antimicrobial 

compounds, lytic enzymes, and volatile organic compounds that inhibit the growth of fungal pathogens 

and trigger systemic defense responses in plants, leading to increased resistance against a broad range 
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of pathogens. They can activate plant defense pathways, including the production of defense-related 

enzymes, phytoalexins, and pathogenesis-related proteins, thereby providing long-lasting protection. 

It is important to note that the diversity and function of chickpea-associated endophytes can vary 

depending on factors such as variety, geographical location, and environmental conditions. The 

mechanisms behind the plant-beneficial interactions are still being intensively explored. In this review, new 

biotechnologies in agricultural production and ecosystem stability were presented. Thus, harnessing 

chickpea endophytes could be exploited in developing drought-resistant cultivars that can maintain 

productivity in arid and semi-arid environments, crucial for meeting the global demand for chickpeas. 

Keywords: chickpea; biotic stresses; drought; salinity; pathogens; plant traits 

 

1. Introduction  

The importance of microorganisms in plant health and survival is well-recognized. Plant root can 

establish interactions with its associated microbes as so-called endophytes, which include rhizobia, 

arbuscular mycorrhizal fungi (AMF), and plant growth-promoting rhizobacteria (PGPR); these 

microbes can benefit their host plants in several ways, including plant growth stimulation, improved 

nutrient acquisition, regulating plant hormone levels, and improved disease resistance against 

pathogens [1–3]. Although the interactions between plants and endophytes have been extensively 

investigated, there is still limited knowledge of the mechanisms used by plant endophytic 

microorganisms to mitigate various abiotic and biotic stresses [4]. 

Chickpea (Cicer arietinum), with a total production of about 18.09 million tons (FAO STAT, 2022), 

is the third-most-produced legume grain after the common bean and soybean. Along with the production 

of different bioactive compounds, it is recognized as rich in protein, fat, minerals, and vitamins [5]. 

Chickpea is particularly important in arid lands, where productivity is severely restricted by salt stress and 

drought [6]. Chickpea can withstand such adverse conditions with the support of its microbiome, which 

includes genera like Bacillus, Pseudomonas, Azorhizobium, Bradyrhizobium, Ensifer, Mesorhizobium, and 

Rhizobium, allowing for the production of high yields in numerous nitrogen-poor and hostile soils [7–9]. 

It can also establish beneficial symbiotic relationships with AMF, which are known to effectively reduce 

drought stress by a variety of mechanisms including the control of plant hormonal balance, an increase in 

photosynthesis rates and leaf gas exchange, and the facilitation of water movement from the soil to the 

plant via extraradical mycelium [10]. However, environmental factors including drought, salt stress, and 

extreme changes in temperature can hinder the establishment of these relationships [11]. For example, 

drought has a significant detrimental effect on nodule functioning because it causes early maturity and a 

decrease in N fixation [12,13]. Furthermore, salt stress restricts plant development by shrinking nutrient 

uptake, thus making plants more vulnerable to soil-borne diseases [14,15]. In such conditions, plant-

associated endophytes protect plants from oxidative stress, stimulate plant growth, improve physiological 

processes, and protect them from various soil-borne pathogens [16–19]. 

The traits involved in plant-growth stimulation and tolerance to abiotic and biotic stresses by 

endophytic bacteria have been commonly reported and reviewed in previous studies [20–24]. The majority 

of bacteria are able to produce various biological active compounds including phytohormones such as 

auxin, gibberellins, jasmonate, cytokinin, Indole-3-acetic acid (IAA) [25], siderophores [26], 1-

aminocyclopropane-1-carboxylate (ACC) deaminase [27], as well as antifungal or antibacterial agents [28]. 
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Table 1. Bacterial and fungal endophytes were identified in different tissues of the 

chickpea (Cicer arietinum). 

Bacterial and fungal endophytes Plant tissue Reference 

Mesorhizobium, Burkholderia, Bacillus,  

Priestia, Paenibacillus, Alcaligenes, Acinetobacter, Rahnella, 

Enterobacter, Microbacterium 

seed [29] 

Enterobacter sp., Bacillus sp., Pseudomonas sp., Staphylococcus 

sp., Pantoea sp. 

seed [25] 

Bacillus, Sphingomonas seed [30] 

Rhizobium leguminosarum subsp. ciceri root nodules [31] 

Mesorhizobium sp. root nodules [32] 

Mesorhizobium, Pseudaminobacter, Burkholderia, Shinella, 

Arthrobacter, Bacillus 

root nodules [33] 

Mesorhizobium, Methylobacillus, Arthrobacter, Bacillus, 

Rhodococcus, Ramlibacter, Janthinobacterium, Kaistobacter, 

Rubrobacter 

root [33] 

Klebsiella, Pantoea, Staphylococcus, Rhizobium, 

Stenotrophomonas, Enterobacter, Paenibacillus sp., Bacillus sp., 

Pseudomonas sp. 

root [26] 

Achromobacter xylosoxidans, Bacillus cereus, Bacillus 

thuringiensis, Bacillus subtilis 

root [15] 

Paenibacillus sp. root [34] 

Mesorhizobium sp. root [35] 

Priestia megaterium, Brucella haematophila, Microbacterium 

paraoxydans 

root [36] 

Pseudomonas putida, Pseudomonas alcaligenes, Pseudomonas  root [37] 

Mesorhizobium sp. root [38] 

Mesorhizobium huakuii, Mesorhizobium amorphae root  [39] 

Bacillus cereus, Achromobacter xylosoxidans, Bacillus 

thuringiensis, Bacillus subtilis 

root  [40] 

Streptomyces sp. roots, stems, leaves [41] 

Bacillus altitudinis rhizosphere [42] 

Bacillus subtilis, Bacillus thuringiensis,  

Bacillus megaterium 

rhizosphere [43] 

Pseudomonas sp., Rhizobium sp.  rhizosphere [44] 

Serratia marcescens, Pseudomonas fluorescens, Rahnella 

aquatilis, Bacillus amiloliquefaciens 

rhizosphere [45] 

Mesorhizobium ciceri, Mesorhizobium loti, Mesorhizobium 

mediterraneum 

rhizosphere [46] 

Pseudomonas sp., Bacillus sp. rhizosphere [47] 
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Until now, many endophytes were isolated via cultivation methods or identified via cultivation-

independent methods from different parts of the chickpea (see Table 1). Recent developments in 

sequencing technologies allowed scientists to explore the complex nature of microbe-microbe and 

plant-microbe interactions involving the diverse inhabitants of the chickpea. Despite the technological 

improvements in the microbiology of bio-inoculation, the conditions and mechanisms behind 

successful plant-microbe establishment are largely unknown.  

This review focuses on the current knowledge of bacterial endophytes of chickpeas, their origin, 

plant growth-promoting features, and their capacity to buffer abiotic and biotic challenges. Moreover, 

it will discuss the future perspectives and challenges of using endophytes for improving chickpea 

performance under drought- and salt-affected lands. 

2. Endosphere colonization of endophytes and endophytic microbes associated with chickpeas 

Plant endophytes can colonize the inner tissues of plants either via horizontal transfer or vertical 

transfer. It is referred to as a horizontal endophyte transfer when microbes originate from environmental 

sources such as soil, water, air, or other organisms, while it is referred to as a vertical transfer when 

microbes are inherited via seeds or plants germinating organs [48]. Apart from the vertical and horizontal 

transfer, endophytes can enter and establish within plant tissues via the stomata, hydathodes, lenticels, 

and wounds caused by a pathogen or mechanical damage [49]. However, plants can not recognize 

endophytes as endophytes may penetrate plants using the same strategy as pathogenic microorganisms 

as shown by Johnson et al. [50] with Neotyphodium coenophialum, an endophyte found in tall fescue, 

which colonizes the intercellular tissues of the plant without triggering a defense response [50]. Therefore, 

plant host species or genotype selection [51], and the ability of bacteria to adapt to the inner environment 

of the host plant [52], are important parameters for colonization success. Furthermore, regulation of 

receptor-like kinases necessary for nod factor recognition appears to be critical to allow rhizobial 

infection, and this process may be associated with the recruitment of these receptors to membrane 

microdomains [53]. Soil, geolocation [30,54], and plant genotype [40,55] are important factors in 

determining root endophyte communities. For example, a study by De Meyer and colleagues [56] 

showed different environmental parameters as drivers of the endophytes in legume nodules. 

Endophytic bacteria have been found in various parts of the chickpea plant, including roots, stems, 

leaves, and seeds. These bacteria establish a symbiotic relationship with the chickpea, where both the plant 

and the endophyte benefit from the association [57,58]. One of the most well-known groups of endophytes 

associated with chickpeas is the genus Rhizobium. Rhizobium and other symbiotic nitrogen fixers genera, 

globally indicated as “rhizobia”, form a mutualistic relationship with leguminous plants, such as chickpeas, 

by infecting the root nodules and fixing atmospheric nitrogen into a form that the plant can use for growth. 

This nitrogen fixation process is crucial for enhancing the chickpea’s productivity and nitrogen nutrition. 

Apart from rhizobia, other bacteria, such as Acinetobacter, Bacillus, Pseudomonas, Burkholderia, 

Enterobacter, Microbacterium, Paenibacillus, Pantoea, Arthrobacter, Kosakonia, Klebsiella, 

Stenotrophomonas, and Streptomyces, have been reported as endophytes in chickpeas [26,29,30,33,36]. 

Most of these genera are also reported as endophytes of other plant species such as wheat, barley, rice, 

maize, and the common bean [59–62]. Mesorhizobium is the most dominant genus in root nodules of 

chickpeas, also identified in the seed and root [29], indicating an interspecific interaction between this 

microbe and the chickpea plant. There are very few reports about the fungal endophytic microbiome of 

chickpeas where most of them studied AM and non-AM fungal endophytes [63].  
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3. Plant growth stimulation and abiotic stress tolerance 

The role of PGPR in mitigating abiotic stress via multiple mechanisms is well-known. For 

example, the synergistic application of PGPRs—Bacillus subtilis, Bacillus thuringiensis, and Bacillus 

megaterium—and plant growth regulators—salicylic acid and putrescine—effectively enhances 

physiological parameters such as chlorophyll, protein, and sugar contents, while also aiding in 

osmoregulation, ameliorating oxidative stresses, and inducing new proteins, ultimately promoting 

plant growth and tolerance to environmental stressors [64]. Furthermore, exopolysaccharides synthesis 

protects the plant from both desiccation and different pathogens/predators via the formation of a 

rhizosheath around the roots [65,66]. Besides, interaction with plants leads to the exudation of various 

biochemical compounds that enhance nutrient uptake and increase plant resistance to pathogens. 

However, little is known about endophytes associated with chickpeas in terms of drought and salt 

tolerance. Many culturable endophytic bacteria of chickpeas have shown growth-promoting effects on 

host plants [67] by producing phytohormones such as auxin, gibberellin, salicylic acid, jasmonic acid, 

and cytokinin [68]. Auxin stimulates plant cell expansion and proliferation as well as, indirectly, root 

and shoot growth [69]. Cytokinin and auxin are key regulators of nodule initiation in the root cortex. 

Salicylic acid also plays an important role in improving resistance to abiotic and biotic stress in 

chickpeas via regulating the antioxidative enzyme activities such as polyphenol oxidase and 

peroxidase [68]. The metabolic profile of drought stress-tolerant varieties showed a significant increase 

in catalase, ascorbate peroxidase, and peroxidase activities as compared to sensitive varieties under 

stress conditions [65,70]. This might indicate that endophyte-produced molecules might induce 

antioxidative enzyme activities under drought stress. However, it is necessary to assess how 

consistently different endophytes exhibit beneficial traits across various chickpea cultivars or 

environmental conditions. 

In plant cells under drought stress, reactive oxygen species (ROS) accumulate and cause oxidative 

damage and cell death [71]. Antioxidant enzyme activities are known to increase in conditions of 

drought, salt, low temperature, and heavy metal exposure [72] and lessen oxidative damage, thus 

helping plants build an antioxidant defense system. Further, endophytes play a role in lowering plant 

ethylene levels, which is a typical plant response to various environmental challenges [73] by 

producing the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase encoded by the acdS 

gene. Inoculation with the ACC-deaminase producers Arthrobacter nitroguajacolicus and 

Harmannibacter diazothrophicus increased resistance against salt stress in wheat [74] and barley [75], 

respectively. 

Endophytes are often used in the co-inoculation of multiple endophytes or with AMF as 

facilitators [29] under water-limited conditions. The mechanisms of how co-inoculation works, 

however, have not been explained so far. For instance, the co-inoculation of chickpeas with root 

endophyte Mesorhizobium sp. and AMF has increased the protein content of chickpea grains under 

water-deficit conditions [76]. 

4. Use of endophytes as biocontrol agents 

The chickpea is susceptible to various diseases that can affect its productivity and quality. For 

example, Fusarium wilt, caused by the soilborne fungus Fusarium oxysporum f. sp. ciceris is a 

significant disease of chickpeas worldwide. It can cause severe yield losses in susceptible varieties. 
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The pathogen infects the root system of the plant and spreads upward through the vascular tissue, 

leading to wilting, yellowing, and eventually plant death [47]. Root rot is a common disease of 

chickpeas caused by various soilborne pathogens, including fungi like Rhizoctonia solani, 

Fusarium spp., and Pythium spp. The disease manifests as root decay, discoloration, and reduced 

root mass. Infected plants may exhibit wilting, stunting, and overall poor vigor, ultimately resulting 

in yield losses [77]. Further soil-borne pathogens such as Phytophthora medicaginis, Pythium 

irregulare, and Botrytis cinerea can cause severe diseases and significantly reduce yield in 

chickpeas.  

Endophytes can be used as biocontrol agents to suppress pathogens: for example, Streptomyces, 

Bacillus, and Pseudomonas strains are well-known to be effective biocontrol candidates [35,78]. Apart 

from bacterial strains, fungal microbes are also effectively used against root rot diseases such as 

Penicillium, Cladosporium, and Fusarium [79]. Fatima et al. [80] found that 17 bacterial isolates out 

of 50 demonstrated antagonistic activity against Fusarium oxysporum. Among them, Serratia sp. and 

Enterobacter sp. significantly suppressed the chickpea wilt and improved root system and plant 

biomass. Similar results were observed by Mukherjee et al. [18], who showed that the endophytes 

Bacillus subtilis and Enterobacter hormaechei increased the tolerance of chickpea plants to the 

pathogen Fusarium oxysporum f. sp. ciceris. In addition, out of the 255 bacterial endophytes that were 

isolated from seven different crop plants (chickpea, tomato, wheat, berseem, mustard, potato, and 

green pea), three isolates were found to have strong inhibition (>50%) against three fungal pathogens: 

R. solani, Sclerotium rolfsii, and F. oxysporum f. sp. ciceri. These three endophytic isolates were then 

characterized using morphological, biochemical, and molecular methods and were identified as 

different strains of Bacillus subtilis. The beneficial effects of these bacteria on chickpea plants were 

elucidated by their capacity to reduce the prevalence of disease, stimulate growth parameters, and 

significantly enhance root characteristics. They also exhibited a high level of colonization of the 

roots of endophyte-inoculated plants, a reduction in the production of superoxide, an enhancement 

of plant defense enzymes, and an induction of the expression of pathogenesis-related genes through 

seed priming [81]. Another study, conducted by Gorai et al. [82], demonstrated the potential of 

endophytic Bacillus siamensis CNE6 isolated from the nodule of chickpeas to control black root 

rot disease of C. arietinum L. The researchers found that this endophytic bacterium produced a 

secondary metabolite called (2E)-6-methoxy-2-[(4-methoxyphenyl) methylidene]-2,3-dihydro-1-

benzofuran-3-one, which is effective in inhibiting the activity of lanosterol 14-alpha demethylase, 

an enzyme involved in both ergosterol biosynthesis and beta-tubulin assembling in the fungal 

pathogen that causes the disease. In addition, endophytic Bacillus siamensis CNE6 also 

upregulated the expression of four defense genes (CHI1, PAMP, PR2B, and TF1082) in C. 

arietinum upon pathogenic challenge in in vivo experiments. 

5. Functional traits associated with plant health and fitness 

In the plant rooting zones, PGPR synthesize a variety of phytochemicals, such as siderophores, 

cell wall-degrading enzymes, antimicrobial metabolites, hydrogen cyanide, and phytohormones [16]. 

PGPR also play a vital role in inducing defense mechanisms against pathogens [73]. These 

rhizobacteria can activate specific pathways and signaling molecules in the plants, which result in the 

production of defense enzymes and phytochemicals. One particular pathway involved in the induction 

of defense enzymes is the jasmonic acid pathway. Upon perception of conserved elicitor molecules 
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from the rhizobacteria, the plant activates the jasmonic acid signaling pathway. This pathway is 

initiated by the activation of receptors, such as FLS2 (Flagellin Sensing 2) or EFR (elongation factor 

Tu receptor), which recognize microbial-associated molecular patterns (MAMPs) released by the 

rhizobacteria [73]. The subsequent activation of these receptors initiates a signaling cascade, which 

ultimately leads to the production of jasmonic acid, a phytohormone that is involved in the regulation 

of plant defense responses. Jasmonic acid then acts as a signaling molecule, activating the expression 

of genes involved in the synthesis of defense enzymes [73]. These defense enzymes include chitinases, 

glucanases, peroxidases, and proteases, which play a vital role in breaking down and destroying 

pathogens or their components [73]. Several bacterial strains that showed the biological control ability 

of chickpea pathogens demonstrated the production of hydrogen cyanide, and cell wall-degrading 

enzymes such as glucanase, chitinase, protease, and siderophore [18]. For example, Enterobacter 

hormaechei produces Indole-3-acetic acid, and Bacillus subtilis solubilizes phosphate and potassium 

and inhibits the Fusarium pathogen. Several important defense enzymes, such as phenylalanine 

ammonia-lyase, peroxidase, polyphenol peroxidase, and -1,3 glucanase, were expressed in chickpea 

plants after being inoculated with Serratia or Enterobacter strains. These enzymes may have helped 

the plants resist the pathogen invasion [80]. In a study conducted by Sreevidya et al. [83], about 89 

actinomycetes were screened for their ability to antagonize fungal pathogens of chickpeas using dual 

culture and metabolite production assays. The four most promising actinomycetes were then 

evaluated for their physiological and plant growth-promoting properties under both in vitro and in 

vivo conditions. They were also found to produce siderophores, cellulase, lipase, protease, 

chitinase, hydrocyanic acid, indole acetic acid, and β-1,3-glucanase. Expression profiles for indole 

acetic acid, siderophore, and β-1,3-glucanase genes were upregulated for all three traits and in all 

four isolates.  

Furthermore, the leaves of the chickpea inoculated with the selected endophytes showed 

induction of antioxidant enzymes such as superoxide dismutase, catalase, ascorbate peroxidase, 

guaiacol peroxidase, glutathione reductase, phenylalanine ammonia-lyase, polyphenol oxidase, 

and phenolics, compared to the uninoculated control [41]. Similar results were demonstrated by 

Abd Allah and colleagues [84], who observed enhanced plant biomass, reduced levels of reactive 

oxygen species (ROS), and lipid peroxidation in plants under salt stress. Bacillus subtilis (BERA 71) 

increased the superoxide dismutase, peroxidase, catalase, and glutathione reductase activities, as 

well as the levels of non-enzymatic antioxidants such as ascorbic acid and glutathione. It has been 

indicated that the suppression of ROS generation of lipid peroxidation, and the accumulation of 

proline in inoculated plants with plant-beneficial bacteria enhance membrane stability under 

abiotic stress conditions. Table 2 and Figure 1 demonstrate plant beneficial traits of endophytic 

bacteria. 

 

 

 

 



496 

AIMS Microbiology  Volume 10, Issue 3, 489–506. 

Table 2. Plant beneficial traits of endophytic bacteria associated with chickpeas. 

Bacterial endophytes Plant benefits Mechanism Reference 

Bacillus subtilis Plant growth promotion Production of siderophore, IAA, 

accumulation of superoxide, enhanced 

the plant defense enzymes, induced the 

expression of pathogenesis-related genes 

[81] 

Achromobacter 

xylosoxidans, 

Bacillus cereus, 

Bacillus 

thuringiensis, 

Bacillus subtilis 

Plant growth promotion 

and stress tolerance, yield 

Production of siderophore, IAA, HCN, 

cell wall-degrading enzymes, and 

compatible osmolytes 

[15] 

Enterobacter 

hormaechei, 

Bacillus subtilis, 

Pseudomonas 

aeruginosa 

Plant growth promotion Production of siderophore, IAA, cell 

wall-degrading enzymes, involved in 

phosphorus and potassium solubilization 

[25] 

E.cloacae, 

E. hormaechei, 

B. subtilis 

Antagonistic activity 

against Fusarium 

oxysporum, plant growth 

promotion 

Production of siderophore, IAA, 

ammonium, cell wall-degrading enzymes 

[18] 

Bacillus sp.  

Mesorhizobium sp. 

Burkholderia sp. 

Plant growth promotion Production of siderophore and involved 

in phosphorus solubilization 

[29] 

Mesorhizobium sp. Plant growth promotion 

 

IAA production, involved in phosphorus 

solubilization 

[32] 

Actinobacteria sp., 

Enterobacter sp., 

Pseudomonas sp., 

Pantoea sp., 

Rhizobium sp., 

Stenotrophomonas sp. 

Plant growth promotion 

and antagonistic activity 

against fungal pathogens 

Production of IAA and ammonia [26] 

Mesorhizobium 

ciceri, 

Streptomyces sp. 

Plant growth, yield, 

biological control of 

Botrytis grey mold 

Production of antioxidant enzymes, 

superoxide dismutase, catalase, ascorbate 

peroxidase, guaiacol peroxidase, 

glutathione reductase, phenylalanine 

ammonia-lyase, polyphenol oxidase, and 

phenolics 

[41] 

Bacillus siamensis Plant growth promotion Production of siderophore, IAA, induction 

of antagonistic and ACC-deaminase 

activities, involved in phosphate 

solubilization and nitrogen fixation 

[82] 
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Figure 1. Plant beneficial traits of endophytic bacteria in promoting plant growth and the 

biological control of plant pathogens. 

6. Genes involved in plant-microbe symbiotic-mutualistic interactions  

The chickpea is one of the oldest plants that was domesticated around 11,000 years ago along 

with wheat, barley, the common bean, peas, and lentils [85]. The strains of Rhizobium sp. isolated from 

wild chickpea (Cicer anatolicum) showed good performance and effective symbiosis when chickpea 

plants were inoculated and grown under low and normal temperature conditions. Genes involved in 

the rhizobial symbiosis of chickpeas seem to be very conserved maybe due to its long cultivation 

history [32]. Hence, compared to other crops with a relatively recent history of cultivation, the chickpea 

genome gathers genetic information about forming stable positive connections with their associated 

microorganisms. 

The bacterial genes involved in symbiosis can be split into two groups: 1) nodulation genes (nod) 

such as NodC-chitin synthase, NodB-N-deacetylase, and NodA-acyl transferase which are involved in 

nodulation, and 2) nitrogen fixation genes (nif), which are involved in atmospheric nitrogen fixation. 

The Nod factor assembly process begins with the NodC gene, which is also a host factor and necessary 

for nodulation in all rhizobia. Despite nod genes being specific to rhizobia, nif genes are widespread 

in bacteria. Chickpea is considered a restrictive host which recognizes only a few Nod factors that are 

highly conserved among rhizobia species. nodC or nifH genes are therefore used in many studies as an 

indication of rhizobia symbiosis in chickpea [32]. The absence of these gene sequences can be used to 

identify nodules inhabiting non-rhizobial endophytes. De Meyer et al. [56] found in the nodules of the 

majority of the legume species relatively more rhizobial than non-rhizobial endophytes. They also 

observed the co-occurrence of certain rhizobia with particular non-rhizobial endophytes, which 

suggests inter-specific microbe-microbe interactions [56]. Apart from nod genes, the ClpB chaperone 
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protein is also important in bacterial stress response, and recent research suggests it also plays a role 

in chickpea-rhizobia symbiosis [86]. The Mesorhizobium mediterraneum UPM-Ca36T strain was 

genetically enhanced with an additional copy of the clpB gene, and this modified strain showed 

increased tolerance to heat and acid stress, and showed improved symbiotic performance with 

chickpeas compared to the unmodified strain [87]. This suggests that the modification of these genes 

might be an effective method to create rhizobial strains with both increased stress resilience and 

symbiotic capabilities, potentially improving their use as crop inoculants under environmental stress. 

There are many culturable rhizobial and non-rhizobial endophytes isolated, however often they 

fail to form nodules in the legume from which they were isolated. Hence, they might not have directly 

contributed to the development of the nodules, but they may have indirectly initiated the nodulation 

by producing signaling molecules. Intracellular bacteroids which thrive inside the nodule cells can be 

taken as an example. Although rhizobia initiates nitrogen-fixing nodules on its leguminous host plant, 

bacteroids are located inside the nodule cells, and convert atmospheric nitrogen into ammonia [88]. 

The physiological state of intracellular bacteria differs from that of their free-living counterparts, and 

they must adjust to the environment in which they live, including oxidative stress, a microoxic 

environment, a low pH environment, and certain carbon and nitrogenous substances [88]. The 

successful colonization of such harsh habitats by bacteria is required to adapt to environmental 

conditions. One of the survival mechanisms of bacteria is the stringent response. This conserved 

regulatory mechanism is controlled by the alarmone (p) ppGpp, which regulates physiological 

adaptations to nutrient starvation and other stresses [89]. The synthesis of these molecules is regulated 

by the rsh gene (encodes SelA, SpoT proteins). A stringent response is also required for nodule 

formation in legumes such as Phaseolus vulgaris and Medicago sativa [90,91]. For example, ppGpp 

was shown to accumulate in symbiotic bacteria, including Sinorhizobium meliloti, as a result of amino 

acid starvation [91]. When the synthesis of (p) ppGpp was interrupted by deleting the rsh gene in 

Rhizobium etli, the nitrogen fixation activity in nodules is significantly reduced as well as resulting in 

changes in R. etli bacteroids’ physiology [90]. These studies show the microbe-microbe and microbe-

host interspecific interactions in response to environmental stress conditions.  

7. Challenges in harnessing endophytes for drought tolerance in chickpeas 

To improve drought tolerance in crops, such as chickpeas, by exploiting endophytic microbes, 

breeders and farmers must face significant challenges, such as: 

i. Identifying and characterizing effective endophytic strains with consistent and reproducible 

drought-resistance-promoting abilities.  

ii. Understanding the intricate molecular communication between hosts and endophytes under 

drought stress conditions. This understanding will enable breeders to fully harness the potential 

of endophytes in enhancing drought tolerance in chickpeas.  

iii. Translating laboratory findings into field applications, which requires addressing practical 

issues such as scalability, stability, and compatibility, among others.  

iv. The use of accurate and relevant phenotyping techniques to both select drought-resilient genotypes 

and understand the genetic landscape underlying the adaptive response of chickpeas to drought.  

By integrating the knowledge gained from phenotyping with the understanding of endophyte-

mediated mechanisms, breeders can develop drought-tolerant chickpea cultivars that can withstand 

water-limited conditions and contribute to increased food production.  



499 

AIMS Microbiology  Volume 10, Issue 3, 489–506. 

8. Conclusion and future perspectives 

Using seed or root endophytes as bio-inoculants for chickpeas might be more efficient than using 

soil or rhizosphere bacteria, due to fast recognition by the host plant as a result of co-evolution [60]. 

The long history of chickpea cultivation might lead to establishing more mature interactions between 

its endophytic microbes. According to the holobiont theory, plants and their associated microbiome are 

considered as a single biological unit exposed to evolutionary processes. This suggests that plants have 

evolved strategies for differentiating their evolutionary partners from other microorganisms. Therefore, 

the use of endophytes as inoculants for improving chickpea performance in arid areas has potential. 

Especially, searching for potential candidates among those who have a strong connection with 

chickpea plants can be more effective. On the other hand, non-rhizobial endophytic bacteria in legumes 

should also be studied for successful rhizobia inoculation as those endophytes might have indirect 

stimulations and play important roles in the symbiotic interactions. As was shown in several studies, 

co-inoculation of rhizobia with other PGPRs such as Pseudomonas, Bacillus, Azotobacter, Erwinia, 

Serratia, etc. can be more efficient in decreasing abiotic stresses in legumes [92]. When exposed to 

abiotic stressors, these bacteria might also be responsible for up- or downregulating some genes linked 

to the production of plant metabolites, which might lead to crop plants developing resistance against 

drought. Endophytic bacteria are potential candidates as biotechnological tools that could (at least in part) 

displace conventional agrochemicals. Based on previous reports, endophytic bacteria such as Bacillus, 

Mesorhizobium, and Burkholderia are frequently found as more abundant microbes regardless of 

geographical location, which suggests that they may be vertically transferred from seeds to plants over 

generations and establish a solid relationship with the host plant. Comprehending and understanding the 

plant microbiota in connection to plant genotype and environmental factors may lead us to develop more 

effective inoculation techniques of chickpeas in each specific agronomical situation.  

In conclusion, the symbiotic association between chickpea plants and their endophytes presents a 

compelling strategy for enhancing drought resilience, a critical factor in sustaining chickpea 

production under varying climatic conditions. By elucidating the mechanisms through which 

endophytes confer stress tolerance and improve plant health, researchers can pave the way for 

innovative agricultural practices that leverage these microbial interactions. Further exploration and 

exploitation of chickpea endophytes hold promise not only in fortifying this vital crop against 

environmental stressors but also in contributing to the broader goals of sustainable agriculture and food 

security. 
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