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Abstract: Bacterial meningitis is a catastrophic nervous system disorder with high mortality and wide 

range of morbidities. Some of the meningitis-causing bacteria occupy cholesterol dependent cytolysins 

(CDCs) to increase their pathogenicity and arrange immune-evasion strategy. Studies have observed 

that the relationship between CDCs and pathogenicity in these meningitides is complex and involves 

interactions between CDC, blood-brain barrier (BBB), glial cells and neurons. In BBB, these CDCs 

acts on capillary endothelium, tight junction (TJ) proteins and neurovascular unit (NVU). CDCs also 

observed to elicit intriguing effects on brain inflammation which involves microglia and astrocyte 

activations, along with neuronal damage as the end-point of pathological pathways in bacterial 

meningitis. As some studies mentioned potential advantage of CDC-targeted therapeutic mechanisms 

to combat CNS infections, it might be a fruitful avenue to deepen our understanding of CDC as a 

candidate for adjuvant therapy to combat bacterial meningitis.  
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1. Introduction  

Bacterial meningitis is a severe infection of the central nervous system (CNS) associated with 

high mortality and long-term neurological sequelae in survivors [1–3]. A range of incidence data have 

been reported depending on the setting, with higher incidences reported in Sub-Saharan Africa, the so-

called African meningitis belt (10–40 in every 100,000 people), than in United States and European 

countries (between 0.7 and 7.1 per 100,000 people) [4–7]. It was said to be the cause of approximately 2% 

of deaths in children, who also have a five-times increased in risk of developing neurodevelopmental 

impairments (NDIs) [8,9]. Some of the epidemiological variation in bacterial meningitis will be related 

to the specific pathogens involved, with their own region-dependent distribution, which is further 

impacted by sociocultural factors. For example, regions with higher consumption of raw pork like 

South East Asia will have higher prevalence of Streptococcus suis meningitis [10]. With regards to 

severity (e.g., mortality rate, long-term outcomes), bacterial meningitis is more severe than viral, 

fungal or aseptic forms of meningitis [1–4]. This has led researchers to question what is inherently 

different for bacteria compared with other micro-organisms in terms of the effect on the CNS that 

results in this more aggressive course. 

Our understanding of the pathogenesis of bacterial meningitis is still incomplete. However, 

deepening the understanding of disease mechanisms of disease could lead to more targeted, organism-

specific therapies for these conditions [11]. What has emerged is that various micro-organisms seem 

to share one particular virulence factor, known as pore forming toxins (PFT). The PFTs are the largest 

category of bacterial virulence factors in bacterial meningitis. These PFTs localize to the bacterial cell 

surface and can be either secreted or released during bacterial autolysis to induce cytotoxic effects by 

perforating the plasma and intracellular organelle membranes of host cells [12,13]. Among them, the 

largest sub-family of PFTs to have been studied so far as the cholesterol dependent cytolysins (CDCs).  

The CDCs are secreted by various genera of gram-positive bacteria such as Streptococcus and 

Listeria. Examples of CDCs include pneumolysin (PLY) from Streptococcus pneumoniae [14,15], 

suilysin (SLY) from Streptococcus suis [16], β-hemolysin/cytolysin toxin (β h/c) from Group B 

Streptococcus [17], streptolysin O (SLO) from Streptococcus pyogenes [18] and lysteriolysin O (LLO) 

from Lysteria monocytogenes [19]. The relationship between CDCs and pathogenicity in these 

meningitides is complex and involves interactions between CDC, blood-brain barrier, glial cells and 

neurons [20–24]. 

This review highlights and delineates mechanisms by which CDC interacts with different brain 

cells to disrupt the normal CNS environment, with a particular emphasis on neuroinflammatory 

signaling on brain barrier, glial cells and neurons. A better understanding of these pathological 

mechanisms will elevate our reasonings to utilize CDC as a future therapeutic target of bacterial 

meningitis.  

2. Cholesterol dependent cytolysin in bacterial meningitis 

There are various methods used by bacteria to enter the nervous system to cause damage, much 

of which focuses on disrupting the permeability of the blood-brain barrier (BBB). Once they gain 

access to the cerebrospinal fluid (CSF) bacteria multiple and bacteria release pathogenic factors 

including cytolysin, which induces a strong inflammatory response inside the brain microenvironment, 

affecting the meninges and glial and neuronal cells. CDCs are one family of these virulence factors, 
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which result in lysis of affected cells in a cholesterol-dependent fashion. According to various studies, 

CDCs have been implicated in brain barrier disruption, brain inflammation (including glial cell 

activation and a surge of inflammatory chemicals) and neuronal injury as end outcomes of the 

pathways. Table 1 illustrates some of the common types of CDCs associated with various bacterial 

meningitis organisms and demonstrates and compares some of their characteristic in terms of the cell 

types they have been demonstrated to effect.  

Table 1. Studies Assessing the Role of CDCs in Meningitis 

CDC Type Of Study Cell Lines / Animal 

Model Used 

Brain Barriers 

Dysfunction 

Brain 

Inflammation 

Neuronal 

Damage 

References 

PLY In-vitro Primary mouse and 

rat astrocytes, mixed 

mouse glial cell 

cultures, human 

neuroblastoma cells, 

primary rat cortical 

neurons 

   [14,15,21,25–

35] 

In-vivo Mice, rats    [21,28,30,31,34,

36] 

SLY In-vitro BMEC, primary 

murine astrocytes 

   [37–41] 

In-vivo Mice, piglets    [42,43] 

-h/c In-vivo Mice    [17,44] 

SLO In-vitro BMEC    [18,45–47] 

LLO In-vivo Mice    [48] 

Cholesterol-rich membrane microdomains or lipid rafts are the integral component in the 

pathogenesis. They are considered as the initial place for CDCs to interact with the cells. Lipid rafts 

have outward looking receptors at their surfaces as the binding site of pathogens and endocytosis 

machinery which utilized to guide the microbe to enter the host cells [49]. The CDCs bind with cholesterol 

membrane by utilizing their highly conserved tryptophan (TRP)-rich motif in domain 4 (D4) of their 3-

dimensional (3D) protein structure [50,51]. 

3. Blood-brain barrier dysfunction 

The blood-brain barrier (BBB) is an integral structure delineating the CNS from the rest of the 

body and key in maintaining the unique immunological environment in the CNS. The BBB is made 

up of brain microvascular endothelial cells (BMECs) and periendothelial structures such as pericytes, 

astrocytes and basal membrane which surrounds cerebral microvessels [52]. One of the roles of the 

BBB is to protect the CNS from invading pathogens.Therefore, breakdown of this structure leaves the 

CNS vulnerable to invasion by infectious agents causing, among other things, infectious meningitis. 

Various mechanisms seem to play a part and even foster in this disruption of the BBB, including 

endothelial activation by various chemical mediators or signaling mechanisms and alteration on 

structural organization of its neurovascular unit (NVU) [20,53].  
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3.1. Effect on The Capillary Endothelium 

After bacterial invasion and replication in the brain environment, host pattern recognition  

receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs), including bacterial 

toxins [54], leading to activation of pro-inflammatory cytokine pathways, particularly from microglia 

and astrocytes [55,56]. Then, this acts on the nearby capillaries, activating the endothelial cells, 

resulting in upregulation of molecules such as intercellular adhesion molecule-1 (ICAM-1), vascular 

cellular adhesion molecule-1 (VCAM-1) and selectins, which allows selective recruitment of leukocyte 

populations [57]. Moreover, pro-inflammatory events will trigger alteration of tight junction (TJ) proteins, 

which more globally affect vascular permeability [52,57,58]. CDCs have been demonstrated to 

manipulate each of these pathways. 

Immune cell recruitment into the CNS, especially influx of leukocytes into the subarachnoid space 

is a pivotal event in bacterial meningitis, and indeed demonstrating specific leukocyte populations in 

the CSF is an early diagnostic marker. Leukocyte influx-induced brain injury is mediated by elevation 

of reactive oxygen metabolites, pro-inflammatory cytokines and proteolytic enzymes [59]. Leukocytes 

have on their cell surface integrin ligands (e.g., LFA-1, VLA-4) or sialylated carbohydrates (e.g., sialyl 

Lewis X), which bind to adhesion molecules such as ICAM-1, VCAM-1 or the selectins and this 

mechanism mediates leucocyte rolling, firm adhesion and subsequent extravasation into the CNS [60–62]. 

If the transport of leucocytes into extracellular chamber exceeds its physiologic range, tissue injury 

can occur, including damage to brain capillary endothelial cells [60].  

Doran (2003) demonstrated that β-h/c, a CDC toxin from Group B Streptococcus (GBS) was able 

to provoke BBB activation through inducing interleukin (IL)-8 release in-vitro, which increased the 

CNS bacterial count in mice. The study also showed a marked reduction in the expression of the 

chemokines Groα and Groβ after infection of a GBS strain lacking β-h/c [17]. In conjunction with this, 

a number of CDCs including PLY and SLY induce morphological changes to BMECs, including 

dilation of endoplasmic reticulum, chromatin clumping, reduction of cytoplasmic density and elevation 

of lactate dehydrogenase [35,37,44]. In another study, stimulation of THP-1 monocytes by purified 

SLY induced expression of ICAM-1, CD11a/CD18, and CD11c/C18 at low doses (1 and 0.5 g/mL). 

On the contrary, even high dose (200 g/mL) of capsular polysaccharide (CPS) did not upregulate all 

the three molecules, demonstrating some specificity in activation of these pathways [60].  

Neutrophil extracellular traps (NETs) are an interesting structure composed of deoxyribonucleic 

acid (DNA), histones and proteolytic enzymes, which are released by neutrophils after activation in 

infection and have a role in binding and killing pathogens separate from the neutrophils other role in 

phagocytosis [63]. The significance of NETs has been demonstrated in various infections, including 

most recently SARS-CoV-2, but also in non-infectious conditions such as ischemic stroke [64]. As the 

field of NETs develops there is increasing evidence of their role in bacterial meningitis. For example 

PLY causes NET formation in-vitro, independent from TLR4 and reactive oxygen species (ROS) 

production [65] and SLY has also been demonstrated to trigger NET formation [66]. There is a complex 

bidirectional relationship between neutrophils and platelets in infection, whereby activated platelets 

lead to NET production. NETs in turn can enhance platelet activation [67,68], which may in part 

explain the thrombotic complications that can occur in infection.  However, other pathways than 

NETs are involved in this. For example, one study demonstrated that treatment in vitro with PLY 

induced production of extracellular vesicles (EVs) from both neutrophils and platelets and that 

neutrophil derived EVs are capable of inducing platelet activation [69].  
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The BMECs are joined by tight junctions (TJs), which is an integral component to the permeability 

of the [70], and any disruption to BMEC can contribute to disease mechanisms. CDCs are capable of 

disrupting the integrity of the BBB via a number of mechanisms, including creation of membrane pores, 

but additionally via triggering pro-inflammatory cytokine cascades that have a secondary effect of 

BBB permeability via altering TJs structure [20,53]. The TJs in BMECs consist of occludins, claudins, 

and adhesion molecules which are linked into the actin cytoskeleton through zonula occludin (ZO) and 

cingulin [57,58]. Whilst these mechanisms require further elucidation, it is clear there is an important 

interaction between CDCs, proinflammatory cytokine/chemokine pathways, and tight junction 

proteins.  

A study by Sui et al. (2022) has shown that SLY from Streptococcus suis induced cerebral 

microvascular endothelial cells (CMEC) to release tumor necrosis factor (TNF), which resulted in 

increased microvascular permeability, which appeared to be dependent on secretion of phospholipase 

A2. The mechanistic role of TNF was further highlighted by the demonstration that the TNF inhibitor 

pomalidomide blocked the effect of SLY on BBB permeability [42]. PLY has also known to induce the 

release of TNF in numerous cell types including brain endothelial cells [35,71,72]. SLY has its 

undeniable role as a potent TNF inducer in other cells such as monocytes and mast cells by inducing p38 

mitogen activated protein kinase (MAPK) and protein kinase-C (PKC) dependent pathways [73,74].  

The exact mechanisms of the effect of TNF on the BBB are complex, and involve numerous 

subsidiary pathways including hypoxia inducible factor-1alpha (HIF-1alpha)/vascular endothelial 

growth factor (VEGF)/VEGF receptor-2 (VEGFR-2)/extracellular regulated protein kinases (ERK) 

pathways, and the end result of these pathways is to downregulate or otherwise disrupt tight junction 

proteins that are integral for BBB integrity [42,75–79]. After being released from the brain endothelial 

cells, TNF induces HIF-1a activation, which, in turn, triggers the activation of ERK by VEGF, which 

leads to loss of expression of various tight junction proteins including occludin and ZO-1, or changes 

to their phosphorylation status [77,79]. As the essential component of tight junction proteins in BBB, 

occludin degradation has been demonstrated to be a primary factor underlying increased BBB 

permeability in various studies [80–82]. As alluded to above, another important step in TNF-induced 

permeability changes in the expression of the group III secretory phospholipase A2 (PLA2G3). Sui et 

al. (2022) has demonstrated that after SLY-induced TNF expression, PLA2G3 is released which 

resulted in the increase of paracellular permeability of human cerebral microvascular endothelial  

cells (hCMEC) both in-vivo and in-vitro [42].  

3.2. Remodelling of NVU 

The blood-brain barrier, though, is more than simply a collection of endothelial cells joined by 

tight junction proteins. The functional anatomy of the blood brain barrier additionally involves 

astrocyte end-feet, pericytes, myocytes and connective tissue proteins, all intimately related to the 

neighbouring neurons, to provide nutritional supply and transfer integral for neuronal function [20,83]. 

This is collectively referred to as the neurovascular unit (NVU) and if any part of this unit doesn’t 

perform its function, the BBB becomes compromised. PLY was the first CDC demonstrated to be 

capable of inducing remodelling of the endothelial cell actin cytoskeleton, thereby disrupting the NVU. 

This remodelling mechanism relies on small GTPases and acts in a cholesterol-dependent manner [27,35]. 

A decade later SLY was also found able to alter the actin cytoskeleton of human brain microvascular 

endothelial cells (hBMEC) via a RhoA-GTPase dependent pathway [38]. As was the case for PLY, the 
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SLY-induced activation of RhoA was dependent on the concentration of cholesterol, supporting the 

idea that the cholesterol-dependent characteristics of many of these CDCs applies to broader 

mechanisms than just the pore-forming mechanism [38,41].  

Downstream of RhoA signalling, the molecular mechanisms involved in SLY-induced cytoskeleton 

remodelling are complex, involving a number of pathways including ROCK, citron kinase, and 

Drosophila homologue of mammalian diaphanous related protein (mDia1). ROCK then 

phosphorylates and inhibits myosin light chain (MLCK) and activates LIM kinase. Inactivated MLCK 

increases the level of p-MLC as the positive regulator of acto-myosin network, whilst LIMK 

inactivates cofilin [84,85]. The endpoints of these signalling pathways are increased levels of p-MLC 

and p-cofilin which lead to the formation of actin stress fibres. The effect of RhoA on citron kinase 

results in actin filament bundling during cytokinesis and facilitates cell separation [86]. Separately, CDC-

induced activation of RhoA activates mDia1 and leads to the de novo actin polymerization [87,88]. 

A study by Fortsch (2011) has revealed the capacity of PLY to cause astrocyte actin cytoskeletal 

remodelling in-vitro. At high concentrations PLY produces cell lysis via the pore-forming mechanism, 

but when added a sub-lytic concentration to primary astrocyte cultures, they demonstrated 

morphological changes caused by actin depolymerization. Interestingly this mechanism was 

independent of sodium and calcium influx, but rather seemed to be dependent on the lytic, pore-

forming mechanism, even though PLY was applied at sublytic concentrations. The authors 

demonstrated that when using the non-lytic PLY mutants W433F-pneumolysin and delta6-

pneumolysin (which disrupt the pore-forming mechanism), that the effect on astrocyte shape changes 

and retraction was abolished. Whilst this has yet to be demonstrated in vivo, it seems plausible that 

retraction of astrocyte end feet would interfere with the structural integrity of the NVU, resulting in 

increased BBB permeability and increased ability of systemic organisms to cross the BBB [25]. A 

summary on these mechanisms can be seen on Figure 1. On the other hand, interactions between CDCs 

and other supporting cells of the NVU such as the pericyte needs better characterization in future 

studies [89].  
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Figure 1. Effect of CDCs on BBB. As the aftermaths of CDC release after bacterial 

invasion, the toxins have been demonstrated to manipulate various pathological pathways 

including A) Leukocyte influx, B) activation of NETs, C) TJ breakdown, BBB leakages 

and astrocyte remodeling. Figure created in Biorender.com.  

4. Brain inflammation 

In bacterial meningitis, organisms gain entry to the body, and initially enter the systemic blood 

supply resulting in bacteraemia with or without a septic response, and due to some of the mechanisms 

described above, are then able to cross a compromised BBB to enter the CSF, from which they are able 

to cause often catastrophic neuronal injury. Along with bacteria crossing the BBB, due to both central 

and systemic cytokine/chemokine signalling, leukocytes also enter the CNS, triggering pro-

inflammatory signalling cascades, which can also contribute to neuronal damage. Once bacteria are in 

the CNS, CDCs produced from these bacteria are an important virulence factor, affecting both glial 

cells (astrocytes and microglia) and neurons. Glial cell activation is regulated by various distinct 

molecular pathways, but the nuclear factor kappa B (NF-kB) is generally acknowledged as the primary 
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pathway driving these morphological and physiological changes [90,91].  

4.1. CDC and microglia 

Microglia are the specialised macrophage population of the brain and are capable of 

cytokine/chemokine production, production of reactive oxygen species (ROS) and phagocytosis all of 

which can exacerbate neuronal injury, giving a worse prognosis for patients with bacterial   

meningitis [92,93].  

Studies have shown that CDC production is an important part of bacteria-induced microglial 

activation associated with various pathogens, both from work focused on creating CDC mutants and 

that with purified CDCs from bacterial isolates. The activation of microglia after infection has known 

to happen after their pattern recognition receptors (PRRs), e.g., toll-like receptors (TLRs), sensing 

large pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS) and CDCs. 

PLY [71,94,95], SLY [16,96,97], LLO and SSO [98] are potent stimulators of TLR4, which is highly 

expressed on microglia, astrocytes and brain neurons [99–101].  

The CDC-induced TLR-4 signalling mechanism can occur via two pathways, either MyD88 or the 

Toll/interleukin-1 receptor- (TIR-) domain-containing adaptor inducing interferon-B (TRIF). First, 

TLR-4 associates with its extracellular binding partner, myeloid differentiation factor 2 (MD-2), 

resulted in TLR4-MD-2 complex. This complex binds with the CDC and recruits another similar 

complex to produce a homodimer. Through its ability of transmitting intracellular signals, the TLR4-

MD2 recruits toll-interleukin-1 receptor (TIR) domain-containing adaptor protein (TIRAP) and 

myeloid differentiation primary response 88 (MyD88). The MyD88 then interacts with Interleukin-1 

receptor-associated kinase 4 (IRAK4) death domain. This series of events recruits tumor necrosis 

factor receptor-associated factor (TRAF)-6, which then, together with Ubc13 and Uev1A, initiate the 

activation of transforming growth factor-β-activated kinase 1 (TAK)1 and TAK binding       

protein (TAB)1-TAB2/3 complex. This event further activates a complex consisting of inhibitor of 

nuclear factor-κB (IκB) kinase (IKK)-a, IKK-b and IKK-y which trigger the entry of NF-kB into the 

nucleus, resulting in transcription of messenger ribonucleic acid (mRNA) for proinflammatory 

cytokines such as interleukin (IL)-1B, IL-6 and TNF. The MyD88 pathway also activates mitogen 

activated protein kinase (MAPK) signalling pathway, which causes p38, ERK and janus kinase (JNK) 

to accumulatively trigger AP-1 translocation into the nucleus. On the other hand, TLR4-MD2 causes 

TRIF-related adapter molecule (TRAM) to translocate to the cytoplasm, which activates TRIF-

dependent pathways, leading to activation of the downstream TBK1/IKK complex and TRAF3, in turn 

causing phosphorylation of interferon regulatory factors (IRF)3 and IRF7. The end result of these 

signal pathways is an elevation of type 1 IFN (IFN-alpha and IFN-ß) gene expressions. The IFN-alpha has 

known to increase the expression of pro- markers of a pro-inflammatory microglial phenotype (MHC-II 

and CD86) in BALB/c mice [102]. After their activation by CDCs, morphological changes [95], 

increased nitric oxide production and other inflammatory mediators such as TNF, IL-1b were  

observed [95]. 

Other than TLR4-dependent responses, there are various ways taken by CDCs to activate microglia 

such as interaction with infiltrating leukocytes and upregulation of microRNA (miR)-155.      

Zhang et al. (2018) showed that virulent Listeria monocytogenes (L. monocytogenes) strain caused 

upregulation of miR-155 in whole brain and significantly induced brain leukocyte influxes in mice 

which led to microglial activation, whereas infection with LLO mutants did not [48]. The CDC-
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induced microglial activation also suggested to be a result from the ability of CDCs to bind with 

glycans. Major members of CDCs; PLY, SLY, LLO and SLO have high-affinity lectin activity that 

recognizes glycans as their cellular receptors [103]. Glycans are polysaccharides, serving as a 

fundamental structural component of the cells in all living organisms. In the CNS, glycans play pivotal 

roles in homeostasis and immune cells activation, including glial scar formation. A recent study which 

investigates the role of glycome in neuronal inflammation has proven that during glial activation, 

glycans are significantly expressed and essential for microglial function [56].  

In addition to microglia activation, the pathogen-induced microglia pyroptosis has been known to 

significantly contribute to neuroinflammation and neuronal damage due to its ability to induce release 

of intracellular inflammatory mediators. A study revealed that PLY induced microglia pyroptosis in a 

caspase-1 and interleukin (IL)-1 dependent manner [24].  

4.2. CDC and astrocytes 

The physiological role of astrocytes is important for the homeostasis of CNS environment. 

Astrocytes have a role in nutritional transport from blood circulation to neurons, metabolism of 

chemical mediators, synaptic transmission, synaptic activity and neurovascular coupling. Some 

alterations in factors associated with aforementioned physiological mechanisms also trigger the release 

of cytokine, reactive oxygen species (ROS), reactive nitrogen species (RNS) and alter glutamate-

glutamine metabolic flux, which accumulatively exacerbate the inflammatory state [104–109]. 

Moreover, chronic stimulation of astrocytes impedes axonal regeneration and level of neurotrophic 

proteins needed for maintaining normal neurophysiological functions [23,110,111]. Astrocyte 

activation can be regulated by various factors released from activated microglia or injured neurons, 

resulting in a complex inter-cellular relationships through the course of an infectious disease of the 

CNS [112].  

CDCs have been identified as the likely causative factors in neurotoxic astrogliosis in some recent 

studies. Wippel et al. (2013) has observed that after exposure to non-lytic concentration of PLY there 

is an increase of calcium influx and subsequent glutamate secretion on mouse astrocytes cell line, 

followed by permanent dendritic swelling, loss of dendritic spine and synaptic loss via activation of n-

methyl d-aspartate receptors (NMDAR) [33]. This mechanism was previously observed in ischemic 

brain disorders where NMDA activation leads to Ca2+ and Na2+ overload in post-synaptic neurons, 

resulting in excitotoxicity cell death [113]. 

5. Neuronal damage 

Neuronal damage is a primary concern in infectious disease of CNS, and even when not fatal can 

lead to significant morbidity including cognitive impairment and movement disorders [31,114] and 

can be said to be the final common pathway various pathological mechanisms in bacterial   

meningitis [34,114,115]. To date, the only CDC which has been established to have a catastrophic 

effect on neuronal life cycle is PLY. PLY acts as a key factor in modulating pneumococcal interactions 

with neurons. Purified PLY binds with the neuronal plasma membrane through its Trp-rich motif amino 

acid sequence. Then, binding occurs via interaction between the pilus-1 adhesin RrgA with -actin, 

which is damaging to neurons due to elevated intracellular Ca2+ concentration in the mitochondria of 

neurons and disassembly of actin cytoskeleton [34].  
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Mitochondrial damage has been identified as a crucial factor in the death of neuronal cells [115]. 

Two studies revealed the role of PLY in inducing neuronal cell apoptosis via mitochondrial damage in 

primary rat hippocampal and cortical neurons. This process was independent of caspase signalling [14,36]. 

In primary rat hippocampal neurons, PLY induced a rapid loading of calcium (Ca2+) into mitochondria. 

This induced permeability transition pore (PTP) dysfunction, leading to neuronal cell death [116,117]. 

Similar neuronal toxicity was seen for SLO, which did not require internalization of Streptococcus 

pyogenes, indicating that CDCs act independently [46].  

Physiologically, Ca2+ concentration in mitochondria is controlled by an electrogenic Ca2+ 

uniporter (MCU) and voltage dependent anion channel (VDAC), which collectively lead to 

accumulation of Ca2+ in the mitochondrial matrix. A physiologic balance in influx-efflux of Ca2+ is 

achieved by well-functioning Na+/Ca2+ and H+/Ca2+ exchangers along with PTP. However, if an 

event (e.g., infection) triggers activation of apoptotic signals, these signals along with Ca2+-mediated 

cellular signals will induce long-lasting openings of PTP, causing swelling of mitochondria, followed 

by accumulation of caspase cofactors into the cytosol which led into the beginning of cell death  

process [117,118].  

The aforementioned effect of PLY on astrocytes has opened a new insight in astrogliosis-induced 

neuronal damage. PLY has been shown to independently boost local glutamate release, activate 

NMDAR and induce persistent dendritic abnormalities through its ability to activate astrocytes. 

Dendritic focal swellings, also known as beads or varicosities, are one of two early hallmarks of 

neuronal toxicity, along with mitochondrial failure [119].  

PLY has been demonstrated to cause mitochondrial dysfunction and subsequent release of apoptosis 

inducible factor (AIF) as the final stage of neuronal apoptosis [36]. The mitochondrial AIF has been 

established in various studies as the main mediator of caspase-independent apoptosis-like neuronal 

cell death [120,121]. This release of AIF was mediated by excessive intracellular Ca2+. In the same 

study, this in-vitro effect was tested in a rabbit model of pneumococcal meningitis in-vivo. High level 

of PLY was found in dentate gyrus area of hippocampus, particularly in the area of dying neurons, by 

using immunohistochemical staining with specialized anti-PLY antibody and peroxidase-conjugated 

secondary antibody [36]. The mechanisms involving brain inflammation and neuronal damage is 

summarized in Figure 2. 
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Figure 2. Mechanisms on CDCs-induced brain inflammation and neuronal damage. 

Following CDC activation of glial cells, various catastrophic downstream signaling 

pathways are activated. They continue to trigger the two early hallmarks of neurotoxicity, 

dendritic modification and mitochondrial damage, resulting in neuronal death. Figure 

created in Biorender.com.  

6. CDC-based therapeutic approach: potential future adjuvant treatment? 

Multifaceted roles of CDC in CNS cells increase its possibility of being a future candidate of 

adjunctive treatment to combat bacterial meningitis or using it as a preventive approach by designing 

CDC-based vaccine. Current progress of CDC-based treatment strategy relies on the development of 

several efforts to induce neutralizing antibodies. A study by Salha et al. (2012) explored that a novel 

detoxified pneumolysin derivative (PlyD1), which is a genetically modified protein, and has been 

demonstrated capable to induce neutralizing antibodies against PLY. The study also indicated that the 

aforementioned antibody-mediated protection resulted in an excellent protection against lung injury 
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and lethal intranasal challenge with pneumococci [122]. Thought this study was not specifically 

investigation CNS infection, it nonetheless highlights the potential advantage of this as a therapeutic 

approach. Neutralizing antibodies against SLY [123], SLO [47] and LLO [124–126] have been studied 

in the last two decades, but more studies are needed to confirm their effects on CNS cells during 

meningitis. However, antibody-based therapy approaches typically only work for a given toxin in a 

specific manner, making it a challenge to overcome the large variability of toxins [127].  

An interesting finding came from a study by Subramanian et al. (2020) which reported an in-silico 

based approach to design a mannose receptor (MRC-1) derived peptide, to examine its effect on CDC-

induced cytolysis in-vitro and assessed its effect on PLY-induced epithelial barrier damage in a 3D 

lung tissue model. The MRC-1 peptides successfully countered the deleterious effects of PLY, SLO 

and LLO by blocking cytolysis, production of pro-inflammatory cytokines, bacterial uptake and 

intracellular bacterial survival. These studies demonstrate the potential advantage of CDC-targeted 

therapeutic mechanisms to combat CNS infections [128]. 

A number of natural substances counteract on CDC and highlight some promising results. 

Myricetin, a flavonoid compound isolated from bayberries, has recently been proven as a potent 

inhibitor of SLY through molecular modelling, biological assays, in-vitro and in-vivo experiments. 

Throughout molecular simulation using bioinformatics method, myricetin interacted with the 

important amino acid residues between domain 2 and 3 in SLY crystal structure, which is the binding 

site of SLY with cholesterol membrane. Moreover, pathogenicity of Streptococcus suis has depleted 

after myricetin treatment in-vitro and in-vivo, suggesting that SLY takes a pivotal role in the general 

virulence ability of Streptococcus suis [129]. Another natural compound, morin, has been proven to be 

a potent inhibitory ability towards SLY by exhibiting an interaction with SLY on its domain 2, which 

hindered SLY’s ability to form an oligomer and leads into inhibition of SLY potentials [130].  

The cholesterol binding capacity of CDCs have raised an opportunity to develop liposomal 

nanotraps to neutralize the cytolysins. The engineered liposomes saturated with cholesterol and 

containing sphingomyelin (Ch:Sm-liposomes) has proven to inhibit the hemolytic properties of 

recombinant PLY and SLO [127]. Furthermore, Ch:Sm liposomes are able to protect mice from S. 

pneumoniae-induced septicemia and invasive pneumococcal pneumonia [131]. Although it has not 

been proven in meningitis model, Ch:Sm liposomes seems to be a potential approach to combat 

bacterial meningitis.  

7. Conclusions 

CDCs are an important group of PFTs produced by various bacterial pathogens implicated in 

bacterial meningitis and have wide-ranging effects on the neurovascular unit, infiltrating leukocytes, 

CNS immunity and neuronal health. Given their pivotal role in brain during bacterial meningitis, CDC 

may be a fruitful avenue for therapeutic target of choice in meningitis over coming years.  
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