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Abstract: Beneficial endophytic bacteria influence their host plant to grow and resist pathogens. 

Despite the advantages of endophytic bacteria to their host, their application in agriculture has been 

low. Furthermore, many plant growers improperly use synthetic chemicals due to having no or little 

knowledge of the role of endophytic bacteria in plant growth, the prevention and control of pathogens 

and poor access to endobacterial bioproducts. These synthetic chemicals have caused soil infertility, 

environmental contamination, disruption to ecological cycles and the emergence of resistant pests and 

pathogens. There is more that needs to be done to explore alternative ways of achieving sustainable 

plant production while maintaining environmental health. In recent years, the use of beneficial 

endophytic bacteria has been noted to be a promising tool in promoting plant growth and the biocontrol 

of pathogens. Therefore, this review discusses the roles of endophytic bacteria in plant growth and the 

biocontrol of plant pathogens. Several mechanisms that endophytic bacteria use to alleviate plant biotic 

and abiotic stresses by helping their host plants acquire nutrients, enhance plant growth and 

development and suppress pathogens are explained. The review also indicates that there is a gap 

between research and general field applications of endophytic bacteria and suggests a need for 

collaborative efforts between growers at all levels. Furthermore, the presence of scientific and 

regulatory frameworks that promote advanced biotechnological tools and bioinoculants represents 

major opportunities in the applications of endophytic bacteria. The review provides a basis for future 

research in areas related to understanding the interactions between plants and beneficial endophytic 

microorganisms, especially bacteria. 
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promotion; synthetic chemicals 

 

1. Introduction 

Recently, there have been studies that focus on the use of microorganisms to enhance nutrition 

element availability in the soil and control plant disease without the use of synthetic fertilizers, 

pesticides or herbicides. One of the typical microorganisms that have the potential to promote plant 

growth and protection from pathogens is a group of beneficial bacterial communities known as 

endophytes that are harbored in plant organs such as roots, leaves, stems shoots and flowers [1–3]. 

Research has shown that some bacterial endophytes also colonize agronomic crops and play a role in 

providing and enhancing nutrient availability and biological control mechanisms against pathogens 

and insect pests [4,5]. Endophytic bacteria are not limited to a single function, but have multiple plant 

growth-promoting and biocontrol traits that can be released simultaneously [6]. For example, 

endophytic Paenibacillus polymyxa was able to fix nitrogen, solubilize phosphorous, synthesize 

phytohormones and display biocontrol properties against pathogenic fungi [7].  

Endophytic bacteria use various physical, molecular and biochemical mechanisms to perform and 

display various growth and biocontrol traits [8,9]. The ability to exhibit most of the plant growth-

promoting and biological control traits qualifies the specific endophytic bacteria to be a reliable agent 

in plant growth, reproduction and protection; therefore, such bacteria can be researched further and 

formulated for commercial purposes [10,11]. Most of the beneficial endophytic bacteria absorb very 

important organic acid-metal complexes such as copper, iron, zinc and magnesium. The penetration of 

endophytic bacteria into the plant roots allows plants to extract these metals from the microbes [12]. 

On the other hand, inoculating plants with endophytic bacteria could inhibit disease symptoms initiated 

by disease-causing organisms such as insects, nematodes, fungi bacteria and viruses [13,14].  

There have been few applications and formulations of endophytic bacteria in agriculture. 

Furthermore, many growers continue with the heavy use of synthetic chemicals because of a poor 

understanding of the roles of endophytic bacteria in plant growth promotion and plant health 

improvement. There is also a perspective that most of the microbes are pathogenic to plants. These 

challenges show that there is still a gap between the research and the normal use of endophytic bacteria 

and their products by farmers. Therefore, this paper is aimed to review the progress in the research on 

the major roles played by endophytic bacteria in alleviating biotic and abiotic plant stresses, increasing 

plant growth and yield performance and biologically controlling major plant pathogens. The review 

will provide opportunities, gaps in the bacterial endophytes research and the way forward to fully 

utilize these untapped microorganisms. Based on our knowledge, this review will provide a basis for 

future research areas dedicated to understanding the interactions between plants and their endo-

microbes. 

2. Promotion of plant growth and development 

2.1. Nitrogen fixation 

Recently, there have been many studies about nitrogen-fixing bacteria focusing on applying the 

same concept of symbiotic associations that occur in legumes to non-leguminous plants such as maize, 

sorghum wheat and sugarcane [15]. Moreover, even those plants under various environmental stress 
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can benefit from the biologically fixed nitrogen by endobacteria. The efficiency of nitrogen fixation 

by other endophytes cannot surpass that fixed by the Rhizobium sp. bacteria in leguminous plants [16]. 

However, this nitrogen is of paramount importance, especially in host plants that grow in limited 

nitrogen soils, as has already been proved by many researchers. Recently, nitrogen-fixing diazotroph 

bacteria (Gluconacetobacter diazotrophicus) have been isolated from the tissues of the sugarcane 

plants. This bacterium was able to grow and fix nitrogen, thus causing postulation that these bacteria 

can satisfy the nitrogen requirements of its host plant [17,18]. 

2.2. Solubilization of phosphate 

Phosphate is the precursor for the synthesis of various enzymes responsible for various plant 

physiological processes, in addition to aiding plant disease resistance [19]. To be changed into an 

accessible soluble form, organic and inorganic phosphates need to undergo processes of solubilization 

and mineralization with the aid of bacterial enzymes known as phosphatases that are controlled by the 

presence of genes [20]. During phosphate solubilization by phosphate-solubilizing bacteria, chelators 

that are organic acids are produced and help to displace metals [21]. Research has indicated that more 

than 20 copies of genes responsible for phosphate solubilization were found in the non-phototrophic 

endobacteria metagenome. Endophytic bacteria that solubilize phosphate into an accessible form help 

their host organisms to grow and survive even in poor environmental conditions and improve growth 

and yield performance even when inoculated in crop plants [2,22]. By contributing the major nutrition 

elements to plants, phosphate-solubilizing bacteria contribute more to the functions, diversity and 

ecology of plants in the ecosystems. However, there is a need to explore more of the endophytic 

phosphate-solubilizing bacteria, from the molecular level to their practical applications, as they are 

very crucial in sustainable agriculture and environmental protection, and very little research has been 

done to date. 

2.3. Solubilization of potassium 

Most of the potassium-solubilizing bacteria lives in the soil [23]. However, some endophytic 

bacteria are reported to have the ability to solubilize the unavailable potassium into accessible forms. 

As a result, endophytic bacteria have attracted attention in agriculture for soil root inoculation because 

of their capacity to penetrate and colonize root interiors [24]. Potassium-solubilizing endophytic 

bacteria work by synthesizing and discharging organic acids such as oxalic acid, tartaric acid, malic 

acid and gluconic acid. These acids break the insoluble minerals from various minerals mentioned 

previously to release accessible soluble potassium [25,26]. Potassium-solubilizing endophytic bacteria 

have also been reported to alleviate other environmental stresses, such as salt stresses, and improve 

production in general [27,28]. Unfortunately, most of the endophytes that have been isolated and 

evaluated were targeted for the evaluation of other growth promotion traits such as nitrogen and indole-

3-acetic acid, leaving out the role that potassium plays in plant growth and protection.  

2.4. Uptake of iron nutrition element 

Under iron-limiting conditions, some bacteria release low molecular weight iron-chelating 

molecules called siderophores that exist in various varieties [29]. Siderophores are described as useful 

peptide chains and functional groups that allow iron ions to bind [30]. Siderophores have been 

demonstrated to be the source of iron for plant nutrition. Siderophore-producing bacteria have 
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mechanisms that facilitate the availability of iron in very iron-limiting environments. These bacteria 

strains have outer membrane proteins on their cell surface that transport iron complexes, making the 

iron available for metabolic processes. Siderophores have a high affinity for iron and bind Fe3+, which 

is later assimilated by root hairs [31]. Many researchers report both the nutrition and biocontrol 

significance of siderophores; therefore, the provision of this important endophytic bacteria trait in plant 

growth and protection cannot be undermined. Siderophore produced by Streptomyces spp., an 

endophyte from the roots of a Thai jasmine rice plant, remarkably promoted plant growth and improved 

root and shoot length and overall yield [32]. 

2.5. Zinc solubilization 

Zinc is one of the important trace elements needed by plants and other living things. It influences 

metabolism and enzymatic activities in plants, although it is a trace element. As a result, the absence 

of zinc elements in plants is easily noticed from the perspective of the field to the products of crops 

that lacked zinc elements. Some of the bacterial zinc solubilizers include Gluconacetobacter, Bacillus, 

Acinetobacter and Pseudomonas [33]. Zinc-solubilizing bacteria provide a sustainable and healthy 

alternative for supplying and converting applied inorganic zinc into a form that can be accessed by 

plant roots [34]. The inoculation of zinc-solubilizing bacteria has been reported to promote plant 

growth and yield performance, as well as to improve the nutrition value of maize and rice as part of 

bio-inoculants for biofortification [35,36]. Zinc-solubilizing endophytic bacteria Pseudomonas sp. 

MN12 were used in combination with other zinc-supplying materials and proved to improve the grain 

biofortification of wheat [37]. Endophytic bacteria isolated from soybean and summer mungbean were 

able to solubilize zinc, and researchers have found that Klebsiella spp. and Pseudomonas spp. produced 

other plant growth-promoting components such as phosphate and indole-3-acetic acid [38]. With these 

few given examples, zinc-solubilizing endophytic bacteria require more attention in research and 

practical applications to improve the plant growth of the most important crops and enhance their 

nutritive value such that the end will ensure food and nutrition security, as well as environmental 

protection.  

2.6. Synthesis of phytohormones 

The use of plant growth regulators from beneficial microorganisms is one promising strategy to 

enhance plant growth under normal or stressful conditions [39]. The most notable plant growth-

promoting hormones that can be synthesized by bacteria include indole-3-acetic acid, zeatin, abscisic 

acid, cytokinins and gibberellic acids and ethylene [40]. Indole-3-acetic acid is one of the mechanisms 

which bacteria use to interact with plants, signaling molecules in bacteria and influencing plant growth 

and development [41]. Indole-3-acetic acid produced by endophytic bacteria has also been reported as 

a plant defense mechanism against pathogens that would otherwise cause diseases in plants [42]. 

Gibberellic acid produced by Azospirillum spp., an endophyte, was found to contribute to alleviating 

drought stress and enhancing plant growth in maize (Zea mays. L) [43]. While gibberellic acids are 

known to improve plant growth and development, some researchers have reported that the hormone has 

some root growth-inhibiting influence through the gibberellic DELLA-repressing signaling system [44]. 

However, sufficient synthesis and production of gibberellic acids in bacteria has major advantages, in 

terms of plant growth and development, over the growth inhibitory influence that this hormone can 

display [45]. 
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Table 1. Examples of some of the endophytic bacteria that have so far been isolated, 

identified and evaluated for their plant growth promotion and biocontrol effects. 

Role Bacteria references 

Nitrogen fixation Pseudomonas spp., Herbiconiux solani SS3, Flavobacterium 

aquidurense SN2r, Rhizobium herbae SR2r., Paenibacillus polymyxa 

P2b-2R, Pseudomonas protegens CHA0-retS-nif 

[46–49] 

Phosphorous solubilization Pseudomonas spp. Burkholderia spp, Paraburkhoderia, 

Novosphingobium, Ochrobactrum, 

Paenibacillus polymyxa, Bacillus sp., Rahnella  

 Pantoea vagans MZ519966, Pantoea agglomerans MZ519970, 

Pseudomonas aeruginosa KUPSB12 

[50–54] 

Potassium solubilization Paenibacillus polymyxa, Bacillus sp., Burkholderia sp. FDN2-1, 

Alcaligenes spp., Enterobacter spp. 

[24,51,55] 

Zinc solubilization Bacillus spp., Arthrobacter sp., Klebsiella spp., Pseudomonas spp. [38,56–58] 

Hormones (indole-3-acetic 

acid jasmonic acid, salicylic 

acid, gibberellins, ethylene) 

Klebsiella sp., Enterobacter sp., Bacillus amyloliquefaciens RWL-1; 

Bacillus sp. PVL1, Bacillus sp. DLMB, Bacillus sp. MBL_B17, 

Bacillus subtilis MBL_B13, Leifsonia xyli SE134, Bacillus subtilis 

LK14, 

[59–66] 

Siderophores and 

competition for nutrition and 

space 

Bradyrhizobium sp.(vigna), Pseudomonas tolaasii ACC23, 

Mycobacterium ACC14 Pseudomonas fluorescens G10, 

Mycobacterium sp. G16, Methylobacterium spp., Xanthomonas spp. 

[16,67–70] 

Induced Systemic Resistance Parabukholderia sp. Pseudomonas sp, Burkhoderia phytofirman PsJN [71–74]  

Lytic Enzymes {chitinases, 

proteases, cellulases, 

hemicellulases, 1, 3-

glucanases; pectinases, 

Serratia proteamaculans 33x, Bacillus pumilis JK-SX001, 

Paenibacillus polymyxa GS20, Bacillus sp. GS07 

[75–77]  

Antibiotics (Bacillomycin 

2,4-diacetylphloroglucinol, 

fencing, cyclic lipopeptides 

(surfactin, iturin), and 

pyocyanin} 

Bacillus subtilis fmbj, Bacillus subtilis CPA-8, Bacillus subtilis 

AU195 

[73,78–80] 

Volatile Organic Compounds 

(2,3-butanediol, acetoin, 2-

Hexanone, sulfur-containing 

compounds, 2-Heptonone, 3-

methybutan-1-ol, Dodacanal, 

3-methylbutanoic acid, and 

2-methylbutanoic acid, 3-

Methylbutan-1-ol) 

Bacillus amylolicefaciens ALB629 and UFLA285, 

Enterobacter TR1, Bacillus spp. Bacillus Velenzensis 5YN8, Bacillus 

Velenzensis DSN012 

[81–83] 
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3. Biocontrol of plant pathogens 

Endophytic bacteria are reported as suitable biocontrol agents owing to their ability to be 

sustainably transferred to the next generation [13,84,85]. The other advantage of endophytic bacteria 

in biocontrol is that they do not compete with plants for space and nutrition, but contribute to and 

improve the health of their host plants [86,87]. Some of the endophytic bacteria with biocontrol 

properties have well been documented in a previous review [88]. Endophytic bacteria of genera 

Arthrobacter, Pseudomonas, Serratia, Bacillus and Curtobacterium [89,90] are the best 

representatives that are used in the biocontrol of plant pathogens and diseases. Usually, after their 

isolation from the host plant, endophytes are tested by performing dual plate assays and a genetic 

screening approach [90,91]. Bacillus spp. have been reported to be good biocontrol agents because of 

their ability to synthesize a wide range of biologically active molecules that are potent inhibitors of 

plant pathogens. Some seed associated endophytic bacteria, i.e., Bacillus subtilis, Bacillus velezensis, 

Leuconostoc mesenteroides, Lactococcus lactis and Bacillus amyloliquefaciens, were all used to treat 

bacterial wilt of tomato, and all isolates were able to exhibit biocontrol properties [92]. Other 

associated bacterial endophytes have been noted to produce secondary metabolites [93] that might play 

a role in the biocontrol of plant pathogens. Moreover, Bacillus velezensis 8-4 was found to inhibit 

potato fungal pathogens such as S. galilaeus, Phoma foveat, Rhizoctonia solani, Fusarium avenaceum 

and Colletotrichum coccodes in both in vitro and field experiments [94]. These are just a few examples; 

however, endophytic bacteria have been used in many applications to control the introduction and 

growth of notable plant pathogens [95].  

Endophytic bacteria have several mechanisms to inhibit and control the growth of plant pathogens, 

which some researchers have documented [96,97]. Most notable is the presence of genes responsible 

for particular biocontrol traits such as antibacterial and antifungal metabolites that have been identified 

in the whole genomes of some endophytic bacteria [98–100] Some endophytic bacteria help their host 

to develop induced systemic resistance (ISR) that comes when plants successfully activate their 

defense mechanism in response to primary infection by a pathogen [84]. The production of 

siderophores and antimicrobial compounds as a form of mechanism for biocontrol has so far been well 

documented in various research manuscripts [101]. Therefore, endophytic bacteria isolates can be 

commercially formulated into biopesticides to help protect plants while ensuring a healthy 

environment [102] Some of the mechanisms have briefly been described as researched in the past few 

years. 

3.1. Upregulation of host defense genes 

During the primary infection by pathogens, most plants develop and activate various defense 

mechanisms. Furthermore, plants interact with endophytic bacteria and activate plant resistance against 

pathogens such as bacteria, fungi and viruses. This type of resistance is known as ISR. The ability of 

beneficial microbes such as endophytic bacteria to initiate ISR is host-specific and requires full 

colonization of a type of bacteria to their host plant [103]. The endophytic traits such as the production 

of volatile compounds, bacterial flagellation and the production of lipopolysaccharides and highly 

sensitive hormones all determine the development of ISR in plants [104]. 

The pathogenesis-related genes and the jasmonic/ethylene-dependent genes induce systemic 

resistance which is triggered by endophytic and other plant growth-promoting bacteria [73,105,106]. 

Under normal circumstances, the endophytic bacteria in plants trigger a very minimal level of systemic 

acquired resistance as compared with the moment that a pathogen has been introduced. Once the 
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pathogen has been encountered, plants with endophytes exhibit a high level of systemic acquired 

resistance and jasmonate and ethylene genes are overexpressed, hence triggering biocontrol 

mechanisms. Endophytic bacteria have an advantage in that they induce both the systemic acquired 

resistance and jasmonic/ethylene-dependent ISR that helps plants to simultaneously resist bacterial 

and fungal pathogens such as Pectobacterium carotovorum and Fusarium oxysporum [107]. 

Endophytic bacteria alleviate the adverse and detrimental effects of plant pathogens by actively 

inducing the resistance mechanisms in plants. It includes the activation of idle and latent defense 

mechanisms when the pathogenic stimuli are sensed; usually, this process is controlled by the complex 

networks of signaling pathways [72, 108]. For example, B subtilis GBO3 and B. amyloquefaciens 

IN937a produced volatile compounds that trigger the ISR against Erwinia carotovora; the research 

gave proof that the signaling pathway that was activated by the volatile compound from B. subtilis 

GBO3 is dependent on the ethylene and independent from salicylic and/or jasmonic acid signaling 

pathways [109], thus giving the difference between systematic acquired resistance and ISR [110]. As 

part of the mechanism to trigger ISR defense, endophytic bacteria may cause the cell wall of plant cells 

to strengthen upon the introduction of a pathogen, thus providing a barrier for pathogens. Endophytic 

bacteria may also modify the physiology and alter metabolic processes in plants that will result in the 

improved synthesis of plant defense secretions [111–113] 

3.2. Competition for nutrition and space 

While siderophores have been characterized to provide iron nutrition to plants, there is enough 

evidence that siderophores help to control the plant root pathogens by outcompeting them on limited 

available iron nutrition elements [104]. As described before, bacterial endophytes produce 

siderophores that have a strong appetite for iron elements in the rhizosphere. Competition for iron ions 

is one way in which biocontrol endophytic bacteria use against pathogenic fungi [114]. Siderophores 

bind the Fe+3, rendering it unavailable to the fungal pathogens that produce siderophores with less 

affinity for iron nutrition [104,115]. During limited iron nutrition, root endophytic bacteria may 

produce siderophores that enable plant roots to make full use of the little available iron nutrition 

element. This makes the harmful microbes such as pathogenic fungi starve and inhibits them from 

causing harm to plant hosts. In summary, the production of siderophores prevents the introduction of 

pathogens to plants and limits their growth by outcompeting them for iron and other nutrition elements 

in a given ecological substrate [116]. 

3.3. Production of antibiotics 

In plants, antibiotics function as antifungal, antiviral, phytotoxic antioxidant, antitoxic and 

antihelminthic compounds against specific pathogens. Endophytic bacteria are known to be good 

sources of antibiotics [117]. Usually, there must be at least one antibiotic biosynthesis-related gene 

that would facilitate the ability of a particular endophytic bacteria to synthesize antibiotics [118,119]. 

For example, streptomyces NRR 3052, an endophyte isolated from the medicinal plant Kennedia 

nigriscans produced high-activity munumbicin antibiotics that act as plant pathogenic bacteria and 

fungi [120]. The ability to produce very active antibiotics by the endophytic bacteria provides a cheap 

source of biocontrol agents for sustainable agricultural production and environmental management. 
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3.4. Volatile organic compounds 

Volatile organic compounds are signaling substances that intermediate the interaction between a 

plant and microbes. Volatile organic compounds are very important, as they help in the inhibition of 

plant-pathogen growth and induce systematic resistance in a host plant [116,121]. Like other bacteria, 

endophytic bacteria may produce volatile organic compounds such as 2,3-butanediol, acetoin, 2-

hexanone, sulfur-containing compounds, 2-heptonone, 3-methybutan-1-ol and dodacanal. These 

volatile organic compounds are formed during the metabolism of bacteria, and in the presence of 

stimuli that influence the internal and external conditions of the bacteria [122]. The availability of 

specific genes in the genomes, such as the presence of secondary metabolite-encoding genes and other 

proteins that are involved in the lysis of pathogenic microorganisms, determines the synthesis and 

secretions of volatile organic compounds [123,124]. Endophytic bacteria that can produce volatile 

compounds are vital, as they enhance and improve the immunity of their host plants and would be 

formulated for the production of biopesticides that are environmentally healthy. For example, the 

tomato endophytic bacteria B. proteolyticus, E. asburiae, E. cloacea, B. thuringiensis, B. nakamurai 

and B. pseudomycoides produce bioactive compounds that facilitate the inhibition of Botrytis cinerea, 

a fungal pathogen for fresh fruits and vegetables [82]. Bacillus amylolicefaciens ALB629 and 

UFLA285 were found to secrete 3-methylbutanoic acid and 2-methylbutanoic acid, which have been 

suggested to have inhibited the development of anthracnose disease (Colletotrichum lindemuthianum) 

by inhibiting fungal mycelial growth and spores in Phaseolus vulgaris L. (common bean) [81]. 

3.5. Production of lytic enzymes 

The most notable enzymes produced by the endophytic bacteria are β-1,3-glucanases, protease, 

cellulase, extracellular chitinase and laminarinase [125–127]. Production and the whole process of 

regulating the lytic enzymes involve the GacA/GacS or GrrA/GrrS regulatory systems and colony 

phase variation [104]. Enzymes lyse fungal hyphal tips and degrade any acids that might be produced 

by fungal pathogens [128]. Enzymes help bacteria to act as parasites for fungal pathogens and 

sometimes even break their spores and reduce germination [129,130]. For example, Bacillus pumilis 

JK-SX001 is reported to secrete extracellular cellulase and protease enzymes which inhibit pathogenic 

fungi such as Phomopsis macrospora, Cytospora chrysosperma and Fusicoccum aesculi [76]. In 

another study, root endophytes Pseudomonas poae JA01, Bacillus sp. GS07 and Paenibacillus 

polymyxa GS01 were found to exhibit cellulolytic enzyme activity that aids in inhibiting the growth of 

fungal pathogens such as P. ultimum, F. oxysporum, P. capsica and R. solani, which cause notable 

diseases [77]. Endophytic bacteria P. aeruginosa and Pseudomonas pseudoalcaligenes were 

demonstrated to secrete β-1,3-glucanase and catalase in paddy and assist in the development of 

preformed defense against pathogenic fungi Pyricularia grisea that cause fungal blast [131]. The 

presence of endophytic bacteria in a host has also been reported to induce defense genes that encode 

for catalase, β-1,3-glucanase and other defense proteins in a host plant [132]. Therefore, endophytic 

bacteria that secrete defensive enzymes contribute to the innate immunity that is based on the 

preformed and induced defense responses [133].  
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Figure 1. Summary of roles of endophytic bacteria in promoting plant growth and the 

biological control of plant pathogens. 

4. Challenges and opportunities 

Recently, due to rapid population growth, industrialization and intensive agriculture being on the 

rise, many plant growers have chosen to apply synthetic fertilizers and pesticides excessively to 

generate high yields and incur more profits at the expense of human, animal and environmental health. 

Given the foregoing, more interventions that are free from synthetic chemicals are needed. To achieve 

this, one way is through the use of beneficial microorganisms harbored by plants. To date, many plants 

that inhabit beneficial bacteria communities are yet to be explored, thus presenting a gap that needs to 

be closed for the functions and applications of endophytes to be utilized. Therefore, more research 

efforts are needed to explore and increase the use of endophytic microorganism communities that have 

the potential to be alternatively used in agriculture and environmental protection. 

Endophytic bacteria are an attractive source of nutrition elements to be used as an alternative to 

chemical fertilizers. However, several gaps in research and utilization still exist. For example, many 

research studies have shown that endophytic bacteria fix atmospheric nitrogen gas into a usable form 

by plants. However, not so many studies have been done on the other two major nutrients, which are 

phosphorous and potassium. Endophytic bacteria solubilize trace elements such as iron and zinc. 

However, their ability to solubilize and make other crucial minor elements (e.g., manganese and 

molybdenum) available for plant utilization has not been made clear or fully utilized. While it is not 

deniable that much of the research has been concentrated on the ability of endophytes to synthesize 

and produce indole-3-acetic acid, further research needs to be focused on other hormones, such as 
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zeatin, abscisic acids and gibberellic acids, as very few data are available on the ability of endophytic 

bacteria to produce these crucial plant growth regulators or their influence on plant growth and 

development. Therefore, efforts to research individual endophytic bacterial traits will aid in the 

development of more bioproducts than those presently available for growers. Bioformulations, as has 

been reported by other researchers, are “easy to deliver, able to enhance plant growth and stress 

resistance, increase plant biomass and yield and open the way for technological exploitation and 

marketing” [134]. 

Several of the important biocontrol traits that endophytic bacteria have are yet to be thoroughly 

discovered, explored or documented. In addition, several experiments show that most researchers use 

the dual culture method to screen the antagonistic ability of biocontrol bacterial agents. However, this 

method can result in the slow discovery of new biocontrol agents that can inhibit the growth of plant 

pathogens without showing any inhibitory effect in dual plate culture. Furthermore, the ability of 

endophytic bacteria to control novel plant pathogens is not known. In addition, the commercialization 

of biocontrol products has been very slow and limited, and it requires much attention to fully 

understand both the basic and advanced applications of endophytic biocontrol traits [135]. There has 

also been a lack of field results to demonstrate the important effectiveness of biocontrol bacteria and, 

as a result, there has been limited development of bioformulations of these bacteria into biopesticides. 

For example, the utilization of Streptomyces bacteria for biocontrol has been minimal as compared to 

the potential and ability to exhibit biocontrol properties that affect various plant pathogens [136]. 

Based on these challenges, thorough research needs to be conducted on the individual antibiotics, lytic 

enzymes and volatile compounds in terms of their synthesis and mechanism of action against plant 

pathogens. In addition, full utilization of the knowledge and the use of omics technological tools and 

other molecular biology-related studies, such as genomics, epigenetics, metabolomics and proteomics, 

would help to discover and understand the whole concept of biocontrol agents and their applications 

in agriculture and plant protection. 

5. Conclusion 

Interactions between plants and microorganisms have major influences on the environment. Of 

importance is the interaction between plants and their bacterial endophytes. Endophytic bacteria 

become part of the plant and help their hosts to overcome abiotic stresses by ensuring nutrition uptake, 

fixing nitrogen and solubilizing phosphates, potassium, zinc and other important trace nutrition 

elements. In addition, endophytes synthesize and control plant hormones such as indole-3-acetic acids, 

ethylene, zeatin, abscisic acids and gibberellic acids. Many bacterial endophytes can exhibit biocontrol 

traits that would become valuable products, including siderophores, antibiotics, volatile organic 

compounds and lytic enzymes. There are many opportunities to explore both already identified and 

unidentified endophytic bacteria to maximize their applicability in plant growth and protection. Many 

of the bacterial endophytes and their secretion could be commercially formulated for use on a wider 

scale. Finally, the existing gaps identified could be closed by furthering research on endophytes, 

ensuring efficient collaborations between researchers and growers and making use of our knowledge 

of omics and other biotechnological tools. In conclusion, endophytic bacteria represent a set of 

untapped agents that have the potential to replace the overuse of synthetic chemicals and enhance plant 

health and productivity. 
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