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Abstract: Fanconi anemia (FA) is a rare genetic disorder characterized by multiple congenital 
malformations, progressive bone marrow failure, and susceptibility to cancer. The FA-D1 subtype is 
associated with biallelic mutations in the breast cancer 2 genes also known as FANCD1. Patients with 
this mutation display severe disease phenotype. In addition, different types of cancer other than breast 
cancer are associated with this mutation, such as leukemia, solid tumors of the central nervous system, 
etc. In this review, we have surveyed the literature on FA, FA genes, their biological roles, and 
specifically discussed the current information available on the FA-D1 disease subtype. The 
observations show that the timing of biallelic loss of BRCA2 can establish the specific cancer spectrum. 
The knowledge about effects of the FANCD1/BRCA2 mutation on FA and cancer pathogenesis can be 
used for further understanding the FA-D1 subtype of the disease. 
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1. Introduction

Fanconi anemia (FA) is a pathologically diverse and recessive autosomal inherited rare genetic
disorder that occurs in one in 130,000 births and is common among Ashkenazi Jews and South  
Africans [1]. It is caused by mutations in a cluster of proteins that perform DNA repair, especially 
those of covalent interstrand crosslinks (ICLs), via homologous recombination. FA culminates in bone 
marrow failure (BMF) in 90% of the affected individuals and leads to the development of various types 
of cancer, particularly myelogenous leukemia; gynecological squamous cell carcinoma; tumors in the 
liver, brain, skin, and kidney; esophageal carcinoma; and aggressive head and neck squamous cell 
carcinoma [2–4]. Approximately, 60–75% of the affected people have congenital defects, short stature, 
skin hyperpigmentation, missing radii, and abnormal thumb, head, eyes, kidneys, and ears, and 
developmental disabilities, and 75% people exhibit endocrine disorders of varying severity. The first 
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sign of a hematological problem is usually petechiae and bruises, with later onset of pale appearance, 
tiredness, and infections. 

Several patients develop BMF sometime during the course of the disease, but the onset of 
pancytopenia is correlated with the probability of FA. However, in some patients, the condition remains 
undiagnosed until the development of myelodysplastic syndromes/acute myeloid leukemia  
(MDS-AML). Patients with FA exhibit elevated levels of serum alpha-fetoproteins, fetal hemoglobin 
(HbF), and macrocytosis, although these cannot exclusively predict FA [5]. FA can be diagnosed in 
patients of age 0–48 years, and nearly 25–40% patients with FA appear healthy [6]. 

The commonly available treatment strategies for BMF involve the use of androgens and 
hematopoietic growth factors; however, cases where patients have become refractory to these 
treatments have been reported. In such cases, hematopoietic stem cell transplantation is the treatment 
of choice depending on the availability of a donor. For solid tumors in patients with FA, surgery is the 
preferred mode of treatment than radiotherapy and chemotherapy due to the possibility of severe side 
effects [7]. 

2. Genes involved in FA 

The list of mutations in genes associated with FA has increased ever since the discovery of the 
first FA gene, FANCC, over 25 years ago. There are over 22 known FA complementation groups, such 
as FANC-A, B, C, D1, D2, E, F, G, I, J, L, M, N, O, P, Q, R, S, T, U, V, and W [8]. All the proteins 
associated with FA pathway and their individual functions have been depicted in the Table 1 [9]. 

Table 1. Proteins in FA pathway and their individual roles [9]. 

FA Proteins Involved in DNA damage Involved in other cellular processes 

FANCA 
 

CD40 signaling pathway; cell 
proliferation; inflammatory response; T 
cell differentiation; Sequence-specific 
DNA binding transcription factor activity

FANCB DNA damage repair (not entirely 
dependent on the FA core complex)

FANCC TP53 Regulation of DNA Repair 
Genes 

Generic transcription pathway; Gene 
expression; Diabetes 

FANCD1 DNA damage repair, (not entirely 
dependent on the monoubiquitinated 
D2/I) 

Cell cycle regulation; meiotic 
recombination; Presynaptic phase of 
homologous DNA pairing and strand 
exchange; Resolution of D-loop 
structures

Continued on next page 

 

 



328 

AIMS Medical Science Volume 6, Issue 4, 326–336. 

FA Proteins Involved in DNA damage Involved in other cellular processes 

FANCD2 The HHR6 signaling pathway; The 
ATM signaling pathway; DNA 
damage repair; TP53 regulation of 
DNA Repair Genes; MiRNA 
regulation of DNA damage response

Replication: 
Replication-origin firing, Stalled 
replication forks; Mitochondria function; 
gene expression; 

FANCE/F/G DNA damage repair (not entirely 
depending on the FA core complex)

FANCI The ATR signaling pathway; TP53 
regulation of DNA Repair Genes; 
DNA damage repair 

Gene expression 

FANCJ DNA damage repair (not entirely 
dependent on the monoubiquitinated 
D2/I); G2/M DNA damage checkpoint

Cell cycle regulation; Cytosolic iron-
sulfur cluster assembly; P53 activity; 
Presynaptic phase of homologous DNA 
pairing and strand exchange; Resolution 
of D-loop structures 

FANCL DNA damage repair (not entirely 
dependent on the FA core complex)

Ubiquitin mediated proteolysis 

FANCM ATR regulator, or a major sensor of 
the DDR

Stalled replication forks 

FANCN DNA damage repair (HR) (not entirely 
dependent on monoubiquitinated 
FANCD2) 

Resolution of D-loop structures; 
Homologous DNA Pairing and Strand 
Exchange

FANCO DNA damage repair (not entirely 
dependent on monoubiquitinated 
FANCD2) 

Meiosis; Resolution of D-loop structures; 
Megakaryocyte development and platelet 
production; Cell cycle 

FANCP DNA damage repair (not entirely 
dependent on monoubiquitinated 
FANCD2/I) 

Resolution of D-loop structures 

FANCQ DNA damage repair (DSB, NER) (not 
entirely dependent on 
monoubiquitinated FANCD2) 

Transcription 

FANCR DNA damage repair (HR) (not entirely 
dependent on monoubiquitinated 
FANCD2/I); ATM signaling 

Cell cycle; Meiosis; 
Rac1/Pak1/p38/MMP-2 pathway 

Continued on next page 
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FA Proteins Involved in DNA damage Involved in other cellular processes 

FANCS DNA damage repair (HR) (not entirely 
dependent on monoubiquitinated 
FANCD2/I); ATM signaling 

Transcription (ATF-2, E2F, FOXA1 
transcription factor networks); Androgen 
receptor signaling pathway; Aurora A 
signaling; Cell Cycle Checkpoints; 
Deubiquitinating; 

FANCT DNA damage repair (not entirely 
dependent on monoubiquitinated 
FANCD2/I); 

Post-translational protein modification 

FANCU DNA damage repair (not entirely 
dependent on monoubiquitinated 
FANCD2/I) 

Resolution of D-loop structures; 
Presynaptic phase of homologous DNA 
pairing and strand exchange 

FANCV TLS performed by POL1, POLK, 
REV1 or Zeta; post replication repair 
(not entirely dependent on 
monoubiquitinated FANCD2/I) 

Cell cycle regulation; Shigellosis; Oocyte 
meiosis; Endoderm Differentiation 

FANCW Ubiquitination of RPA (not entirely for 
the activation of the FA pathway) 

Ubiquitination; Mediation of p53 
ubiquitination for its stability 

Moreover, mutations in FANCO, RAD51 (FANCR), and FANCS have been implicated in a FA-
like syndrome in which patient cells are hypersensitive to ICL-inducing drugs, but the disease is not 
characterized with all the clinical features classically observed in FA. Among the bona fide FA genes, 
FANCA, FANCC, and FANCG are the most frequently inactivated by biallelic mutations linked to the 
hereditary disorder [10,11]. Importantly, monoallelic mutations in certain FA genes, including 
FANCD1 (BRCA2), FANCS (BRCA1), FANCN (PALB2), FANCM, FANCJ (BRIP1), and FANCO 
(RAD51C), which are believed to operate downstream in the pathway and are implicated in 
homologous recombination, are associated with sporadic breast and ovarian cancer [11,12]. With the 
identification of several FA genes, the pathway for repair of ICLs has become more complex and is 
now believed to involve nucleotide excision repair, base excision repair, double strand break repair, 
and mismatch repair. Although ICL repair occurs mostly in replicating cells, studies have also 
associated it with non-replicative repair, such as in cells treated with DNA crosslinking agents. ICL 
repair is critical as it affects DNA unwinding for basic life processes such as transcription  
and replication. 

FA pathway/signaling is crucial for DNA damage response (DDR), which further results in DNA 
ICL. However, it has been reported that genes and proteins, especially FANCC, of the FA pathway 
perform additional cytoprotective role. FANCC provides protection against proinflammatory cytokine-
induced cell death. This role is associated with FANCC and its various biochemical interactions [13]. 
One study suggested that patients with FA carrying endogenously expressed FANCC mutant c.67delG 
exhibited a clinical course that was milder than patients with null mutations in FANCC [14]. FA cells 
are hypersensitive to oxidative stress, radio/chemotherapeutic agents, and DNA crosslinking agents, 
such as mitomycin, and exhibit cell cycle abnormalities [15]. Thus, FA phenotypes may require 
stressors to initiate the disease phenotype [16]. Thus, bone marrow transplant should be performed 



330 

AIMS Medical Science Volume 6, Issue 4, 326–336. 

with extreme care so as not to induce any oxidative stress, especially via radio/chemotherapeutic agents, 
which may otherwise lead to BMF. 

3. FA genes and ICL repair 

FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL, and FANCM form a core 
complex, which monoubiquitylates FANCD2 and FANCI [17–20]. The monoubiquitylated complex 
interacts with the endo/exonuclease FAN1 (FA associated nuclease 1) [20–24]. However, FA patients 
with mutations in FAN1 are not known till date. FANCD1/BRCA2 and BRCA2-interacting protein 
FANCN/PALB2, essential components of homologous recombination repair, act downstream in this 
pathway along with the helicase FANCJ /BRIP1/BACH1 [25–31]. The interaction of FANCJ with 
BRCA1 is dispensable for the FA pathway. Interestingly, although BRCA1 depletion sensitizes cells 
to crosslink damage, individuals with biallelic BRCA1 mutations have not been reported so far. 
Multiple proteins, including the nucleases XPF, MUS81, and SLX1, interact with FANCP/SLX4, the 
latest addition to the family of FA proteins, which acts as a protein scaffold [32–37]. XPF and MUS81 
are involved in crosslink repair, and the SLX4-SLX1 interaction is responsible for Holliday junction 
resolution activity in vitro. However, which activity of SLX4 is essential for crosslink repair is 
currently unclear [38,39]. Overall, it is clear that mutations in FA proteins, which perturb ICL 
resolution, are important for FA pathogenesis. 

4. FANCD1/BRCA2 

BRCA2, a human tumor suppressor, is also known as FANCD1, indicating its associations with 
the FA complex (discussed above) [40,41]. It is normally expressed in breast tissues and is involved in 
the repair of DNA damage as described in the previous section. BRCA2 also prevents nucleolytic 
degradation of stalled forks during DNA replication [42]. Thus, BRCA2 is critical for maintaining 
genome stability and preventing deleterious genomic rearrangements, which may lead to cancer. High 
penetrance mutations in BRCA2/FANCD1 lead to loss of its tumor suppressive character and increase 
the chances of developing breast cancer [43].  

Several mutations, usually small indels, have been identified in BRCA2, many of which increase 
the risk of cancer. These mutations lead to the synthesis of an abnormal product that does not function 
properly. In their analysis of the severity of BRCA2 mutations in 27 cases with breast cancer,  
Alter et al. (2007) showed that 20 mutations were frameshifts or truncations, three involved splice sites, 
five were missense variants of unknown severity, and two were benign polymorphisms [44]. 
Monoallelic germline mutations in BRCA2 increase the susceptibility for breast/ovarian cancer, 
whereas biallelic germ line mutations lead to the development of FA-D1 in patients. Indeed, among 
the known FA genes, only BRCA2/FANCD1 plays a major role in the development of high-risk breast 
cancer [45]. BRCA2-associated FA-D1 subtype accounts for nearly 3% of all FA cases, which, in 
comparison with other subtypes, results in more severe form of the phenotype, increases the frequency 
of leukemia and other tumors, as well as early onset of symptoms [44,46]. Parents of patients with FA 
are heterozygous for the condition, and therefore are at a high risk of early-onset breast/ovarian  
cancer [47]. Furthermore, in heterozygous patients, loss of the second wild type BRCA2 allele leads 
to biallelic extinction of BRCA2, and subsequent exposure to DNA cross-linkers often result in 
chromosome breakage, resulting in tri-radial chromosomes, which are characteristic of FA cells [48]. 
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Thus, FA and breast cancer are interlinked and share common functions in the DNA repair  
mechanism [49]. Children with biallelic mutation in BRCA2 show spontaneous chromosomal 
instability and develop solid tumors of childhood such as Wilm’s tumor and medulloblastoma [50]. 

Individuals with heterozygous mutations in BRCA2/FANCD1 are also at increased risk of 
developing pancreatic cancer. Hahn et al. (2003) showed that frameshift mutations in 
BRCA2/FANCD1were associated with 19% cases with history of hereditary pancreatic cancer [51]. 
Similarly, other cancers, such as prostate cancer, gastric cancer, and melanoma, have also been 
associated with heterozygous mutations in BRCA2/FANCD1 [52]. A recent study showed that 
colorectal cancer (CRC) can also be associated with biallelicBRCA2 mutations (a frameshift alteration 
(c. 1845_1846delCT, p. Asn615Lysfs*6) and a missense mutation (c. 7802A > G, p. Tyr2601Cys)) in 
families with cases of CRC, although CRC driver genes were not involved and the cardinal clinical 
symptoms of FA were not observed. This indicated that the presence of these mutations should be 
screened even in the absence of typical FA symptoms [53]. The biallelic p. Lys3326X mutation in 
BRCA2 was present in 27 of 746 ESCC cases and in 16 of 1,373 controls in a study on mutations in 
FA genes in Turkmen of Iran with esophageal cancer [54].  

Recently, biallelic BRCA2 mutation was found to predispose toward glioblastoma multiforme 
(GBM), with multiple genetic rearrangements [55]. In that study, methylation analysis of GBM from 
a 3-year-old patient with FA, who harbored biallelic mutation in BRCA2, revealed strong clustering 
with the K27 mutation subgroup, copy number analysis showed gains of chromosomes 1q, 4q, part of 
7q, part of 8q and 17q, with resultant amplifications of MDM4, CDK6, MET, MYC, and PPM1D 
(WIP1). This study also reported the first germline mutation in BRCA2, c. 8057T > C, resulting in p. 
Leu2686Pro substitution in the patient. Biallelic BRCA2 mutation has also been reported in two 
siblings with early age central nervous system embryonal tumor, which is the first reported case of a 
spinal cord primitive neuroectodermal tumor in BRCA2/FANCD1 kindred [56].  

Currently, the precise effect of mutations in some FA gene leading to breast and ovarian cancer 
remains unclear. While somatic cells with mutations in the DNA repair pathway undergo apoptosis, 
estrogen might promote the survival of breast and ovarian cells. Estrogen possibly promotes the 
survival of breast and ovarian cells harboring significant DNA damage, whereas apoptosis may occur 
in somatic cells with mutations in the DNA repair pathway [57]. In contrast, breast/ovarian cancer 
infrequently develop in patients with FA. Hypogonadism with decreased levels of estrogen in females 
with FA might account for this observation. In families carrying BRCA2/FANCD1 mutations, > 40 
years marks the peak age for the onset of breast/ovarian cancer among heterozygote carriers, whereas 
patients with biallelic mutations frequently die from complications of aplastic anemia before 40  
years [58]. Altogether, these observations show that the timing of biallelic loss of BRCA2 can establish 
the specific cancer spectrum [59–65]. Figure 1 provides a schematic representation of FA pathway [66]. 
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Figure 1. FA pathway at a glance [66]. 

5. Conclusion 

FA is a genetic disorder that predisposes patients to pancytopenia, MDS, and AML. Better 
understanding of the FA pathway might lead to the development of methods for correcting the 
perturbed pathway, thereby preventing carcinogenesis in FA patients or those carrying mutations in FA 
genes. Indeed, the CRISPR/Cas9 technology has already been used to rectify a FANCD1 deletion in a 
patient-derived fibroblast with the above mutation, providing proof-of-principle that gene editing may 
be used to rectify FA. As the sensitivity of cancer cells to chemotherapy drugs is affected by defective 
DNA repair mechanism, mutations in FA genes could help in predicting the success of chemotherapy 
drugs such as DNA inhibitors, or DNA crosslinking agents (melphalan, mitomycin C, and cisplatin). 
In this review, we have specifically discussed the effects of the FANCD1/BRCA2 mutation on FA and 
cancer pathogenesis. The collective knowledge can be used for further understanding the FA-D1 
subtype of the disease. 
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