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Abstract: This review article provided a thorough examination of porous ceramic materials, 

concentrating on production, characteristics, and the involvement of pore-forming agents. The primary 

objective of this research was to evaluate the effects of various ceramic materials and pore-forming 

agents on the structure, porosity, and mechanical characteristics of porous ceramics. The study’s 

scope included a thorough investigation of key sources of literature, such as academic publications, 

review articles, and industry reports, to provide a comprehensive understanding of porous ceramic 

technology. According to the literature review, the selection of ceramic material and pore-forming 

agents has a significant influence on the pore size distribution, porosity, and mechanical strength of 

porous ceramics. Various manufacturing methods, including foaming, sintering, and sol-gel 

procedures, were explored in terms of their influence on porous ceramic microstructure and 

characteristics. Furthermore, the study emphasized the need to optimize processing settings and 

select pore-forming agents to obtain the necessary qualities in porous ceramic materials. Overall, this 

review is useful for researchers, engineers, and practitioners who desire to learn more about porous 

ceramic manufacturing, characteristics, and applications. 
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1. Introduction 

Ceramic materials have a long history of manufacture and treatment, yet they continue to attract 

the interest of researchers all around the world. Commercialization and technical advancement in 

ceramic materials have risen in recent years as chemical, mechanical, and thermal performance has 

improved [1]. A specific family of materials known as porous ceramics has high porosity, which 

bestows distinctive qualities including increased permeability, low density, and large surface area. 

These materials comprise a network of linked pores scattered across a ceramic matrix. These holes 

can range in size from less than 2 μm to more than 50 μm, and they can be either closed (isolated) or 

open (interconnected) [2]. The selection of pore-forming agents and ceramic ingredients greatly 

influences the final characteristics of the porous ceramics [3–10]. 

The requirement for materials that combine the advantages of porosity with the intrinsic 

qualities of ceramics, such as thermal and chemical durability, contributed to the creation of porous 

ceramics. Thermal insulation and filtration were the first main applications. The performance of 

porous ceramics has improved, and its variety of applications has increased throughout time due to 

materials science and engineering developments [11–17]. 

The development of building materials that help to lower building energy use is unquestionably 

of importance to society. The utilization of air conditioners for indoor cooling in both private and 

public buildings has become increasingly prevalent in recent years, particularly in nations characterized 

by warm climates, such as those in Asia. Power costs for buildings have experienced a significant 

increase in recent years, and this upward trend is expected to persist in the future. Anticipated 

projections suggest that the rise in electricity consumption for cooling is poised to become 

predominant in buildings by 2050, exhibiting a cumulative growth rate exceeding 75%. Moreover, 

the escalation in power consumption aligns with a concurrent surge in CO2 emissions [18–20]. 

A large surface area is shown by porous ceramics because of their interconnected pore structure. 

This property is especially useful for processes like adsorption and catalysis that call for a large 

number of surface contacts. More active sites for chemical reactions or the adsorption of molecules 

are made possible by the larger surface area, which improves the effectiveness of adsorbents, 

catalytic converters, and other functional materials. These ceramics have a low density due to their 

high porosity, which makes them lightweight materials. This feature is helpful in areas like aerospace, 

automotive, and transportation where weight reduction is crucial without sacrificing structural 

integrity. While keeping the essential mechanical qualities, lightweight porous ceramics can lower 

the total weight of buildings and increase fuel economy. Overall, the purpose of this comprehensive 

review is to analyze the effects of different ceramic materials and pore-forming agents on the 

structure, porosity, and mechanical properties of porous ceramics. 

2. Ceramic materials 

Ceramic materials are frequently made from clay and other natural minerals, as well as 

chemically processed oxide, nitride, or carbide crystal powders, such as silicon and carbon (silicon 
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carbide, SiC), silicon and nitrogen (silicon nitride, Si3N4), and aluminium and oxygen (alumina, 

Al2O3). Ceramic materials encompass inorganic, non-metallic compounds and the resulting products 

derived from them, which can exhibit crystalline or partially crystalline structures.  

Crystalline ceramic materials are non-metallic inorganic compounds with a structured atomic 

arrangement. These materials are broadly employed in numerous industrial, technical, and scientific 

fields because of their desired qualities, which include outstanding strength, durability, chemical 

inertness. and thermal resistance. Crystalline ceramics have a very organized atomic arrangement, 

with atoms grouped in a repeated three-dimensional lattice arrangement [21]. This regular structure 

contributes to their identity. 

Crystalline ceramics exhibit elevated hardness, exceptional thermal and chemical resilience, 

minimal electrical and thermal conductivity, as well as resilience to wear and corrosion [22]. These 

attributes represent the desirable qualities inherent to ceramics. Commonly, these materials are 

manufactured either through an in situ reaction or by compressing powder into a cohesive mass, 

followed by sintering at elevated temperatures to attain the desired shape and solidity [23]. Instances 

of crystalline ceramic materials comprise alumina, zirconia, silicon carbide, sapphire, and ceramics 

with piezoelectric properties.  

Ceramic-based materials are a broad and adaptable family of materials recognized for their 

distinct set of characteristics and many uses. These materials are made of inorganic substances, 

which are often non-metals. High melting point, high strength and hardness, strong oxidation and 

corrosion resistance, minimal thermal expansion, good stability, the capacity to operate at high 

temperatures, and electrical insulating qualities are some of its distinguishing characteristics [24]. 

These extremely desired qualities enable them to perform better in many applications than materials 

based on metal or polymers, particularly under difficult operating situations like higher temperatures 

or corrosive environments. Notwithstanding their benefits, ceramics’ brittleness restricts their ability 

to withstand mechanical damage and creates significant challenges to their widespread technical  

uses [24]. 

Materials based on ceramics are employed in a variety of sectors, including biomedicine, 

electronics, automotive, aerospace, and energy. Ceramic-based materials are categorized as follows 

depending on their composition, qualities, and uses: 

1. Oxide ceramics: these types of ceramics are primarily made of metal oxides, including    

silica (SiO2), alumina (Al2O3), and zirconia (zirconium oxide, ZrO2). Good chemical resistance, 

electrical insulation, and thermal stability are provided by oxide ceramics. They have enormous 

potential for use in the production of biomedical implants, thermal barriers, electrical components, 

and refractories [25]. 

2. Nitride ceramics: metal nitrides such as silicon nitride (Si3N4), aluminium nitride (AlN), and 

boron nitride (BN) make up nitride ceramics. They have excellent strength, heat conductivity, and 

corrosion and wear resistance. Heat sinks, cutting tools, and electronic packaging all employ nitride 

ceramics [25]. 

3. Ceramics made of carbides: ceramics made of carbides of metals include titanium (TiC), 

tungsten (WC), and silicon (SiC). Their remarkable chemical stability, great heat conductivity, and 

extraordinary hardness are well-recognised. Wear-resistant parts, cutting tools, abrasives, and shielding 

materials are all made of carbide ceramics [26]. 

4. Ceramics made of silicates: earthenware, stoneware, and porcelain are examples of ceramics 

made of silicate compounds. These ceramics have strong heat resistance, electrical insulation, and 
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aesthetic qualities. They are made of clay minerals. Pottery, dinnerware, and architectural tiles are 

frequently made of silicate ceramics [27]. 

5. Glass ceramics: materials that blend glass and crystalline phases are known as glass ceramics. 

It is created by carefully regulated glass crystallization of a particular composition. A harmonious 

combination of transparency, strength, resistance to heat shock, and flexibility may be found in glass 

ceramics. They are used in dental remediation, electronics, and cookware [28]. 

6. Composite ceramics: composite ceramics are made up of several ceramic components 

combined with other elements, frequently metal or fiber. The strengths of each component are 

utilized to provide these ceramics with improved characteristics. Fiber-reinforced ceramics, for 

instance, have improved toughness and fracture resistance. Uses for composite ceramics include 

structural, automotive, and aerospace [29]. 

7. Bioceramics: these materials are made especially for use in biological fields. These include 

alumina-zirconia composites, bioglass, and hydroxyapatite (HA). Bioceramics demonstrate mechanical 

qualities that are suitable for live tissue, as well as biocompatibility and bioactivity. It is utilized in 

tissue engineering, bone grafting, and dental implants [30]. 

Materials based on ceramics are crucial to the creation and use of inorganic membranes [31,32]. 

Table 1 contains a list of properties for comparable ceramic materials. These characteristics are 

unique to each ceramic substance and have a considerable impact on the application and efficiency 

of ceramic components.  
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Table 1. Comparison of different ceramic materials with their properties. 

Ceramic materials Properties  Ref. 

Aluminium oxide (Al2O3) Density (4.04 g/cm3), flexural strength (∼12 to ∼33 MPa), elastic modulus 

(140–180 GPa), compressive strength (65.27 MPa), hardness (1440 kg/mm2), 

fracture toughness (1.13 MPa·m1/2, thermal conductivity (15.4–35 W/mK), 

affordable cost, relatively abundant, and environmentally conscious. 

[33–38] 

Aluminium nitride (AlN) Density (2.67–3.20 g/cm3), thermal conductivity (171–174 W/mK), flexural 

strength (306.3–332.4 MPa), bending strength (456.6 MPa), fracture 

toughness (4.47 MPa·m1/2), high hardness, and its stability is solely 

preserved within a high-temperature environment under inert conditions. 

[39–41] 

Silicon carbide (SiC) Density (3.21 g/cm3), electrical resistivity (9.0 × 10−2–3.9 × 101 Ω·cm), 

thermal conductivity (2.3–31.4 W/mK), flexural strengths (8.1–32.9 MPa), 

flexural strength (592 MPa), hardness (28.3 GPa), elastic modulus      

(461 GPa,) and fracture toughness (3.6 MPa·m1/2). 

[42–45] 

Silicon nitride (Si3N4) Density (2.689–5.221 g/cm3), thermal conductivity (90 W/mK), flexural 

strength (861.34–953 MPa), and fracture toughness (3.6–10.64 MPa·m1/2). 

[46–49] 

Zirconia (ZrO2) Flexural strength (162.40–285.04 MPa), fracture toughness (5.4–6.7 

MPa·m1/2), elastic modulus (100–250 GPa), tensile strength (330 MPa), 

high-temperature resistance, wear resistance, and corrosion resistance. 

[50–53] 

Titanium carbide (TiC) Density (4.91 g/cm3), electrical resistivity (68 µΩ·cm), Young’s modulus 

(410–510 GPa), flexural strength (24–390 MPa), melting temperature 

(3067 °C), boiling temperature (4820 °C), and thermal conductivity 

(21 W/mK). 

[54] 

Silicon dioxide or silica (SiO2) Density (2.31 g/cm3), compressve strength (65.27 MPa), thermal 

conductivity (0.066 W/mK), tensile strength (110 MPa), fracture toughness 

(5.21 MPa), hardness (575.5 HV), and crushing strength (565 MPa). 

[55–58] 

Mullite (Al6Si2O13) Density (0.30–0.70 g/cm3), compression strength (1.41–16.30 MPa), thermal 

conductivity (0.083–0.305 W/mK), and the mechanical performance is 

comparatively modest. 

[59,60] 

Lead zirconate titanate or PZT Good dielectric and piezoelectric characteristics, optical absorption, and 

high-power handling capacity. 

[61–65] 

Magnesium oxide (MgO) Hardness (8.25 GPa), fracture toughness (2.01 MPa·m1/2), Young’s 

modulus (286 GPa), thermal conductivity (48.4 W/mK), and compressive 

strength (173.72–244.87 MPa). 

[66–68] 

3. Fabrication of ceramic products 

Ceramic materials may be manufactured using a variety of procedures. Ceramic materials may 

be formed into a variety of shapes, including cylindrical fibers, tubes, and flat surfaces. Additionally, 

ceramic materials can go through four steps of treatment: material preparation, manufacturing, 

sintering, and finishing. Wet forming, dry forming, gel casting, thixotropic casting, direct foaming, 

and freeze casting are some of the procedures used to treat ceramic materials. 

The gel casting process represents an inventive approach to producing porous ceramics. 

Through the free radical polymerization of organic monomers and cross-linking agents catalyzed by 

initiators, a three-dimensional crosslinked polymer forms, allowing the ceramic powder to maintain 

its shape. Figure 1 below shows the stages of the gel casting method. During sintering, the 

disintegration and volatilization of the polymer subsequently lead to the generation of pores. Porous 

structures can be created devoid of pore-forming agents, a technique applied across a range of 

ceramic material systems [69]. Yu et al. generated porous Si3N4 ceramics by augmenting the 
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monomer concentration (comprising acrylamide and N,N’-methylene bisacrylamide) within a 

ceramic suspension, without the incorporation of any organic additives, during the casting process of 

an acrylamide-based gel [70]. Gel casting should be done in safe and optimal conditions. Nonetheless, 

within industrial manufacturing, employing a protective atmosphere not only complicates control but 

also escalates production expenses. The appropriate amount of polymer can minimize the 

surface-splitting characteristic of the airborne green body while enhancing the fluidity of the 

suspension [71]. 

 

Figure 1. Stages of the gel casting method (Reproduced from Ref. [72] with permission). 

Gel casting, a simple and trustworthy technology using in situ polymerization with natural 

monomers, is used to create porous ceramics with complicated forms and long-lasting foams [73–75]. 

Nevertheless, industrial gel casting poses challenges due to the toxicity associated with organic 

monomers [76]. Direct foaming produces porous ceramics by introducing air into the solution via a 

froth stabilizer and then drying and firing. Figure 2 below shows the schematic illustration of the 

direct foaming technique. Nevertheless, porous ceramics produced through direct foaming are 

susceptible to breakage owing to their weak mechanical properties [77]. Most porous ceramics 

featuring intricate shapes and high porosity are currently manufactured utilizing high-temperature 

foaming methods. In this manufacturing procedure, a foaming agent is mixed into the green body 

before being sintered at higher temperatures [78]. The gas created by the foaming agent rises and is 

either retained or expelled from the ceramic, resulting in porosity. 

High-temperature foaming has been gaining popularity because it makes it possible to prepare 

porous ceramics that have substantially closed porosity. For instance, a porous ceramic exhibiting a 

porosity of 69% and a relatively high compressive strength of approximately 7 MPa underwent 

sintering at 980 °C [79]. At 1140 °C, a porous ceramic is formed with a small density of the bulk     

of 0.39 g/cm3 and a suitable flexural modulus of 2.4 MPa [80]. Nevertheless, the manufacturing cost 

associated with high-temperature foaming tends to surpass that of other methods, owing to its higher 

sintering temperature and longer heating time. 
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Figure 2. Schematic illustration of the direct foaming technique (Reproduced from Ref. [81] 

with permission). 

4. Porous ceramics 

Porous ceramics are material composites made up of a ceramic substrate and gases scattered 

within the matrix’s porous structure [82–87]. It possesses the advantages of conventional ceramics, 

such as resistance to extreme temperatures, corrosion, and oxidation, as well as being lightweight, 

having a significant area of surface, and having a low coefficient of thermal conductivity [88–91]. 

Porous ceramics provide remarkable porosity, heat resistance, and sound absorbing qualities, among 

other benefits. These types of ceramics are essential in high-temperature production insulation [92] 

and high temperature purification [93], and they are also extensively applied in catalyst transporters, 

sound insulation, gas-sensitive substances, and biological materials [94–96]. Porous ceramics rely 

heavily on their porous structure to achieve their efficacy. The pore structure is crucial in the study of 

porosity ceramic materials and causes problems that can lead to inconsistencies and flaws in the 

finished product, such as uneven pore distribution, unwanted pore size, and trouble regulating pore 

production during manufacturing [83,94,97–99]. 

The advantageous properties of porous ceramics, including filtration and separation, thermal 

insulation, catalysis, biomedical applications, and acoustic applications, render them applicable across 

various industries. Furthermore, the utilization of these porous ceramics has seen an increase in artificial 

bone and tooth root materials, sensitive components, and sound-absorbing materials [9,100,101]. 

Figure 3 below shows how zirconia ceramics are used in biomedical applications for contemporary 

bone replacement and repair. Because of its exceptional strength, durability, and biocompatibility,    

it may be used in a range of medical implants, such as dental implants, hip and knee replacements, 

and other orthopedic applications [102]. The porosity in ceramic materials is controllable to a 

certain extent, allowing for a diverse range of pore sizes and distributions. This porosity can be 

customized or adjusted to fulfill specific requirements, such as the desired permeability, mechanical 

strength, and thermal or chemical resistance. Various techniques can be employed to produce porous 

ceramics with different morphologies and pore size distributions. Examples include firing 

polymer sponges impregnated with a ceramic slurry [103–105], solid-state sintering [106–108],    

sol-gel methods [109–113], replicating polymer foams through impregnation, and gel casting 

processes [114–117]. 
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Figure 3. Diagram illustrating the latest uses of zirconia nanosystems (Reproduced from 

Ref. [102] with permission). 

Porous ceramics exhibit distinctive properties that render them advantageous in various 

applications. High porosity is one such notable feature, with porous ceramics possessing a significant 

number of interconnected pores that facilitate the flow of gases and liquids. This heightened porosity 

contributes to the effectiveness of processes, such as filtration, absorption, and adsorption [113]. 

Porous ceramic materials are widely used in a variety of technologies, including thermal insulation 

systems, filtration membranes [9,118,119], bone tissue engineering [120–124], ceramic preform 

fabrication [125–127], and more. The utilization of porous ceramics in these applications is 

attributed to the synergistic interplay between the unique properties of ceramics and the development 

of the pore network [128]. 

For instance, mullite porous ceramics have gained widespread use in energy recovery, metal 

smelting, and the chemical industry owing to their exceptional qualities, including a high melting 

point, resistance to acid and alkali corrosion, substantial porosity, favorable mechanical properties, 

high-temperature resistance, and low thermal conductivity [129–134]. Figure 4 below displays the 

typical bi-layered samples seen from the top and side views by stereomicroscopy. This sample 

appears to be a standard arrangement of solid components encircled by four concentric rings with 

varying widths. Radial filaments bind the compact and ring components together, creating a structurally 

sound and appropriate arrangement. Concentric rings and radial filaments that enlarge with distance 

from the dense core connect to generate open pores in the shape of isosceles trapezoids [135]. 
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Figure 4. Typical bi-layered samples seen from the (a) top and (b) side by 

stereomicroscopy (Reproduced from Ref. [135] with permission). 

Furthermore, porous ceramics commonly demonstrate exceptional thermal resistance, rendering 

them well-suited for applications in high-temperature settings. The thermal conductivity of porous 

ceramics is influenced by factors, such as composition, pore size and distribution, porosity, and the 

method of manufacturing [136–138]. Their capability to endure extreme heat, thermal shock, and 

thermal cycling without substantial degradation is crucial in industries like aerospace, automotive, 

and energy. Despite their porosity, porous ceramics maintain a relatively low density, resulting in a 

lightweight material. The mechanical strength of porous ceramics is determined by the critical crack 

size, where pores serve as the primary source of cracks [128]. Furthermore, porous ceramics are 

resistant to a variety of substances, including acids, bases, and organic solvents. This chemical 

stability qualifies them for application in harsh situations such as chemical processing, water 

treatment, and the pharmaceutical sector. 

4.1. Categorization of porous ceramics 

Porous ceramics are traditionally classified according to pore size, with three major categories: 

macroporosity (pores larger than 50 nm), mesoporosity (pores between 2 and 50 nm), and 

microporosity (pores less than 2 nm) [127]. The variety of uses for various texture characterization 

techniques in pore size research is shown in Figure 5, where each technique has a certain length 

range of applicability. Methods utilizing mercury intrusion porosimetry are commonly employed to 

assess the distribution of pore sizes. This methodology cannot establish the distribution of pore sizes 

of closed porosity; however, alternate methods, such as optical and technological examination of 

cleaned cross-sections, can be used for this purpose. The distribution of pore sizes illustrates the pore 

volume relative to pore size and is typically expressed as a percentage or derivative [2]. 

However, because various nations have varying rules governing the use of porous materials, this 

categorization criteria are not followed internationally [139]. Microporous ceramics feature very 

small holes, often less than 2 nm in diameter, and are widely utilized in gas separation, membrane 

technology, and as adsorbents for gases and liquids. Mesoporous ceramics have medium-sized pores, 
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often ranging from 2 to 50 nm, and are used in applications, such as molecular filters, adsorbents, 

and drug delivery systems, whereas macroporous ceramics have large holes, more than 50 nm. 

Microporous ceramics are commonly used in filtering, catalyst support, and structural applications [2]. 

Consequently, porous ceramics can be categorized according to distinct features, such as the 

chemical composition of the initial ceramic material, percentage of porosity, physical condition of 

the product, and refractoriness in relation to service temperature, purpose, and application area [140]. 

 

Figure 5. The pore size of a material determines whether it is macroporous, mesoporous, 

or microporous (Reproduced from Ref. [141] with permission). 

5. Pore-forming agents 

Based on Colombo P and Eom JH et al., several methods for producing porous ceramics have 

been documented. Pore-forming agents, in this instance, have demonstrated the ability to achieve 

significant degrees of porosity, as they naturally burn during the heating process to the firing 

temperature, creating a gap in the ceramic material [142,143]. The structure of these gaps will be 

determined by the pore-forming agent used and may thus be regulated by adjusting the absorption 

content and distribution of particle sizes. 

Pore-forming agents, such as starch [144–149], graphite [150–154], lycopodium [155], 

sucrose [154,156–158], polymethyl methacrylate [159–164], polypropylene [160,165,166] and 

carbon black [167–172] have all been studied. Although starch is the most used pore-forming 

substance, it is rarely used when large holes are required, most likely due to its biological basis and 
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accessibility, the difficulties in maintaining the shape of the pores formed by starch combustion, and 

the tiny size of the particles. Various starch kinds are widely manufactured, ranging from 5              

to 50 μm [173]. 

Polypropylene (PP) and polymethyl methacrylate (PMMA) are the primary porogen compounds 

used. PP was chosen because of its large-scale manufacturing and low cost, making it economically 

desirable for industrial applications [165]. A previous study on the thermal breakdown of PP found 

that it decays rapidly and completely, yielding a wide range of aromatic hydrocarbons [174–176]. 

There were no harmful gas pollutants recorded for PP [177–179]. PMMA was commonly utilized in 

ceramics as a porogen because it has a correct compromise of thermal characteristics that are suited 

for the specified purpose [135,163,180]. PMMA breaks down almost completely into monomers and 

fires at a very fast and steady rate [181,182]. 

Besides, the application of carbon black is wide due to its highly engineered nature. It is 

frequently employed as a filtration or strengthening agent in rubber, plastic, and other polymeric 

products. Carbon black has the potential to be used as a porous material in different applications, 

including ceramic applications. The pore-forming agent carbon black was used by [169] to create 

porous alumina ceramics with controlled porosity, and the compressive strength of the ceramic was 

significantly increased. Furthermore, carbon black particles penetrate the pores between the particles 

of ceramic as the carbon black content increases from 0 to 5 wt.%, resulting in a drop in conductivity 

but an improvement in mechanical characteristics [183]. Carbon black’s ability to create a variety of 

pore sizes and distributions is one of the main benefits of using it as a porogen. Furthermore, carbon 

black can be safely used in porous ceramics due to its inertness and non-toxicity. Liu J et al. reported 

that burnt specimens were made porous by using carbon black with different carbon black contents, 

which was used as a porogen to produce their total porosity, closed porosity, and bulk density [168]. 

The structure, porosity, and mechanical characteristics of porous ceramics are greatly influenced 

by the pore-forming agent selection and the pore-formation technique. First, the structure of pore size 

and distribution in the ceramic matrix are largely dependent on the kind and size of the pore-forming 

agent. Larger polymer particles often result in larger holes, whereas smaller, more uniform pores are 

typically produced by finer particles or gas-release agents [184]. The connection of these pores is 

also significantly influenced by the process by which they originate. For instance, the loss of organic 

substances often causes linked holes to develop, which raises fluid permeability and mechanical stiffness. 

Besides, the amount of pore-forming agent added to the ceramic combination has a significant 

impact on the end product’s total porosity [185]. Increased porosity from greater amounts of these 

compounds can enhance characteristics like permeability and thermal insulation. Nevertheless, 

mechanical strength is sometimes sacrificed in favor of this higher porosity [185]. The kind of    

pore-forming chemical that is utilized also affects the morphology and shape of pores [186]. 

Although fibrous materials like cellulose make elongated holes, which might have varying effects on 

mechanical characteristics, spherical polymer particles usually produce circular pores, which provide 

a homogeneous pore shape [187]. 

In addition, the mechanical characteristics of ceramics are directly impacted by porosity. 

Normally, ceramic materials lose mechanical strength as their porosity increases [160]. However, by 

improving the distribution and shape of pores, this negative effect can be mitigated. For instance, a 

balance between porosity and mechanical strength can be achieved by combining appropriate     

pore-forming agents with non-oxide ceramics, for example, silicon carbide [188]. As porosity 

increases, so does the modulus of elasticity, or stiffness, of porous ceramics. To make sure the 
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material still satisfies the necessary mechanical performance requirements, this decrease must be 

carefully controlled. Furthermore, pores may serve as a stress concentrator, which increases the risk 

of fracture formation and progression under load. However, a carefully constructed pore structure 

can withstand fracture and boost ceramics’ overall durability [189]. Porous ceramics may be 

strengthened further to boost their fracture resistance by the incorporation of strengthening processes, 

such as phase transition in zirconia, which will render them more dependable and long-lasting for a 

range of applications [190]. 

6. Characterization of porous ceramics 

Table 2 below shows the porosity (open and closed), bulk density, and water absorption 

characteristics of burnt bodies of ceramic from different references. The results revealed that the 

pore-forming agent content may readily regulate the open porosity of the burned ceramic underlayer. 

The value rises as the quantity of the pore-forming agent increases, demonstrating a nearly linear 

connection. This discovery is in agreement with the results published by [191]. These researchers 

discovered that the apparent porosity and bulk density of the ceramic body were independent of the 

pore container size when graphite was used as the pore container. Liu R et al. studied the influence of 

different diameters of PMMA microspheres on the characteristics of porous yttria-stabilized zirconia 

ceramics [192]. 

Table 2. Comparison of porosity, bulk density, and water absorption in ceramic bodies. 

Pore-forming agent 

(PFA) 

PFA content 

(wt.%) 

Open porosity 

(%) 

Closed porosity 

(%) 

Bulk density 

(g/cm3) 

Water absorption 

(%) 

Ref. 

PMMA 0–25 19.90–0.90 7.90–9.77 1.73–2.17 0.41–11.54 [135] 

PP 0–25 22.96––3.12 7.59–9.55 1.63–2.12 1.47–14.11 [135] 

Sawdust 0–15 17.53–0.90 8.13–9.77 1.90–2.17 0.41–9.23 [194] 

PMMA 5–20 70.23–61.82 - 1.37–1.06 - [193] 

Cellulose fibers and 

pumice powder 

5 and 10  3.9–0.3 - 2.35–2.36 0.1–1.7 [195] 

Sodium dodecyl 

sulfate (SDS) 

0–5 80.9–68.8 - 0.46–0.69 - [196] 

Soluble starch 0–8 7.57–11.91 6.47–8.55 2–3 - [197] 

Porogenic chemicals have the tendency to raise open porosity and decrease the number of 

closed pores in the sintering disc. The last factor may be attributed to increased pore connectivity. 

Consequently, the surface accessible in the porous layer expands, which might be advantageous for 

applications that demand the implantation of these voids. According to Liu R et al., below 20% 

PMMA incorporation, pores are mostly blocked, establishing a 20% PMMA relative permeability. 

Surprisingly, the data suggest a relative permeability of 10 to 15 wt.% PMMA incorporation [192]. 

Based on Chen A et al., Figure 6 depicts as various magnesium aluminium spinel hollow 

spheres (MASHSs) as pore-forming agent were added, changes were seen in porous ceramics’ bulk 

density and apparent porosity [193]. Samples with a greater MASHSs concentration (HS0-HS10) 

showed thinner CA6 plates, which means that the sample matrix saw less local volume expansion. 

The sample with reduced MASHSs concentration (HS20), on the other hand, has thicker CA6 grains, 

which causes the sample matrix’s local volume expansion to increase. Additionally, when fewer 



646 

AIMS Materials Science  Volume 11, Issue 4, 634–665. 

MASHSs are added, the sintering neck between two MASHS particles shrinks, which is inadequate 

to provide a strong link between the particles. Consequently, the sample’s porosity is increased, as 

seen in Figure 6. Additionally, a larger degree of pore connection brought about by increased 

porosity enhances the sample’s permeability and thermal insulation capabilities. All things 

considered, the microstructural study indicated that the inclusion of MASHSs may result in the 

creation of thinner CA6 plates, lower the sintering neck, and raise porosity and pore connectivity—all 

of which would improve the sample’s physical characteristics [193]. 

 

Figure 6. Adding various MASHS caused changes to the bulk density and apparent 

porosity of porous ceramics (Reproduced from Ref. [193] with permission). 

Besides, based on Mahnicka-Goremikina et al., Figure 7 illustrates the Apparent porosity and 

water uptake of porous mullite ceramic modification with nano-WO3 [161]. Lower apparent porosity 

of about 40 ± 2% and water absorption of approximately 25 ± 1% are seen in sample A1, which has 

a greater bulk density. Because yttria-stabilized zirconia (YSZ) (8 mol% Y2O3) influences the 

creation of a liquid phase that reduces porosity, this is the cause. Furthermore, samples A2, A3, and 

A4 exhibit porosity exceeding 63 ± 1% and water absorption of around 40 ± 1% [161]. Figure 6 

indicates that comparably substantial water uptake values were achieved, well beyond the typical 

water absorption of stoneware constructed from porcelain tiles. As a result, mechanical strength was 

tested to assess the effect of porosity on the mechanical characteristics of ceramics. 

Ceramic materials have different characteristics based on elements like pore-forming agents and 

sintering temperatures. Identifying the link between these characteristics is critical for optimizing 

material qualities for applications. Ceramic materials are synthesised utilising various pore-forming 

agents, such as starch, PMMA, CB, polyurethane, and dolomite show varied levels of control on pore 

size and distribution.  
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Figure 7. Apparent porosity and water uptake of porous mullite ceramic modification 

with nano-WO3 (Reproduced from Ref. [161] with permission). 

The sintering temperature considerably impacts the finished characteristics of the ceramic 

material. Elevated sintering temperatures typically result in a more compact structure characterized 

by decreased porosity. However, they may also promote grain growth and diminish mechanical 

strength. Reduced sintering temperatures, conducive to heightened porosity, could compromise 

mechanical characteristics while offering advantages in terms of energy efficiency and shorter 

processing duration [198]. 

Ceramic materials exhibiting finer pore sizes and reduced porosity typically exhibit enhanced 

mechanical strength, albeit at the expense of thermal insulation properties. On the other hand, 

materials with larger pores and higher porosity generally exhibit lower mechanical strength but offer 

superior thermal insulation properties [199]. The selection of the pore-forming agent and sintering 

temperature are critical in adjusting these variables to fulfill the requirements of a specific application. 

The most immediate factor affecting a porous ceramic’s mechanical performance is its porosity. 

The findings for compressive strength as a function of Si sludge replacement as pore forming agent 

quantity are displayed in Figure 8. Si01 has the maximum strength of 3.82 MPa, and as the quantity 

of Si sludge increases, the compressive strength declines till it reaches 2.11 MPa for the Si10   

sample [200]. Microstructural features like pore size distribution, shape, and open-closed pore ratio 

have a significant impact on the mechanical properties of porous ceramics. Based on the creation of 

macropores resulting from an increasing quantity of Si sludge replacement, it was observed in this 

study that the porosity rose and the compressive strength dropped [200]. 

Since convection and radiation processes are only efficient at high temperatures, conduction is 

widely thought to play a key role in heat transmission [201]. The capacity of the material to withstand 

heat transfer through photon scattering by imperfections, such as order and pore faults, grain 

boundaries, or hopping vacancies, is essentially what controls reduced thermal conductivity [189]. It 

was successfully demonstrated that when air holes obstruct heat transmission, they significantly 

affect a material’s thermal conductivity.  
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Figure 8.  Porous ceramics with different replacement of Si sludge and their compressive 

strength. (Reproduced from Ref. [200] with permission). 

The findings of thermal diffusivity (κ) and thermal conductivity (λ) with variations in the 

quantity of Si sludge replacement are displayed in Figure 9. In the 25–800 °C temperature range, the 

low thermal conductivity of 1.0 W/mK or less was demonstrated by all specimens with Si sludge 

replacement. It is noteworthy that the thermal conductivity drops at all temperatures with a rise in Si 

sludge replacement, with Si10 having the lowest thermal conductivity (0.2–0.6 W/mK). These numbers 

suggest that the sample possesses the properties of a resistive and microporous material [200]. 

Additionally, there is a tendency for thermal diffusivity to decrease as Si sludge replacement 

increases. This is because there is more Si sludge replacement, which causes an increase in porosity. 

When it comes to high porosity porous ceramics, the heat capacity per unit volume (C) diminishes 

because the pores’ heat capacity is minimal in comparison to the solid’s, which in turn reduces 

thermal conductivity and thermal diffusion [200]. 

Choosing pore-forming agents and optimizing sintering conditions are crucial stages in 

customizing the characteristics of ceramic materials to suit applications. Through meticulous 

consideration of variables like pore size, porosity, mechanical strength, and thermal conductivity, 

one can engineer ceramic materials with performance attributes optimized for diverse industrial and 

technological uses. Table 3 presents a comprehensive analysis of ceramic materials based on 

important properties. 
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Figure 9. (a) Thermal conductivity and (b) thermal diffusivity of porous ceramics with 

different replacement of Si sludge (Reproduced from Ref. [200] with permission). 

Table 3. Comprehensive analysis of ceramic materials based on important properties. 

7. Conclusions 

In conclusion, the special qualities of porous ceramics have made them invaluable for a wide 

range of applications, including industrial, biomedical engineering, environmental protection, and 

more. This work has thoroughly investigated the ways in which the structure, porosity, and 

mechanical characteristics of porous ceramics are influenced by the selection of the pore-forming 

agent and ceramic material. The ultimate properties of this material are determined by the interaction 

between the pore-forming agent and the ceramic substance. A variety of ceramic bases, including 

silicon carbide and alumina, have different advantages, and the kind and number of pore-forming 

agents influence the distribution, size, and total porosity of pores. While inorganic agents permit 

regulated pore form and size, organic agents usually produce interconnected pores that are 

advantageous for filtering. 

Reduction in mechanical strength due to high porosity is a common issue that may be solved by 

optimizing the pore structure and utilizing reinforcing techniques. These enhanced qualities are used 

in filtration, catalysis, energy storage, and biological applications, demonstrating the flexibility and 

PFA PFA content 

(wt.%) 

Sintering 

temperature 

(°C) 

Pore size (µm) Porosity (%) Mechanical 

strength 

(MPa) 

Thermal 

conductivity 

(W/mK) 

Ref. 

YSZ fiber 

(Y2Si2O7) 

0–30 1550 40–380 93.5–92.7 0.99–1.36 0.107–0.097 [202] 

Dolomite 20 800–1000 0.4–2.5 46.3 49.4 - [203] 

Carbon black 

(CB) 

5–30 vol% 925–1030 - 38.48–59.81 ∼150 - [169] 

MASHSs 32.41 1500–1700 Approximately 

5 

67.2–71.9 6.1–17.1 0.18–0.38 [204] 

Starch 0–50 950 0.3–0.5 61.2–80 2.83–0.46 0.2388–

0.09776 

[205] 

Soluble starch 0–8 1500 40–50 35.59–11.8 47.75–226.52 7.44–12.23 [197] 

Polyurethane 2 1050–1250 189.92–119.49 63.2–85.3 19.43–0.99 0.089–0.088 [206] 

PMMA 26.5–50 vol% 1100 - 60.2 ± 0.6 12.7–81.1 14.2–3.6 [207] 
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versatility of porous ceramics. To enhance performance and broaden the applications of porous 

ceramics, future studies and developments will concentrate on cutting-edge manufacturing methods, 

novel materials, and environmentally friendly procedures. The development of hybrid materials with 

improved characteristics is another potential benefit of integrating porous ceramics with other 

cutting-edge technologies. To sum up, customized design and optimization of porous ceramics are 

necessary to satisfy the requirements of a variety of contemporary applications, and further 

development in this area will continue to have a major influence and be extremely useful for a 

variety of purposes. 
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