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Abstract: An alternative method to obtain the internal stress distribution in photoelastic materials 

using digital holography (DH) is presented. Two orthogonally polarized holograms were used to obtain 

the phase maps and analyzed using the proposed approach. This method directly determines the stress 

distributions from the phase differences obtained in the reconstructed phase maps, unlike methods 

obtained by photoelasticity. Optical information, such as index of refraction, phase differences, etc., 

are not measured directly in traditional photoelasticity. However, this approach was validated with 

both the finite element method and the RGB (red, green, and blue) photoelasticity method that is 

traditionally used. 

Keywords: polarized digital holography; photoelastic materials; stress and strain; polarization; RGB 

method; finite element method 

 

1. Introduction 

Transparent photoelastic materials represent an exciting alternative to the experimental study of 

stress and strain distributions induced in solids by carges. When subjected to carges, these materials 

present the double refraction phenomenon, or birefringence, changing the polarization state of the 
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transmitted light through the solids, which can be used to analyze the stress distribution [1]. The effect 

of double refraction, first described by Bartholinus [2–4] and related with the stress state by Brewster 

in the early 19th century [5], advanced throughout the 20th century with a non-destructive set of techniques 

and methods which associates the study of material stresses with optics, the photoelasticity [6–8]. Since 

the pioneering work of Coker and Filon [9–11], photoelasticity became a fundamental base for 

determining stress and strain distributions in photoelastic materials. Thus, great interest was generated 

in several fields, such as Engineering and Odontology [12–14], which validated and contributed to 

developing the theoretical method of finite elements [15,16].  

Despite advances, most studies are qualitative or indirectly quantitative [13,14] due to the 

difficulties in obtaining direct optical information. Improvements in qualitative data and quantitative 

analysis methods are needed so that non-destructive, fast, and reliable optical methods become a 

reference for determining stress distribution in materials. Although holographic techniques have 

advanced significantly in recent years, the various works have invested very little in the stresses 

distribution analysis in photoelasticity using holography. The dynamics of holography allow the results 

to be more precise, as they are based on optical properties such as intensity, phase, refractive index, 

etc., which are provided directly or almost directly, thus offering a great perspective in the more 

quantitative treatment of problems involving elasticity mechanics [17]. 

We present an alternative approach to determine the stress distribution profile through a             

non-destructive procedure based on digital holography (DH) [18,19], allowing us to obtain quantitative 

intensity and phase information from light transmitted through a photoelastic material. The DH produces 

remarkably accurate results when combined with appropriate statistical processing of optical data, 

facilitating the quantitative treatment of the specific problem as outlined in the proposed methods [20]. 

An off-axis holographic setup was used to obtain two cross-holograms with two orthogonally polarized 

reference waves and a birefringent system with photoelastic samples under static loads [21–25]. After 

digitally reconstructed with DH, the received data generates the phase differences used to calculate the 

distributions of elastic stresses. The validation of the method was carried out with the methods finite 

elements and RGB (red, green, and blue) photoelasticity [14,16,26,27]. 

2. Materials and methods 

2.1. Samples and Techniques 

Four standard rectangular blocks, composed of mixtures of epoxy resin solutions, were prepared 

according to the traditional procedures [28] of the photoelastic technique, constituting the samples 

used in this work. The preparation of the samples involved two stages: making the silicone molds, 

from curing in a liquid solution and catalyst, and the photoelastic samples, from curing, in silicone 

molds, a liquid solution of epoxy resin and hardener. Details are presented in the work [17]. For the 

determinations of the mechanical and holographic parameters, two samples with different thicknesses 

were made, one more flexible and one less flexible. Two other samples with different thicknesses, one 

more and one less flexible, were also made to determine the stress distributions. Details of the 

procedures are presented in [17]. The more or less flexible samples were intended to help verify the 

order of magnitude of the stress-optical coefficient (C) and to provide a greater range of comparison 

with the photoelastic methodology.  
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The utilized holographic technique is shown in Figure 1.  

 

Figure 1. The holographic system measures the phase differences between the orthogonal 

components of the light transmitted in a birefringent system. OW: object wave; W0º: reference 

wave with horizontal polarization at 0º; W90º: reference wave with vertical polarization at 90º. 

P are polarizers. WS the wave splitters; λ/2 are half-wave plates, and M are mirrors. 

A laser light source (1) was used to generate three independent waves: one object wave (OW), 

with the direction of polarization at 45º concerning two orthogonal reference waves, one with the 

direction of polarization at 0º (W0º), and another with the direction of polarization at 90º (W90º). Two 

distinct holograms were produced from the resulting interference patterns among OW, W0º, and W90º, 

propagating with different angles to the digital camera, as shown in Figure 1: θ(0º) between the OW 

and W0º, and θ (90º) between OW and W90º, as limited by the N-quest Theorem [29–31]. Two sets 

of holograms were recorded from each sample for compression and decompression in the birefringent 

system. The compression occurs by the progressive addition of load on the samples, and the 

decompression occurs by progressive removal of these loads. 

The photoelastic images were obtained by blocking both reference waves, removing the wave 

splitter (WS), near the digital camera, and exchanging the polarizer, P45º, of the object wave for two 

polarizers with orthogonal polarizations, one before and another after the photoelastic sample. Figure 2 

presents an experimental configuration scheme used in photoelasticity. 
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Figure 2. Schematic of the transmission brightfield elliptical polariscope. Light source 

with reduced intensity encounters a polarizer and a quarter-wave sheet λ/4, before 

interacting with the sample. It then passes through another quarter-wave blade and another 

analyzing polarizer. The quarter-wave blades were positioned to eliminate isoclinic fringes, 

which are not important for this study. Between the wave blades, a load device allows 

carges to be applied to the sample, changing the polarization state. The result for the 

observer, int the digital camera, is a pattern of isochromatic fringes. 

2.2. Methods 

2.2.1 Stress-optic law 

The optical information obtained through photoelasticity is related to the difference between the 

stresses considered in the components longitudinal (σ∥) and transverse (σ⊥) to the applied load, defined 

by Eq 1, as given by the stress-optic law [6,17,28]: 

n∥ − n⊥ = ∁(σ∥ − σ⊥)                                                                  (1) 

where ∁ is the stress-optical coefficient, and (n∥ − n⊥) is the difference between the refraction indexes 

in the components longitudinal (n∥) and transverse (n⊥) to the effort. For a material with thickness e, 

the refractive index difference is also associated with the phase difference Δϕ, so Eq 1 can be rewritten 

as Eq 2: 

(σ∥ − σ⊥) =
fσN

e
                                                                         (2) 

where N =
Δϕ

2π
 is defined as the relative retardation, fσ =

λ

∁
  is the fringe value that indicates the degree 

of rigidity of the material, and λ is the wavelength of the light source. Using the matrix of stress-strain 

(σ − ℇ) of the material in the stress state plane [26], the difference between the stresses in the 

orthogonal components, defined by Eq 3, is [17]: 

[
σ⊥

σ∥
] =

E

1−ν2 [
1 
ν

 ν
  1

] [
ℇ⊥

ℇ∥
] ⇒ (σ∥ − σ⊥) =

E

1+ν
(ℇ∥ − ℇ⊥)                                     (3) 
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E is the mechanical elasticity modulus, and ν is the Poisson’s coefficient. Therefore, comparing Eqs 2 

and 3, with N = (ℇ∥ − ℇ⊥), the material fringes value can be determined by their intrinsic properties 

through Eq 4 [17]: 

fσ =
eE

1+ν
=

λ

∁(λ)
                                                                        (4) 

2.2.2. Holographic analogy 

The holographic method was empirically inferred and correlated with the stress-optic law. The 

stress difference (σ∥ − σ⊥) occurs in the plane normal to the passage of light [26]. Due to angular 

displacements, the shear stresses were not considered to limit the boundary conditions and obtain the 

desired equation. In analogy with photoelasticity, the stress-strain matrix for the holographic 

parameters is given by Eq 5 [17]: 

[
σ⊥

σ∥
] =

𝔈

a(1−ν2)
[
1 ν
ν 1

] [
a ℇℋ⊥

a ℇℋ∥
] ⇒ (σ∥ − σ⊥)holographic =

𝔈

(1+ν)
ℵ                            (5) 

considering, by Eq 6, that 

𝔈 = aE                                                                              (6) 

𝔈 is defined as the holographic elasticity modulus, and a is a dimensionless constant that relates the 

holography elasticity with the mechanical elasticity. ℇH =
1

a
ℇ  is defined as the relative holographic 

deformation and ℵ =
(ϕ∥−ϕ⊥)

holographic

2π
= (ℇH∥

− ℇH⊥
) as the relative holographic retardation. Thus, 

the holographic dispersion can be written as the Eq 7 [17]: 

H(λ) ≡
λ

fσ
=

a(1+ν)

e𝔈
λ                                                                   (7) 

where, by Eq 8, 

𝒻 =
e𝔈

a(1+ν)
=

eE

(1+ν)
= fσ ⇔ H(λ) = ∁(λ)                                                 (8) 

𝒻  and fσ  are the fringe values obtained in holography and photoelasticity, respectively. The 

photoelastic fringe value is related to the wavelength of light (λ) and the photoelastic stress-optical 

coefficient (∁). Then, analogously to what occurs with photoelasticity, there comes the holographic 

dispersion term, H(λ),  an intrinsic property of the material whose value depends on the light 

wavelength, resultant from the relation between the component differences in refractive indexes, 

(n∥ − n⊥)holographic and the plane stresses (σ∥ − σ⊥)holographic. For a given wavelength, the stress-

holographic law is given by Eq 9 [17]: 

(n∥ − n⊥)holographic = H(σ∥ − σ⊥)holographic                                           (9) 

We have experimentally confirmed these equations in [21,22]. 
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2.2.3. Fresnel transform 

The off-axis configuration separates the diffraction orders during the digital reconstruction 

performed with FTM’s fresnel transform method [17,32,33]. The image field (ψmn) and phase (ϕmn) 

were calculated using Eqs 10 and 11, and the corresponding maps were reconstructed. 

ψmn =
eikz∙e

ikzλ
2

(
n2

N2Δξ2+
m2

M2Δη2)

izλ
∙ F[Δkξ, Δkη]                                             (10) 

ϕmn = arctg {
Im[ψmn]

Re[ψmn]
}                                                              (11) 

where F[Δkξ, Δkη] = F [IH(ξ, η) ∙ ψR(ξ, η) ∙ e
πi

zλ
[(n∙Δξ)2+(m∙Δη)2]]  is the Fourier Transform of the 

discretized field, Δkξ = −
kλ

NΔξ
, Δkη = −

kλ

MΔη
, Δξ =

zλ

NΔh
, Δη =

zλ

MΔv
, Δh  and Δv  are the horizontal    

and vertical pixel dimensions, respectively. All the phase maps were demodulated with the Volkov 

Method [34]. 

The calibration of the setup followed the work of Colomb et al. [24] and was carried out using a 

quarter-wave plate as a sample. Two-phase maps reconstructed by FTM, one for each polarization, 

were subtracted to obtain the maps of phase differences in the function of the angle of orientation of 

the quarter-wave plate. The general expression for the phase difference (Δφ) as a function of the 

orientation of the quarter-wave, by Eq 12: 

Δϕ = arctan [
sin(2δ)

cos2(2δ)
]                                                               (12) 

The process to obtain the demodulated phase maps for compression and decompression. The area 

selected (the rectangle on the hologram) of the hologram was processed with the FTM to obtain the 

frequency spectrum [17]. The chosen area (the rectangle on the frequency spectrum) of the frequency 

spectrum was obtained from the modulated phase map, and the Volkov method [34] was obtained from 

the demodulated phase map. The mean phase was determined from the phases of the pixels in the area 

selected from the demodulated phase map. To reduce the noise, in each phase map, a region of the 

phase map with no object was chosen, and the mean phase value of this region was subtracted from 

the phase map [17]. 

From the vertical phase maps of each stress applied, the load, σi, was calculated in the vertical 

holographic deformations, ℇHv−i
, in both processes: compression and decompression. In the same 

way, with the phase values of the horizontal phase maps, the horizontal holographic deformations, 

ℇHh−i
, were calculated. The mean value 〈𝔈〉 was calculated from various values E by fitting the linear 

function, by Eq 13: 

σi = 〈𝔈〉ℇHv−i
                                                                         (13) 

The mean value of the Poisson’s coefficient, 〈ν〉, was calculated from various values ν by fitting 

the linear function, by Eq 14: 
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ℇHh−i
= 〈ν〉ℇHv−i

                                                                 (14) 

In both cases, the Least Squares Method [34] was utilized. 

For each horizontal line j, the phase differences, (ϕv − ϕh)j, were obtained and, from the result, 

the relative retardation, ℵj = (ϕv − ϕh)j/2π, was calculated between the dark fringes. These results, 

associated with the holographic parameters 〈𝔈〉  and 〈ν〉, allowed us to find the stress differences 

(σv − σh)j−holographic using Eq 5. The graphic (σv − σh)j−holographic as a function of the number of 

pixels produced the distributions of stress differences in the selected region. 

A dimensionless constant parameter from Eq 6 gives the relation between holographic and 

mechanical elasticity. According to Eq 4, using the photoelastic images, mechanical parameters, 〈E〉 

and  〈ν〉 , and the thicknesses, e, it is possible to calculate the photoelastic fringes, fσ , and the 

photoelastic dispersions, ∁(λ). Using Eq 8, the holographic parameters, E and ν, the thickness e, and 

the constant a, the holographic fringes, 𝒻, can be calculated using the phase maps. Using Eq 7 and the 

wavelength, λ, the holographic dispersion, H(λ), can be calculated. 

3. Results and discussion 

The mechanical parameters were measured with samples sized 4.15, 2.25, and 1.03 cm, and the 

stress distribution was tested in samples sized 4.15, 2.25, and 4.90 cm, both in holography and 

photoelasticity. 

Each technique was applied to only one block from each pair of standard blocks, which were 

prepared with identical flexibilities and labeled as −F low flexibility and +F high flexibility. Stresses 

were applied to the top surface of the sample blocks via a loading device, as illustrated in Figure 1. 

The modified Mach-Zehnder interferometer apparatus was built with a He-Ne laser (632.8 nm 

CW, 20 mW, model 1135PUniphase). The photoelastic images and hologram registers were captured 

with a Thorlabs digital camera, model DCC1240C-HQ color, CMOS sensor, 1280  1024 pixels, size 

pixel 5.3 μm (square). 

The calibration process of the holographic system generated an experimental distribution that, 

when compared to a theoretical curve, Figure 3, showed the reliability of the system [24]. 

The continuous line represents the theoretical curve, Eq 12, and the circles of the experimental 

distribution. The distribution of the point around the curve indicates that the adjustment of the 

polarization of waves is correct. 

Two sets of holograms were recorded for each sample for compression and decompression. The 

stresses, applied to the upper central phase of the sample, ranged from 0.3 to 1.5 MPa. In holography, 

the mean phases were obtained from the statistics of ten selected areas in each demodulated phase map. 

The final mean was calculated using the values of compression and decompression. 

The photoelasticity RGB method, in transmission mode, was associated with the finite elements 

method to determine the distributions of the stress differences in the same selected regions as those 

used with the holographic method. These results were used to evaluate the proposed method by 

comparing holography and photoelasticity by stress-optic and stress-holographic law, given by Eqs 1 

and 9, respectively. 

All the fitted functions used the least square method [27]. A third-degree polynomial function 

was fitted to the points, but all the results showed that they were linear functions. 
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Figure 3. Graphic of the phase differences versus the angle of orientation. Theoretical 

curve ( ) and the experimental distribution ( ). 

Figure 4 presents the graphics of the experimental values of the σ versus ℇv for the +F sample 

under compression and decompression. This graphic is used to determine the mechanical and 

holographic modulus of elasticity. 

 

Figure 4. Graphics of external mean stress versus longitudinal mean deformation in the 

photoelasticity: compression and decompression. 

Figure 5 presents the graphics of the experimental values of σ versus ℇHv
 for the +F samples 

under compression and decompression, and they are used to obtain the Holographic and Mechanical 

modulus of elasticity. 
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Figure 5. Graphics of external mean stress versus longitudinal relative phase mean in the 

holography: compression and decompression. 

Similar graphs were made for the −F samples. Table 1 summarizes the holographic and mechanical 

modules of elasticity. The values are similar for the samples with different flexibilities in analysis. 

However, the rate 𝔈/E  differed for each method (holographic and mechanical). Considering the 

uncertainties, the values of 〈𝔈/E〉 are practically equal for all samples in both flexibilities. 

Table 1. Holographic and mechanical modules of elasticity in the –F and +F samples. 

 −F sample (modulus of elasticity) +F sample (modulus of elasticity) 

Holography (MPa) 1.589 ± 0.032 1.320 ± 0.024 

Mechanical elasticity (10 MPa) 3.35 ± 0.16 2.86 ± 0.11 

〈a〉 = 〈𝔈/E〉(10−2) 4.75 ± 0.26 4.62 ± 0.20 

It was verified, in all graphics, using polynomials up to the third degree, that the best-fit function 

was a first-degree polynomial, related function, agreeing with Robert Hooke’s theory of elasticity for 

the elastic regime. 

Figure 6 presents the values of the ℇh (transverse) versus ℇv (longitudinal), used to calculate the 

mechanical Poisson’s coefficient under the compression and decompression processes, using samples +F. 

Figure 7 presents the values of the ℇHh
(transverse)versus ℇHv

(longitudinal) used to determine 

the holographic Poisson’s coefficient under the compression and decompression processes, using 

samples +F to determine the stress distribution. 
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Figure 6. Graphics of transverse versus longitudinal deformation in a photoelasticity: 

compression and decompression. 

 

Figure 7. Graphics of transverse relative phase mean versus longitudinal relative phase 

mean in holography: compression and decompression. 

Similar graphs were made for the −F samples. Table 2 summarizes the Poisson’s coefficients: 

holographic and mechanical. Considering the uncertainties, the Poisson’s coefficients ν are practically 

equal for the sample with the same flexibility. 

Table 2. Holographic and mechanical Poisson’s coefficients in the –F and +F samples. 

 −F sample [Poisson’s coefficient (10−1)] +F sample [Poisson’s coefficient (10−1)] 

Holography 3.723 ± 0.022 3.735 ± 0.025 

Mechanical elasticity 3.822 ± 0.095 3.90 ± 0.11 
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With these parameters, it was possible to determine the mean stress-optical coefficients in 

photoelasticity and holography, whose values are presented in Table 3. 

Table 3. Holographic and photoelastic stress-optical coefficients –F and +F samples. 

The difference between the values of the samples with the same flexibility is due to the 

dependence of the stress-optical coefficient with sample thickness, e. However, for the same flexibility, 

the values agree both in holography and in photoelasticity. An important observation is that in 

holography, the precision of the results is better since the values are of the order of 10−6 N/m2. 

The graphics in Figure 8 show the distribution of stress difference over the vertical lines between 

two dark fringes obtained using the holographic method ( ), photoelasticity RGB (+), and analytical 

method ( ). The load, in mass, applied was 600 g for all samples. 

 

Figure 8. Graphics of the distribution of stress difference as a function of the distance 

between two dark fringes obtained by holography ( ), photoelasticity RGB (+), and 

analytical ( ). 

The behavior of curves in graphics exhibits similarities, indicating that the theoretical model of 

the proposed method is correct. The +F samples are less rigid and suffer more significant vertical 

deformation, reducing the modulus of elasticity under the same load. This behavior is observed 

graphically due to the smaller and more scattered peaks about the −F sample distribution. 

In photoelasticity, the intensity of the images of the fringes pattern depends on the characteristics 

of the experimental configuration: transmittance of the materials, anisotropic behavior level, spectral 

radiation distribution of the light source (white light), the conversion factor of the light-signal control 

and electric-signal control, and the temporary birefringence effect. In digital holography, these effects 

are less relevant due to the subtractions performed in the numerical reconstruction process, which 

 −F sample [stress-optical coefficient  

(10−12 m2/N)] 

+F sample [stress-optical coefficient  

(10−12 m2/N)] 

Holography 3.921 ± 0.08 4.442 ± 0.09 

Mechanical elasticity 3.95 ± 0.21 4.50 ± 0.22 
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eliminate much of this noise, and also due to the optical retardations obtained directly from the phase 

differences maps. 

4. Conclusions 

We present an alternative method to obtain the stress differences in photoelastic materials, as 

verified by the experiments. The similar results for the modulus of elasticity obtained through the 

different methods (photoelasticity, mechanical, and holographical) allowed the assumption of an 

analogy between Hooke’s law and holography. The photoelastic and holographic dispersions are equal, 

allowing the establishment of the stress-holographic law in analogy with the stress-optic law. The 

experimental stress distributions in holography presented the same behavior as the analytic and 

photoelastic distributions. The results of stress distributions in holography were more accurate than in 

photoelasticity when compared to the theoretical results. Thus, the proposed method presents 

efficiency and independence in procedures since it uses only the extracted parameters obtained directly 

from the phase maps. 
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