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Abstract: Functionally graded materials are well-known for their ability to minimize abrupt stress 

transitions that are typical of laminated composites, as well as for being very suitable to operate in 

adverse high-temperature environments. They can act as thermal barriers if a proper selection of the 

constituent materials is considered. These materials and structures have attracted the attention of many 

researchers; however, previous research efforts have been focused on the systematic study of 

rectangular-shaped cross-section profiles. The use of beams characterized by other cross-sections, 

which are commonly used in metallic construction, may benefit from the continuous, smooth materials 

mixture that is typically found within functionally graded composites. Hence, this work aims to 

investigate the behavior of symmetrical, I-shaped, cross-section beams made from these advanced 

composites by performing a set of parametric analyses. These beams are modeled after solid finite 

elements to be able to describe the materials mixture evolution through the beam thickness with greater 

detail. Thick and moderately thick beams are submitted to static loading while considering different 

boundary conditions, and their linear static behavior is analyzed. As expected, the stress profiles are 

highly influenced by the materials' mixture profiles. Significant shear stress was found in the I-shaped 

cross sections. 

Keywords: functionally graded materials; symmetric I-shaped cross-section beams; finite element 

method 
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1. Introduction  

Previously, there has been a widespread use of homogenous materials. Nowadays, numerous 

applications require manufactured materials; therefore, there has been a gradual change in composition 

and structure. To achieve this gradual distribution of material properties, new heterogeneous composite 

materials with multi-functional characteristics, formally known as functionally graded materials (FGM), 

were designed. 

These materials are composite materials, containing at least two different materials, whose 

volume fraction gradually changes along one or more dimensions of the solid [1]. This gives FGMs a 

continuously varying composition and structure over the volume of the component or entity, which 

results in varying properties for the material. Thus, FGMs are engineered to perform in specific 

applications that require certain desired thermal, mechanical, electrical, or chemical properties [2–4]. 

Additionally, due to their gradually changing properties, FGMs have interesting characteristics such 

as improved thermal properties, an enhanced residual stress distribution, reduced in-plane and traverse 

stresses over their thickness, and an enhanced fracture resistance [5]. 

Due to these characteristics, many researchers have been interested in FGMs. For example, the 

review written by Garg et al. [4] presented information on theories and methods mainly used to perform 

an analysis of FGMs, such as the classical laminated theory, the first-order shear deformation theory, 

and various higher-order shear deformation theories. Additionally, was shown that the most static and 

dynamic analyses were performed using the finite element (FE) method. However, Sayyad and Ghugal [2], 

who also reviewed the modeling and analysis of FGMs, presented several works on FGMs sandwich 

beams. They found that the power law was utilized the most to model the varying properties of FGMs. 

The authors presented several numerical and analytical studies and claimed that there was no available 

exact elasticity solution for FG beams with varying material properties. Additionally, they claimed that 

an increased emphasis should be placed on analytical solutions based on higher-order theories that 

consider transverse shear and normal deformations. 

In the analysis of FGMs, Kanu et al. [6] considered that some authors tried to introduce new 

methods to improve 3D analyses; however, due to a collective computational effort, most researchers 

opted for 2D analyses of FGMs using higher-order shear deformation theories. This restriction 

compromised the accuracy of the obtained results. Thus, other methods, such as the meshless method, 

were used as an alternative to the FE method, though they were highly time-consuming. In their review, 

the FGM manufacturing process was also considered alongside other various processes. Powder 

metallurgy was thought to be the most efficient method to manufacture FGMs; however, more research 

on the sintering process was advised to improve the mechanical properties and the microstructure of 

the product. 

Regarding the manufacturing of FGMs, other authors focused on understanding which processes 

were better for each application, and a list of recommendations was written to decide on the most 

adequate manufacturing process to successfully fabricate FGMs [5]. Additive manufacturing seems to 

be the best method to further improve the production of dual gradient or hybrid FGMs at a lower cost [3]. 

In terms of the mechanical properties of FGMs, there are several researchers who analyze beams. 

Single layer FGMs are the most studied, though the development of multi-layered FGMs has also 

become an object of research [7–10]. Additionally, researchers have analyzed the application of a 

single layer approach that focuses on thin-walled FGMs [11–13]. 

Regarding the study of FGM beams, Filippi et al. [14] performed different static analyses on beam 
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FEs based on various displacement theories and determined that the Carrera Unified Formulation 

performed very well and was able to consider different supporting and loading conditions, as well as 

arbitrary material distributions and dimensions. The main difficulty encountered was obtaining 

accurate shear stress distributions. It was proposed that higher-order beam theories may improve these 

results, although with higher computational costs. To improve the performance of FE analyses on 

FGMs, new elements and methods are being studied to more accurately model the gradient distribution 

and to obtain better mechanical properties [15–22]. 

There have been several studies on the nonlocal behavior of nanobeams. Among those works, one 

may refer to the investigation carried out by Penna et al. [23], where the nonlinear transverse free vibrations 

of porous FGM Bernoulli-Euler nanobeams in hygrothermal environments through the local/nonlocal 

stress gradient theory of elasticity were studied. In more recent work, Penna [24] analyzed the bending 

response of FGM Bernoulli-Euler nanobeams with rectangular and circular cross-section shapes using 

a stress-driven model incorporating surface energy effects. Following this work and based on the same 

method, Lovisi [25] investigated the bending response of cracked FGM Bernoulli-Euler nanobeams by 

considering a one-dimensional simplified method in which a discontinuity in the rotation due to a crack 

in an internal point was modelled as a rotational spring connecting two segments, into which the cracked 

FG nanobeam was divided. Additionally, in the context of the nonlocal approaches, Loja et al. [26] 

studied the free-vibration response of functionally graded, simply supported beams with different 

gradient directions by considering nonlocal effects. To this purpose, the authors used the first-order 

shear deformation theory and the nonlocal elasticity theory of Eringen to assess the influence of size 

dependency effects on the free-vibration responses of those beams. 

Moreover, many researchers have studied the influence of hygrothermal loads. Among others, 

one may refer to the work of Giunta et al. [27], who analyzed functionally graded beams subjected to 

thermal loadings via a Navier-type closed-form. The authors hierarchically derived several beam 

models using a unified formulation that made the formulation independent from the displacement’s 

polynomial approximation order over the cross-section. Fourier’s heat conduction equation was used 

to obtain the temperature profile, which is the temperature of an externally applied load. Qin et al. [28] 

studied the flap-wise free vibrational characteristics of a rotating composite beam under an 

aerodynamic force and a hygrothermal environment. The modal problem was handled by utilizing the 

assumed-modes method, and the influence of parameters such as the temperature, humidity, 

aerodynamic force, rotational speed, ply orientation on the natural frequencies, and damping ratios 

were also investigated. A finite element model based on Reddy's third-order shear deformation theory 

was considered by Valencia et al. [29] to perform thermal-structural analyses of FGM beams subjected 

to thermal and mechanical loads. The constituent materials of the FGM varied throughout the direction 

of the beam thickness, and considered the power law and the rule of mixtures. Additionally, the authors 

used a routine to study functionally graded plane models in a commercial finite element code for 

verification purposes. 

Other studies focused on the influence of porosities on the structural responses. For example, 

Tian et al. [30] presented a semi-analytical model for a free vibration analysis of rotating FGM beams 

with porosities and a double-tapered cross-section. The proposed model considered the Coriolis and 

nonlinear effects which arose from the interaction among various vibration modes, such as bending-

stretching, bending-twist and twist-stretching couplings. Mota et al. [31] analyzed the influence of the 

shear correction factor on the static response of functionally graded porous composites via the first-

order shear deformation theory. This work studied the influence of various porosity distributions on 
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various materials with a shear correction factor. Akbaş et al. [32] presented an additional model which 

investigated the vibrational response of FGM porous, thick beams subjected to a dynamic sine pulse 

load and damping [32]. In this study, the beam was modelled as a two-dimensional plane stress problem, 

with a material gradient throughout the thickness. Typical porosity distributions were assumed, and 

the damping effect was considered by using the Kelvin-Voigt viscoelastic constitutive model. 

From the literature, it is very clear that most published studies on FGM beams focus on 

rectangular cross-section-shaped beams. Only some works were found that considered the non-

uniformity of the cross-section shape; for example, Lee and Lee [33] investigated the coupled flexural-

torsional free vibration of circular horizontally curved beams made of FGM along the axial direction. 

In this study, rectangular and elliptical cross-section beams were considered. The authors used the first-

order shear deformation and the St. Venant beam theories to derive the governing differential equations 

of motion. The results were verified against the commercial software ADINA results. Özmen and 

Özhan [34] proposed a computational approach to model the material gradient of an FGM Euler-

Bernoulli beam continuously according to graduation laws using the Ansys Workbench. This approach 

was applied to the free vibration analyses of different types of FGM beams, namely one-directional 

beams with a uniform and a non-uniform cross-section, and a bi-directional beam with a uniform cross-

section. Li et al. [35] presented another approach to analyze the free vibration of FGM with variable 

cross-sections and rested on Pasternak elastic foundations. Displacements and general stress 

expressions were obtained using the separate variable method and the Laplace transform supported by 

the 2D elasticity theory. Frequency equations for free vibrations were derived by applying a Fourier 

series expansion. Parametric studies were developed to characterize the influence of geometric and 

mechanical parameters on the vibration frequency and the mode shapes of FGM beams with variable 

cross-sections resting on Pasternak elastic foundations. More recently, in the context of 2D plane FGM 

structures, Gaspar et al. [36] investigated the static and free vibration behavior of planar, truss and 

frame-type structures made from functionally graded materials, in which the materials’ mixture 

gradient progressed along the height of the structures. For this purpose, the authors considered the use 

of the first-order shear deformation theory. Parametric studies were performed to characterize the 

advantages of such an approach, thereby showing that this may be considered as an additional design 

variable. 

Regarding the use of cross-sections separate from rectangular ones, there is no sufficient evidence 

of published studies, even for other types of composites, as is the case of Loja et al. [37], who 

developed a model based on a higher-order shear-deformation theory to predict the linear buckling 

behavior of either anisotropic laminated or sandwich thick and thin beams. That higher-order model 

considered stretching and bending in two orthogonal planes: I, T, channel, and rectangular box beam 

cross-sections. 

As far as the authors' knowledge, no published work was found that considered the use of 

functionally graded materials in I-shaped cross-sections of beam-bar components, although the 

common use of these shapes is in the context of structures built from traditional materials. As such, 

the main objective of this work is to perform linear static analyses of I-shaped cross-section FGM 

beams modelled by using 8-node hexahedron finite elements. Some verification cases are presented, 

and several parametric analyses characterize the influence of the material and geometric characteristics. 
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2. Materials and methods 

2.1. Beam geometrical configuration 

The beam standard configuration that will be considered in the different case studies is shown in 

Figure 1. The geometry of this beam is defined by the top flange width wt the web thickness tw the bottom 

flange width wb the top flange’s thickness tt the web height hw and the bottom flange’s thickness tb.  

It is important to note the coordinate axes, with origin in the middle of the bottom of the beam, 

are oriented as follows: the height of the beam is measured in the z-axis, its width in the y-axis, and its 

length in the x-axis. 

 

Figure 1. Beam cross-section geometry. 

As mentioned, an FGM is a composite material wherein the materials' mixture involves a gradient 

micro-structure spatial variation from one material to another, which may occur in one or more 

directions [12,38]. In this work, the I-shaped cross-section beam is composed of two constituent 

materials, steel and alumina (aluminum oxide), with the properties presented in Table 1. 

Table 1. Material properties. 

ID Material Young’s Modulus (GPa) Poisson’s Coefficient 

A Alumina 380 0.3 

B Steel 200 0.3 

The following proposed volume fraction law, Vf consists of a function with seven parameters to 

account for the gradation through the height of the cross-sectional area: 

𝑉𝑓 =

{
 
 
 

 
 
 

1 0 ≤ 𝑧 ≤ 𝑧𝑚𝑖𝑛
(1 − 𝐶1)(cosh(𝐶2𝐴(𝑧 − 𝑧𝑐𝑢𝑡𝐴)) − 1)

cosh(𝐶2𝐴(𝑧𝑚𝑖𝑛 − 𝑧𝑐𝑢𝑡𝐴)) − 1
+ 𝐶1 𝑧𝑚𝑖𝑛 ≤ 𝑧 ≤ 𝑧𝑐𝑢𝑡𝐴

𝐶1 𝑧𝑐𝑢𝑡𝐴 ≤ 𝑧 ≤ 𝑧𝑐𝑢𝑡𝐵
(1 − 𝐶1)(cosh(𝐶2𝐵(𝑧 − 𝑧𝑐𝑢𝑡𝐵)) − 1)

cosh(𝐶2𝐴(𝑧𝑚𝑎𝑥 − 𝑧𝑐𝑢𝑡𝐵)) − 1
+ 𝐶1 𝑧𝑐𝑢𝑡𝐵 ≤ 𝑧 ≤ 𝑧𝑚𝑎𝑥

1 𝑧𝑚𝑎𝑥 ≤ 𝑧 ≤ 1

 (1) 
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where z is the thickness coordinate variable; zmin and zmax are the material saturation limits in the 

flanges' thickness; zcutA and zcutB are the material saturation limits in the web thickness; C1 is the 

minimum quantity of the main material in the web; and C2A and C2B are controls for the transition 

between materials. In these variables, A and B represent the two materials involved in the gradient. To 

allow for a volume fraction distribution that considers the possibility of having a full functionally 

graded material cross-section, the values of zmin and zmax would be zero and one, respectively, thus 

eliminating the first and last branch.  

For example, if the flanges that have a constant material distribution are considered, Figure 2 may 

be obtained. The volume fraction defined by Eq 1 is presented by the blue line for material A and by 

the red line for the material B, which is most present on the web is defined by a volume fraction 

function complementary to Eq 1. This is because the present FGM is a biphasic material with no 

porosities; therefore, the following relations apply:  

 VfA + VfB = 1 (2) 

 𝑃𝐹𝐺𝑀 = Vf𝑃𝐴 + (1 − Vf)𝑃𝐵 (3) 

where PX stands for a generic property P of material X. 

 

Figure 2. Volume fraction distribution. 

2.2. Constitutive relations and equilibrium equations 

To achieve a more detailed description of the beams’ kinematic deformation and the subsequent 

stress distributions, one can consider an approach based on the description of the movement of a 

generic point while considering its three displacement components, u, v and w, along the 3D Cartesian 

coordinate system, x, y and z. 

From this point and considering the kinematic relations of the elasticity theory for small 

deformations, one obtains the strain field characterized by the standard six linear strain components: 
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 𝝐 = [𝜀𝑥, 𝜀𝑦, 𝜀𝑧, 𝛾𝑥𝑦, 𝛾𝑥𝑧, 𝛾𝑦𝑧]
𝑇
   (4) 

As mentioned in the previous subsection, the utilized materials are a biphasic FGM. Based on the 

assumption that such material can be considered as an isotropic material at each point, the following 

constitutive relation applies and will relate the states of strain and stress at an arbitrary point (Reddy, [39]): 

 

[
 
 
 
 
 
 
𝑄11(𝑧) 𝑄12(𝑧) 𝑄13(𝑧) 0 0 0

𝑄21(𝑧) 𝑄22(𝑧) 𝑄23(𝑧) 0 0 0

𝑄31(𝑧) 𝑄32(𝑧) 𝑄33(𝑧) 0 0 0

0 0 0 𝑄11(𝑧) 0 0

0 0 0 0 𝑄11(𝑧) 0

0 0 0 0 0 𝑄11(𝑧)]
 
 
 
 
 
 

[
 
 
 
 
 
𝜀𝑥
𝜀𝑦
𝜀𝑧
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧]
 
 
 
 
 

=

[
 
 
 
 
 
𝜎𝑥
𝜎𝑦
𝜎𝑧
𝜏𝑥𝑦
𝜏𝑥𝑧
𝜏𝑦𝑧]
 
 
 
 
 

 

 

(5) 

 

 𝑸𝝐 = 𝝈 (6) 

To develop a linear static analysis, if the virtual work principle is applied to the e-th element, and 

omitting body forces, then it is possible to write the following: 

 

∫ 𝛿𝝐𝑇𝝈𝑑𝑉𝑒
𝑉𝑒

−∫ 𝛿𝒒𝑒
𝑇𝒕𝑑𝐴𝑒

𝐴𝑒

−∑𝛿(𝒒𝑒)𝑘
𝑇
𝒇𝑒 = 0

𝑘

 (7) 

where the vector of the stress components is given as 𝝈 = [𝜎𝑥, 𝜎𝑦, 𝜎𝑧, 𝜏𝑥𝑦, 𝜏𝑥𝑧, 𝜏𝑦𝑧], the surface tractions' 

vector is defined as 𝒕 = [𝑡𝑥, 𝑡𝑦, 𝑡𝑧] and 𝒇𝑘 = [𝑓𝑥, 𝑓𝑦, 𝑓𝑧] denotes the concentrated loads applied at node k. 

The nodal displacements for a generic k-th node are represented by the vector (𝒒𝑒)𝑘 = [𝑢𝑘, 𝑣𝑘, 𝑤𝑘].  

After some mathematical manipulation, one can achieve the following equilibrium equations for 

the e-th element: 

 

(∫ 𝑩𝑇𝑸𝑩𝑑𝑉𝑒
𝑉𝑒

)𝒒𝑒 = ∫ 𝑵𝑇𝒕𝑑𝐴𝑒
𝐴𝑒

−∑𝛿(𝒒𝑒)𝑘
𝑇
𝒇𝑘

𝑘

 (8) 

 𝑲𝑒𝒒𝑒 = 𝒇𝑒 (9) 

The elastic coefficients matrix Q for the considered FGM distribution law given in Eq 5 follow 

the definitions presented in Reddy [39], with the particularity of being dependent on the thickness 

coordinate. The B matrix relates the strains with the displacements, and the N vector contains the 

interpolating Lagrange linear functions adopted to describe both the geometry of the domain and the 

displacements within the element. The element stiffness matrix, generalized displacements vector, and 

generalized forces vector are represented by Ke, qe and fe, respectively. 

Extending these equilibrium equations to the whole discretized domain, and after applying the 

boundary conditions, the primary variables of the problem (i.e., the nodal displacements) are achieved. 

For the implementation of these equations, an 8-node hexahedron element (i.e., a trilinear element) 

was used, as depicted in Figure 3. 
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Figure 3. Generic 8-node hexahedron finite element and its local coordinate system. 

Further details regarding the development and implementation of the model can be consulted in 

Carvalho [40]. 

3. Results and discussion 

To study the performance of the proposed model, some verification studies were completed before 

performing a set of parametric cases. 

3.1. Verification cases 

Static analyses were performed to a set of three rectangular, isotropic, homogeneous beams. The 

maximum transverse deflection and the normal stress at the corresponding location were used to verify 

the suitability of the model. The verification was made using the numerical solution based on the first-

order shear deformation theory used by the SolidWorks software [41] for the thick beam and the Euler-

Bernoulli theory used by the Ftool software [42] for the thinner beams as references. 

The characteristics of the beams used in the analyses are presented in Table 2. The acronym (C) 

stands for clamped, meaning that all the nodal degrees of freedom at a specific extremity of the beam 

are constrained; the acronym (MS) stands for a moving support boundary condition, meaning that the 

corresponding extremity nodal displacements along the y and z directions are constrained. A uniformly 

distributed force is applied on the top surface of the beam. 

Table 2. Characteristics of the beam. 

Beam 

ID 

Dimensions 

L × w × h (mm) 

Aspect ratio 

L/h 

Elastic constants 

E (GPa), ν 

Boundary 

conditions 

Load 

(kPa) 

1 2000 × 20 × 20 100 200, 0.3 C-C –100 

2 2000 × 20 × 20 100 200, 0.3 C-MS –100 

3 200 × 20 × 20 10 200, 0.3 C-C –100 
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After performing the static analyses, the maximum displacements obtained for the beams are 

presented in Table 3, where Nx stands for the number of elements along the beam length and NDoF is 

the corresponding number for the degrees of freedom. The reference solution is presented in the last 

column. The deviations of the present model results to the reference are presented within parentheses 

and are determined as follows: 

   
𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =

𝑝𝑟𝑒𝑠𝑒𝑛𝑡 − 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
100% (10) 

As the number of elements along the beam length increases, Table 3 shows a smaller deviation of 

the maximum transverse displacement in relation to the reference solution. The convergence for the 

thin beams requires a greater number of elements when compared to the moderately thick beam; 

however, for the moderately thick beam, a good agreement is obtained for a less refined domain. 

Moreover, it is possible to observe a beneficial agreement obtained for the normal longitudinal stress 

at the maximum deflection point for the three beams considered within the verification cases. 

Table 3. Convergence summarized results and maximum displacements for the verification cases. 

Beam 

ID 

Nx 20 100 200 300 400 500 Ref. 

[40] 

Ref. 

[41] NDoF 1134 5454 10854 28896 60150 108216 

1 w × 10-2 (m) 0.293 2.19 2.75 2.94 3.02 3.06 3.13  

deviation (%) –90.64 –30.03 –12.14 –6.07 –3.51 –2.24   

𝜎𝑥 (MPa)      249 250  

2 w × 10-2 (m) 0.607 4.56 5.72 6.13 6.28 6.36 6.50  

deviation (%) –90.66 –29.85 –12.00 –5.69 –3.38 –2.15   

𝜎𝑥 (MPa)      421 422  

3 w × 10-2 (m) 2.98 3.44 3.46     3.47 

deviation (%) –14.12 –0.86 –0.29      

𝜎𝑥 (MPa)   2.50     2.50 

Thus, these results show that the model is suitable for the purpose of the present work. 

3.2. Convergence analyses 

A set of studies were performed using I-shaped cross-section beams. The beam configuration used 

was a W150x100x24.0 beam and the ratio of the L/h varied between case studies. Additionally, in 

terms of boundary conditions, two cases were considered, namely a clamped-clamped (CC) boundary 

condition and a clamped-moving support (C-MS) boundary condition. 

A convergence analysis was performed in relation to the maximum deflection parameter for 

different aspect ratios of L/h = 10 and L/h = 2. 

The results are presented in Table 4, where Nx is the number of elements along the beam length, 

NDoF is the corresponding number of degrees of freedom, Max W C-C is the maximum deflection of 

the beam for the clamped-clamped boundary condition, and Max W C-MS is the maximum deflection 

of the beam for the clamped-moving support boundary condition. 

For both boundary condition cases, the results for the moderately thick beam (L/h = 10) show a 

convergence for 200 elements along the length of the beam. Similarly, another convergence analysis 
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was performed to the thicker I-shaped cross-section beam (L/h = 2) while considering the same 

boundary cases. The results for the maximum deflection are presented in Table 5 and, in this instance, 

the convergence is verified for fewer elements, specifically for 140 elements along the length of the 

beam. 

Table 4. Convergence analysis of the I-shaped cross-section beam with L/h = 10 for both boundary cases. 

NX NDoF Max w C-C (mm) Relative variation C-C (%) Max w C-MS (mm) Relative variation C-MS (%) 

20 7560 9.93E-05 

 

1.73E-04 

 

40 14760 1.06E-04 6.30 1.82E-04 5.18 

60 26352 1.07E-04 1.63 1.84E-04 1.35 

80 44712 1.09E-04 1.62 1.86E-04 1.03 

100 65448 1.10E-04 0.48 1.87E-04 0.33 

120 90024 1.10E-04 0.68 1.87E-04 0.43 

140 118440 1.11E-04 0.19 1.88E-04 0.13 

160 154560 1.11E-04 0.42 1.88E-04 0.27 

180 191136 1.11E-04 0.28 1.89E-04 0.18 

200 231552 1.11E-04 0.07 1.89E-04 0.04 

220 286416 1.12E-04 0.20 1.89E-04 0.13 

240 329688 1.12E-04 0.13 1.89E-04 0.08 

Table 5. Convergence analysis of the I-shaped cross-section beam with L/h = 2 for both boundary cases. 

NX NDoF Max w C-C (mm) Relative variation C-C (%) Max w C-MS (mm) Relative variation C-MS (%) 

20 13608 4.36E-06 

 

4.69E-06 

 

40 47232 5.37E-06 22.98 5.71E-06 21.66 

60 103944 5.72E-06 6.68 6.07E-06 6.37 

80 233280 5.91E-06 3.25 6.26E-06 3.13 

100 432684 5.98E-06 1.25 6.33E-06 1.15 

120 684618 6.06E-06 1.35 6.42E-06 1.43 

140 1145484 6.10E-06 0.60 6.45E-06 0.46 

160 1692432 6.16E-06 0.97 6.53E-06 1.17 

180 2363136 6.13E-06 –0.42 6.49E-06 –0.64 
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3.3. Static behavior of the beams 

The present subsection presents the results obtained from the static analyses performed while 

considering the moderately thick and the thick beams under different boundary conditions and in any 

case submitted to a uniformly distributed load of 100 kPa. Because the flanges are very thin, the flanges 

are deemed to have a constant material distribution, and the parameters used in the volume fraction 

law for these case studies are presented in Table 6. The case studies presented in this subsection 

consider the material distribution shown in Figure 2, meaning that the main material in the web is steel 

and the flanges have a constant material distribution of alumina. 

Table 6. Volume fraction law parameters. 

zmin (%) zmax (%) zcutA (%) zcutB (%) C1 (%) C2A C2B 

6.44 93.56 45 55 0 10 10 

The results are organized per boundary conditions, and, within each case, the transverse 

deflections and the stress distributions are analyzed. 

3.3.1. C-C boundary conditions 

The static behavior of clamped-clamped FGM beams was analyzed and the results are presented 

in Tables Table 7 and Table 8. For a better quantitative illustration of the deflections' profiles along the 

length, three intermediate positions along the length of the beam were considered besides the 

extremities. As expected, at these latter locations, the transverse displacements were zero and the stress 

values suffered from the influence of the boundary conditions. 

From Table 7, it can be observed that the maximum transverse deflection of the beams occurs in the 

middle of the beam and is greater for the moderately thick beam (L/H = 10), as expected. Regarding the 

normal stresses, 𝜎𝑥 is higher for this beam, with the highest values occurring in the bottom surface of the 

cross-section at the middle of the beam. As for 𝜎𝑦, the highest stress values occur in the middle of the 

section but in different locations along the length of the beams. For the moderately thick beam, 𝜎𝑦 occurs 

in the L/4 location of the beam; in the thick beam, 𝜎𝑦 occurs in the middle of the beam. Additionally, 

normal stress 𝜎𝑧 has the highest values in compression and occurs in different locations along both 

beams. For the moderately thick beam, 𝜎𝑧 occurs at the bottom of the section at the 3L/4 location; in 

the thick beam, 𝜎𝑧 occurs at the bottom of the section at the beam's mid-span. Considering the shear 

stresses, only 𝜏𝑥𝑧 presents significant values. These are considerably higher for the moderately thick 

beam and have a similar value for the tension and the compression. The highest values occur in the 

same locations for both beams; the highest compression occurs in the bottom of the section in the L/4 

location along the length, and the highest tension occurs in the bottom of the section in the 3L/4 

location along the length of the beam.
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Table 7. Deformation and normal stresses in the I-shaped cross-section beams with different aspect ratios for C-C boundary conditions. 

Location on 

the length 

Location on 

the section 

w (m) σx (Pa) σy (Pa) σz (Pa) 

L/h = 10 L/h = 2 L/h = 10 L/h = 2 L/h = 10 L/h = 2 L/h = 10 L/h = 2 

0 0 0 0 –1.85E+07 –2.38E+06 –7.91E+06 –1.02E+06 –7.91E+06 –1.02E+06 

H/2 0 0 1.93E+07 3.44E+06 8.25E+06 1.47E+06 8.25E+06 1.47E+06 

H 0 0 –4.27E+05 –6.32E+05 –1.83E+05 –2.71E+05 –1.83E+05 –2.71E+05 

L/4 0 –4.67235E-05 –8.33E-07 1.05E+06 1.95E+05 –2.81E+04 9.72E+04 1.18E+04 6.22E+03 

H/2 –4.72E-05 –1.23E-06 –1.47E+04 5.11E+05 3.15E+06 2.64E+06 3.06E+05 3.06E+04 

H –4.69E-05 –9.43E-07 –5.12E+05 –2.55E+05 –2.76E+01 –7.61E-02 –1.55E+06 –1.24E+06 

L/2 0 –7.14E-05 –1.21E-06 3.72E+06 3.16E+05 –2.60E+04 –6.63E+03 2.29E+04 4.09E+03 

H/2 –7.18E-05 –1.68E-06 –2.69E+06 6.46E+05 3.14E+06 3.21E+06 2.95E+05 4.94E+04 

H –7.17E-05 –1.34E-06 –7.71E+05 –2.31E+05 –2.79E+01 –2.63E-02 –1.55E+06 –1.56E+06 

3L/4 0 –4.67E-05 –8.33E-07 1.05E+06 1.95E+05 –2.81E+04 9.72E+04 1.18E+04 6.22E+03 

H/2 –4.71E-05 –1.23E-06 –1.44E+04 5.11E+05 3.15E+06 2.64E+06 3.06E+05 3.06E+04 

H –4.69E-05 –9.43E-07 –5.12E+05 –2.55E+05 –2.76E+01 –7.62E-02 –1.55E+06 –1.24E+06 

L 0 0 0 –1.85E+07 –2.38E+06 –7.91E+06 –1.02E+06 –7.91E+06 –1.02E+06 

H/2 0 0 1.92E+07 3.44E+06 8.23E+06 1.47E+06 8.23E+06 1.47E+06 

H 0 0 –4.21E+05 –6.32E+05 –1.81E+05 –2.71E+05 –1.81E+05 –2.71E+05 
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Table 8. Shear stresses in the I-shaped cross-section beams with different aspect ratios for C-C boundary conditions. 

Location on the 

length 

Location on the 

section 

τxy (Pa) τyz (Pa) τyz (Pa) 

L/h = 10 L/h = 2 L/h = 10 L/h = 2 L/h = 10 L/h = 2 

0 

0 –4.58E-01 8.76E+01 –4.35E+06 –5.99E+05 –4.18E-10 –7.92E-13 

H/2 1.38E+00 2.88E+02 –4.55E+06 –8.52E+05 6.99E-10 2.76E-10 

H –2.04E+00 –1.63E+02 –1.08E+07 –1.95E+06 6.29E-09 4.15E-10 

L/4 

0 –3.10E+01 3.48E+02 –5.85E+04 –5.10E+03 –2.90E-01 8.57E+00 

H/2 4.59E+01 2.94E+03 –5.85E+04 –2.34E+02 1.66E+00 2.13E+02 

H –2.72E-01 –9.52E+01 –8.17E+06 –1.59E+06 –5.88E-01 –1.30E+02 

L/2 

0 2.26E+01 6.56E+00 1.90E+00 8.19E-01 –8.17E+00 3.25E+01 

H/2 8.68E+01 2.10E+03 1.90E+00 2.79E+01 5.62E+00 9.47E+01 

H –1.94E+00 –1.08E+01 2.65E+02 3.55E+02 1.15E+00 –3.47E+02 

3L/4 

0 2.71E+02 –3.51E+02 5.85E+04 5.10E+03 –1.97E+01 1.01E+01 

H/2 4.88E+02 –3.17E+03 5.85E+04 2.35E+02 7.49E+01 2.15E+02 

H –1.43E+01 1.04E+02 8.17E+06 1.59E+06 –2.20E+01 –1.46E+02 

L 

0 –5.83E+01 –8.87E+01 4.35E+06 5.99E+05 –1.88E-07 1.14E-08 

H/2 –7.21E+03 –3.27E+02 4.54E+06 8.52E+05 –1.94E-07 1.64E-08 

H 5.57E+03 1.81E+02 1.08E+07 1.95E+06 –3.93E-07 4.16E-08 
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To better illustrate these results, Figure 4a shows the displacement profiles for both beams, where 

the solid lines correspond to the results of the L/h = 2 beam and the dotted lines correspond to the 

results of the L/h = 10 beam. The horizontal axis of the graphs denotes the relative length coordinates 

of the beams (x/L) so that the results may be compared among the beams of varying lengths. Three 

lines are presented for each case, which correspond to the positions through the cross-section of the beam: 

in the bottom surface (z = 0 m), in the middle surface (z = 0.08 m), and in the top surface (z = 0.16 m).  

 

Figure 4. Stresses along the length of the beam for I-shaped cross-section beam with C-C 

boundary conditions with L/h = 2 (solid lines) and L/h = 10 (dotted lines) (a) Transverse 

displacement (b) Normal stress 𝜎𝑥 (c) Normal stress 𝜎𝑧 (d) Shear stress 𝜏𝑥𝑧. 

Regarding the normal stresses along the length of the beam, Figure 4b presents 𝜎𝑥 along that 

direction and, for both aspect ratios, this stress presents a higher variation in the flanges, as well as at 

the center of the cross-section. This distribution profile is influenced by the material distribution 

through the cross-section (Figure 2).  

It is interesting to note that both beams present the same behavior; however, for the thicker beam, 

the stress on the top of the section is always higher than the stress on the bottom of the section, and the 

stress in the middle of the section is lower than the other two. In the thinner beam, the stress in the 

middle of the section is constant and close to zero, and the stresses in the top and bottom of the section 

show an almost symmetrical behavior, changing from tension to compression, or vice-versa. If 𝜎𝑧 is 

considered (Figure 4c), a non-symmetrical distribution was evident through the height of the beam, as 

was expected. 
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As highlighted in Figure 4d, the shear stress 𝜏𝑥𝑧  along the length of the beam shows a 

symmetrical behavior with respect to the mid-height point of the cross-section, with a zero value in 

the middle length of the beam. 

Analyzing the stresses along the section, Figure 5 presents the stress 𝜎𝑥 for three positions along 

the length of the beam. In Figure 6, the stress 𝜎𝑧 in the cross-section is presented for three positions 

along the length of the beam. The behavior of this stress is similar for both beams, with higher stresses 

on the flanges and a considerable compression below the top flange. Additionally, the thicker beam 

presents higher stresses in the equivalent locations along the length of the beam. 

As noticed from Table 8, the shear stress 𝜏𝑥𝑧  along the length of the beams has a relevant 

distribution. As such, Figure 7 presents the profile in the cross-section for three positions along the 

length of the beam. The profiles for both beams are similar, showing that the web is subjected to more 

shear stress, and with higher values for the moderately thick beam. 

These results are consistent with the expected trends associated with the higher and lower aspect 

ratios of the beams. It is also important to note that because the deformation is not completely 

symmetric along the cross-section, it contributes to the stress profiles of the beams. Additionally, the 

effect of the geometric variation of the I-shaped cross-section also influences the results. 

 

Figure 5. Normal stress 𝜎𝑥  for I-shaped cross-section beam with C-C boundary 

conditions with (a) L/h = 2 (b) L/h = 10. 
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Figure 6. Normal stress 𝜎𝑧  for I-shaped cross-section beam with C-C boundary 

conditions with (a) L/h = 2 (b) L/h = 10. 
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Figure 7. Shear stress 𝜏𝑥𝑧 for I-shaped cross-section beam with C-C boundary conditions 

with (a) L/h = 2 (b) L/h = 10. 

3.3.2. C-MS boundary conditions 

In this case study, the two beams (L/h = 10 and L/h = 2) were analyzed while considering a clamped 

extremity and a moving support boundary condition on the other extremity. The same 100 kPa transverse, 

uniformly distributed load was applied. 

Table 9 presents the results for the maximum transverse displacement and normal stresses, and 

Table 10 presents the results for the shear stress. The maximum deflection occurs in similar sections along 

the length of the beam, with higher values for the thinner beam, as expected. Moreover, regarding the cross 

section for this beam, a higher transverse displacement occurs on the top of the section, whereas on the 

thick beam, it occurs in the middle of the section. From the results for the longitudinal normal stresses, 𝜎𝑥 

is considerably higher on the moderately thick beam, with the maximum values occurring at the mid-length 

and in the bottom of the section. Considering 𝜎𝑦, the maximum values occur in the middle of the section 

at L/4 for the thinner beam and in the middle of the section at L/2 for the thick beam. In this case, the 

thicker beam presents higher values. The same observations may be made for 𝜎𝑧. 

As for the shear stress, Table 10 shows that 𝜏𝑥𝑧 exhibits relevant values in the module (i.e., 12 MPa) 

occurring at the bottom of the section at L/4 for the moderately thick beam and 1.9 MPa in the same location 

on the thick beam. Moreover, at the bottom of the section at 3L/4, there was a stress value of 4.3 MPa for 

the moderately thick beam and a stress value of 1.3 MPa for the thick beam. In comparison, the other shear 

stresses were not so relevant.
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Table 9. Deformation and normal stresses in the I-shape beams with different aspect ratios for C-MS boundary conditions. 

Location on 

the length 

Location on 

the section 

w (m) σx (Pa) σy (Pa) σz （Pa） 

L/h = 10 L/h = 2 L/h = 10 L/h = 2 L/h = 10 L/h = 2 L/h = 10 L/h = 2 

0 0 0 0 –2.45E+07 –2.48E+06 –1.05E+07 –1.06E+06 –1.05E+07 –1.06E+06 

H/2 0 0 2.54E+07 3.68E+06 1.09E+07 1.58E+06 1.09E+07 1.58E+06 

H 0 0 –1.55E+05 –5.67E+05 –6.65E+04 –2.43E+05 –6.65E+04 –2.43E+05 

L/4 0 –6.56E-05 –9.53E-07 6.78E+05 3.73E+05 –2.85E+04 1.12E+05 1.00E+04 6.93E+03 

H/2 –6.61E-05 –1.36E-06 4.50E+05 4.08E+05 3.15E+06 2.63E+06 3.08E+05 2.98E+04 

H –6.58E-05 –1.08E-06 –3.84E+05 –1.86E+05 –2.75E+01 –7.67E-02 –1.55E+06 –1.24E+06 

L/2 0 –1.13E-04 –1.41E-06 5.86E+06 5.39E+05 –2.44E+04 –1.06E+04 3.16E+04 4.42E+03 

H/2 –1.14E-04 –1.90E-06 –4.74E+06 5.16E+05 3.14E+06 3.22E+06 2.87E+05 4.98E+04 

H –1.14E-04 –1.57E-06 –8.88E+05 –1.37E+05 –2.81E+01 –2.02E-02 –1.55E+06 –1.61E+06 

3L/4 0 –9.10E-05 –1.03E-06 5.71E+06 4.29E+05 –2.46E+04 –5.02E+03 3.09E+04 3.73E+03 

H/2 –9.15E-05 –1.52E-06 –4.58E+06 4.34E+05 3.14E+06 3.02E+06 2.87E+05 4.27E+04 

H –9.15E-05 –1.18E-06 –8.73E+05 6.91E+04 –2.81E+01 –5.55E-02 –1.55E+06 –1.50E+06 

L 0 0 0 6.82E+04 5.71E+03 2.92E+04 2.45E+03 2.92E+04 2.45E+03 

H/2 0 0 –1.25E+05 –3.43E+04 –5.36E+04 –1.47E+04 –5.36E+04 –1.47E+04 

H 0 0 3.52E+04 1.17E+04 1.51E+04 5.02E+03 1.51E+04 5.02E+03 
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Table 10. Shear stresses in the I-shaped cross-section beams with different aspect ratios 

for C-MS boundary conditions. 

Location on the 

length 

Location on 

the section 

τxy (Pa) τyz (Pa) τyz (Pa) 

L/h = 10 L/h = 2 L/h = 10 L/h = 2 L/h = 10 L/h = 2 

0 0 –4.95E+00 8.83E+01 –5.67E+06 –6.26E+05 4.01E-10 6.23E-11 

H/2 5.88E+00 3.24E+02 –5.89E+06 –9.13E+05 2.13E-09 2.83E-10 

H –3.87E+00 –1.79E+02 –1.33E+07 –2.25E+06 –5.60E-09 1.73E-10 

L/4 0 –2.70E+02 4.02E+02 –8.61E+04 –6.26E+03 3.83E+00 8.32E+00 

H/2 3.02E+02 3.14E+03 –8.61E+04 –1.38E+03 7.68E+00 2.14E+02 

H –4.02E-01 –1.02E+02 –1.20E+07 –1.94E+06 –4.97E+00 –1.38E+02 

L/2 0 –1.35E+02 5.10E+01 –2.75E+04 –1.05E+03 –2.49E+01 3.47E+01 

H/2 3.54E+02 2.34E+03 –2.75E+04 –1.04E+03 2.20E+00 1.02E+02 

H –3.65E+00 –1.78E+01 –3.84E+06 –3.67E+05 9.83E+00 –3.67E+02 

3L/4 0 6.28E+02 –3.48E+02 3.10E+04 5.37E+03 –7.07E+01 2.04E+01 

H/2 8.70E+02 –3.03E+03 3.10E+04 4.36E+02 1.15E+02 2.48E+02 

H –2.77E+01 8.58E+01 4.32E+06 1.34E+06 –1.60E+01 –1.77E+02 

L 0 –1.79E+03 –4.77E+02 8.75E+04 8.95E+03 –8.54E-07 2.33E-08 

H/2 –3.82E+04 –2.63E+03 6.02E+04 9.50E+03 –8.60E-07 4.46E-08 

H 9.14E+02 5.25E+01 1.20E+07 2.48E+06 –1.48E-06 5.37E-08 

From Figure 8a, it can be observed that the maximum transverse displacement occurs slightly after 

the middle of the beam, toward the right-hand side, especially for the L/h = 10 beam (dotted lines), which 

is explained by the decreased restrictive boundary conditions at this extremity. The longitudinal normal 

stress 𝜎𝑥 also accompanies this deviation to the right of the beam's mid-span, which is more clearly seen 

for the thinner beam. As for 𝜎𝑧, both beams present a similar behavior. However, for the shear stress 𝜏𝑥𝑧, 

although the behavior pattern is the same, there are higher values in the middle section for the moderately 

thick beam. It may also be seen that these stress distributions are not symmetrical on the length of the 

beams, which also implies the influence of differentiated restrictions introduced via the boundary conditions. 

To allow for a more illustrative perception of the stress distributions through the section height of the 

beam, Figure 9 depicts those profiles for some situations.  

The normal stress 𝜎𝑥 presents a different behavior between the two beams (L/h = 2 and L/h = 10). 

Besides the different values that this stress assumes, the moderately thick beam for the L/4 section only 

shows tensile stresses through the thickness. Again, this is consistent with the effect introduced by the 

different boundary conditions. 

Regarding 𝜎𝑧, in Figure 10, there is a similar distribution on both beams but with higher values for 

the moderately thick beam. Additionally, it is visible that these higher values are sensed in web regions 

closer to the surface where the transverse load was applied. 

As for the 𝜏𝑥𝑧 distribution along the cross section of the beam, as shown in Figure 11, both beams 

present a similar behavior in the web, except for the case of the thick beam for the midspan coordinate. 

However, the moderately thick beam presents higher values of this shear stress in both flanges over the 

length of the beam. 

Once again, these results show the influence of the material distribution along the transverse section 

of the beam, as well as the geometry influence on the stresses. 
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Figure 8. Results along the length of the beam for I-shaped cross-section beam with C-

MS boundary conditions with L/h = 2 (solid lines) and L/h = 10 (dotted lines) (a) 

Deformation (b) Normal stress 𝜎𝑥 (c) Normal stress 𝜎𝑧 (d) Shear stress 𝜏𝑥𝑧. 
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Figure 9. Normal stress 𝜎𝑥  for I-shaped cross-section beam with C-MS boundary 

conditions with (a) L/h = 2 (b) L/h = 10. 
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Figure 10. Normal stress 𝜎𝑧  for I-shaped cross-section beam with C-MS boundary 

conditions with (a) L/h = 2 (b) L/h = 10. 

 



50 

AIMS Materials Science   Volume 11, Issue 1, 28–57. 

 

Figure 11. Shear stress 𝜏𝑥𝑧  for I-shaped cross-section beam with C-MS boundary 

conditions with (a) L/h = 2 (b) L/h = 10. 

3.4. Effect of volume fraction variation in the flanges 

The previous case studies considered a constant material distribution on the flanges due to their 

relatively thin character. Therefore, to illustrate the effect of the graded material distribution on the 

flanges, another case study is presented, where a beam with an aspect ratio L/h = 10 and C-C boundary 

conditions was subjected to a uniformly distributed load of 100 kPa. The volume fraction in this beam 

has the following parameters: zmin = 0%, zmax = 100%, zcutA = 50%, zcutB = 50%, C1 = 0%, C2A = 10, 

and C2B = 10. As in the previous case studies, the main material on the web is material A, while in the 

flanges, it is material B. The gradation conforms with Eq 1. 

Table 11 presents the deflection of the beam, as well as the resulting stresses along the length of 

the beam and along its cross-section. 

 

 

 



51 

AIMS Materials Science   Volume 11, Issue 1, 28–57. 

Table 11. Deformation and stresses in an I-shaped cross-section beam with L/h = 10 for 

C-C boundary conditions considering varying material distribution on the flanges. 

Location 

on the 

length 

Location 

on the 

section 

w (m) σx (Pa) σy (Pa) σz (a) τxy (Pa) τxz (Pa) τyz (Pa) 

0 0 0 –2.01E+07 –8.62E+06 –8.62E+06 1.62E-07 –4.77E+06 –9.83E-10 

H/2 0 2.09E+07 8.97E+06 8.97E+06 1.62E-06 –4.98E+06 5.59E-10 

H 0 –2.59E+05 –1.11E+05 –1.11E+05 –4.49E-06 –1.12E+07 3.77E-09 

L/4 0 –5.09E-05 1.18E+06 –3.20E+04 1.25E+04 –1.98E-05 –6.35E+04 –2.69E-06 

H/2 –5.13E-05 –2.52E+04 3.48E+06 3.51E+05 8.18E-06 –6.35E+04 –1.24E-06 

H –5.11E-05 –5.31E+05 –5.81E+01 –1.55E+06 1.96E-07 –8.16E+06 –8.87E-06 

L/2 0 –7.82E-05 4.22E+06 –3.00E+04 2.46E+04 –4.28E-06 –5.49E-07 5.81E-06 

H/2 –7.86E-05 –3.07E+06 3.48E+06 3.39E+05 –2.58E-06 –4.66E-07 –3.96E-06 

H –7.85E-05 –8.27E+05 –5.78E+01 –1.55E+06 1.02E-06 9.45E-06 –3.06E-05 

3L/4 0 –5.09E-05 1.18E+06 –3.20E+04 1.25E+04 2.01E-05 6.35E+04 6.71E-06 

H/2 –5.13E-05 –2.52E+04 3.48E+06 3.51E+05 –2.32E-05 6.35E+04 3.50E-06 

H –5.11E-05 –5.31E+05 –5.81E+01 –1.55E+06 5.71E-07 8.16E+06 –1.23E-05 

L 0 0 –2.01E+07 –8.62E+06 –8.62E+06 2.00E-06 4.77E+06 –2.04E-07 

H/2 0 2.09E+07 8.97E+06 8.97E+06 –2.26E-06 –4.98E+06 –2.11E-07 

H 0 –2.59E+05 –1.11E+05 –1.11E+05 –3.29E-07 1.12E+07 –4.14E-07 

Comparing these results with the results presented in Tables 7 and 8 for the I-shaped cross-

sectional beam with L/h = 10 and C-C boundary conditions, it can be said that the beam shows a 

slightly higher deformation along the cross-section when there is variation of the material distribution 

on the flanges. This is to be expected since the elasticity of the material in the flanges gradually 

decreases. The opposite behavior is expected if the materials' mixture was chosen to progress in the 

reverse direction. Additionally, the stresses are very similar, with no variation in the behavior of the 

two beams.  

These conclusions may be confirmed by observing Figure 12, where the deformation and stress 

profiles along the beam are presented. No significant differences are observed in the beam that 

considers a variation in the material distribution on the flanges as compared to the beam that considers 

a uniform material distribution in the flanges. 

Regarding the stress along the cross-sectional area, Figure 13 shows a similar behavior to the 

stress of the beam with a uniform material distribution in the flanges, as previously depicted in 

Figure 5b, 6b, and 7b. However, it is possible to observe that, by not limiting the material gradient 

distribution in the flanges, higher stresses are developed near the geometric variation between the 

flanges and the web due to this alteration in geometry. 
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Figure 12. Results along the length of the beam for I-shaped cross-section beam with C-

MS boundary conditions with L/h = 10 and varying material distribution in the flanges (a) 

Deformation (b) Normal stress 𝜎𝑥 (c) Normal stress 𝜎𝑧 (d) Shear stress 𝜏𝑥𝑧. 
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Figure 13. Stresses 𝜎𝑥, 𝜎𝑧 and 𝜏𝑥𝑧 for I-shaped cross-section beam with C-C boundary 

conditions and L/h = 10, considering material distribution in the flanges. 

4. Conclusions 

The purpose of this study was to investigate the behavior of I-shaped cross-section beams made 

from functionally graded material under a uniformly distributed loading. To this purpose, an 8-node 

hexahedron solid finite element model was developed and implemented, which accounted for a 
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material mixture distribution through the thickness of the beam. 

A set of verification studies were carried out to assess the performance of the model. The geometrical 

configuration of the beams used for the parametric study corresponded to a W150x100x24.0 beam. Two 

length-to-thickness ratios (L/h) were considered, namely a moderately thick beam (L/h = 10) and a 

thick beam (L/h = 2). Convergence analyses were performed to determine the most suitable 

discretization to adopt.  

From the studies performed, it is feasible to conclude that the following: 

• The FGM distribution affects the stress profile, and the values and location of maximum values 

through the beam's thickness accordingly; 

• The boundary conditions influence the beam's deflected profile and, inherently, the maximum 

transverse displacement; 

• There is a clear influence on the aspect ratio of the stress distribution through the cross-section, 

in particular on 𝜎𝑧;  

• Significant shear stress values, 𝜏𝑥𝑧,  appear in the beam's thickness, especially in the 

moderately thick beam. 

This study shows the importance of investigating the influence of the use of functionally graded 

materials in beams with different cross-sections. There are several differences with respect to the 

behavior of rectangular-shaped cross-section beams, in particular, the appearance of transverse shear 

and normal stress profiles that should not be neglected. 
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