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Abstract: This study was conducted to synthesize magnetic wood through the ex situ impregnation 

method of magnetite nanoparticles and analyze its physical properties and characterization. The 

process was initiated with the synthesis of magnetite nanoparticles by the co-precipitation method and 

the nano-magnetite was successfully synthesized with a particle distribution of 17–233 nm at an 

average size of 75 nm. Furthermore, the impregnation solution consisted of three different levels of 

magnetite nanoparticles dispersed in furfuryl alcohol, untreated and furfurylated wood for comparison. 

Sengon wood (Falcataria moluccana Miq.) was also used due to its low physical properties. The 

impregnation process was conducted by immersing the samples in the solution at a vacuum of −0.5 bar 

for 30 min, followed by a pressure of 1 bar for 2 h. There was also an improvement in the physical 

properties, such as weight percent gain, bulking effect, anti-swelling efficiency and density, while the 

water uptake continued to decrease. Additionally, magnetite nanoparticles appeared in wood 

microstructure image, supported by the result of ferrum content in chemical element analysis. The 

results showed that chemical change analysis proved the presence of Fe–O functional group cross-linked 

with wood polymer. The diffractogram also reported the appearance of magnetite nanoparticles peak 

and a decrease in crystallinity due to an increase in the concentration. Based on the analysis, sengon 

wood was classified as a superparamagnetic material with soft magnetic characteristics and the 

optimum treatment was furfurylated-magnetite 12.5% wood. 
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1. Introduction 

The expansion of wireless-based technology is unfavorable to the environment and human health 

because of its electromagnetic wave pollution [1]. Electromagnetic waves are known to be sourced 

from radio waves, radar waves, microwaves, UV light, X-rays and gamma rays [2]. According to 

Smawardika [3], this wave can cause physiological problems in the human body. To reduce the risk of 

exposure, it is necessary to possess a material capable of absorbing the pollution emitted by electronic 

instruments. Several parameters, such as weight, thickness and density, are important to affect the 

electromagnetic wave absorption by the materials, especially single-phase magnetic materials.  

Single-phase magnetic materials are materials that exhibit magnetic properties in one phase. The 

weight and thickness of the material are known to determine the amount of electromagnetic energy 

absorbed by the material, while the density of the material affects the frequency range of 

electromagnetic waves absorbed by the material. So, high-density and lightweight materials are 

preferred for shielding material applications. However, there are limitations on the performance of 

materials with these characteristics, for example, high-density materials have a narrow absorption 

bandwidth, while lightweight materials have low absorption efficiency [4]. Gao et al. [5] also reported 

that the increasing material thickness will lower the effective absorbing frequency and improve the 

reflection loss value, so this condition can make the devices quickly degrade because of the excessive 

temperature rise. 

One example of a single-phase magnetic material is iron (Ferrum) [6]. Iron is a ferromagnetic 

material commonly used in electromagnetic wave absorption applications due to its high magnetic 

permeability and low electrical conductivity [7]. The form of iron oxide compounds used for 

electromagnetic wave absorbers is magnetite (Fe3O4). Magnetite is a magnetic material that has 

excellent electromagnetic wave absorption properties. The mechanism of magnetite absorbing 

electromagnetic waves is due to the loss of magnetic properties of the material [8]. Magnetite 

nanoparticles, with a particle size of less than 100 nm, have better electromagnetic wave absorption 

properties than bulk magnetite. The high surface area of magnetite nanoparticles can absorb 

electromagnetic energy more efficiently and the small particle size can increase the absorption level 

over a wider bandwith range [9]. The magnetic moment of a magnetic material is affected by the 

magnetic field it produces when an electromagnetic wave passes through it. This phenomenon is 

known as oscillation. The oscillation converts electromagnetic energy into heat, which is then 

dissipated by the material [10]. Hence, to overcome this problem, it is needed to fabricate multiphase 

magnetic materials by installing other conductive materials. Therefore, the dielectric constant value 

becomes lower and its permittivity is relatively high, ensuring better impedance [11,12]. With these 

benefits, biomaterial from carbon with various structures and phases is a suitable candidate with 

several properties of magnetic materials, such as lightweight, low density, abundant resources, high 

electrical properties, as well as chemical and thermal stabilization [13–18]. 

The multi-functional biomaterial is developed for various purposes because of its eco-friendly 

characteristics, such as magnetic wood. This possesses considerable promise as a biomaterial, 

renowned for its capacity to absorb electromagnetic waves, show magnetic properties and serve as an 
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efficient heat conductor. Consequently, it can obtain applications within a diverse range of industries 

including electronics, the military, healthcare instrumentation and green building construction [19–23]. 

Previous studies also reported magnetic wood applications in electronic devices, furniture coatings and 

interior decorations of houses [19,22–25]. This wood can be synthesized by combining with particles 

in several ways, such as impregnation, mixing sawdust with magnetic powder and coating using 

magnetic material [26]. Furthermore, [27,28] succeeded in producing magnetic wood using magnetite 

nanoparticles through in-situ impregnation. Magnetite nanoparticles synthesized using weak base 

ammonium hydroxide (NH4OH) were bigger than those using strong base NaOH. This was because 

NH4OH generated a small number of magnetic nuclei supporting crystal growth and producing 

particles of similar size [29].  

Sengon (Falcataria moluccana Miq.) is one of the focuses of studies to be developed as a 

biomaterial resource in the future. This is because the wood has low dimensional stability and is easily 

degraded by insects and fungi [30–33]. Therefore, it is often discussed because of the limited use of 

plywood, packaging, lightweight construction and furniture [34,35]. Previously, sengon wood was 

used to fabricate magnetic wood using commercial magnetite nanoparticles impregnation which 

resulted in high physical properties and characteristics [36]. However, magnetite nanoparticles 

impregnation dispersed in demineralized water cannot improve wood properties. This is occurred 

because water is a universal solvent used as a solvent in wood in certain conditions. For example, 

water-based wood fillers are generally mixtures containing cellulose, wood fiber, or gypsum. These 

materials can be easily dry in about 15 min, and clean-up requires only soap and water [37]. Based on 

this research, water is still used as a comparison solvent even though it cannot dissolve magnetite 

completely. Hence, organic chemicals were needed to disperse magnetite nanoparticles [38]. 

Furfuryl alcohol is an eco-friendly organic chemical with high polarity [39,40]. Furfuryl alcohol 

is used in the wood modification process to improve wood properties. it has a small molecular size, 

which allows it to penetrate the wood and undergo polymerization in the cell wall. This polymerization 

can be carried out using catalysts, heat, or radiation [41]. Furfuryl alcohol greatly maintained the wood 

dimension by about 85% for Japanese cedar (Cryptomeria japonica) and Scots pine (Pinus sylvestris L.) 

specimens and prevented the leaching of chemicals from wood [41]. The polymerization of furfuryl 

alcohol in wood potentially provides a certain degree of protection against various environmental 

factors including magnetite nanoparticles that are soluble in furfuryl alcohol and have been 

impregnated into wood from acids and alkalis degradation [42]. Previously, the interactions between 

furfuryl alcohol and magnetite nanoparticles have been reported. Magnetite nanoparticles act as a 

homogeneous catalyst in the hydrogenation reaction of furfural to furfuryl alcohol. This catalyst 

showed high catalytic furfural transfer hydrogenation activity, furfuryl alcohol selectivity, high 

reusability and furfuryl alcohol can dissolve magnetite perfectly [43–45]. A homogeneous catalyst is a 

catalyst with the same phase as the reactants and is obtained by dissolving the catalyst and reactants in 

the same solvent [44]. Additionally, the magnetic properties of wood materials were also reported to 

be increased due to furfuryl alcohol addition in magnetite nanoparticle impregnation into the     

wood [46]. It is because this alcohol was used as a dispersant of magnetite nanoparticles to form a 

colloidal phase penetrating deeper into wood. This modification treatment promoted sengon wood to 

become high physical properties building material [47,48]. Therefore, this study was conducted to 

synthesize magnetic wood by the impregnation process using furfuryl alcohol combined with 

magnetite nanoparticles, manufactured by the co-precipitation method. 

 



4 

AIMS Materials Science  Volume 11, Issue 1, 1–27. 

2. Materials and methods 

2.1. Materials 

A six-year-old Sengon wood (Falcataria moluccana Miq.) was obtained with a diameter of 35 cm 

free branch height from a community forest in Bogor, West Java. The chemicals used in this study were 

FeCl3·6H2O, FeCl2·4H2O, ammonium hydroxide (NH4OH), ethylenediaminetetraacetic acid (EDTA), 

furfuryl alcohol (Sigma Aldrich, St. Louis, MO, USA) and additional supplies included pH paper and 

demineralized water. 

2.2. Methods 

2.2.1. Wood sample preparation 

The log of sengon wood was cut into 2 × 2 × 2 cm without distinguishing the portion of sapwood 

and heartwood [49]. A total of 50 samples was required with 10 replications for each treatment. These 

samples were used for the physical properties tests including weight percent gain, bulking effect,  

anti-swelling efficiency, water uptake and density. 

2.2.2. Synthesis of nano-magnetite 

According to previous studies [27,28,50], the synthesis of magnetite nanoparticles initiated by 

mixing FeCl3·6H2O and FeCl2·4H2O into 200 mL demineralized water based on mole ratio calculation 

of Fe2+ and Fe3+ = 1:1.6. 0.292 g of EDTA dissolved in 100 mL of demineralized water was added to 

the solution and stirred using a magnetic stirrer for 5 min. The solution was vacuumed at 1 bar      

for 15 min and NH4OH was slowly added until the pH reached 12 to form a black precipitate known 

as magnetite nanoparticles. Subsequently, the neutralization process of synthesized magnetite 

nanoparticles was carried out by washing the solution with demineralized water. The washing process 

was conducted by putting synthesized mixture into a 50 mL centrifuge tube and centrifuging at 5000 rpm 

for 15 min. The liquid phase of the centrifugation results was separated and 40 mL of demineralized 

water was added to the centrifuge with the same speed and time conditions. In the first stage, 40 mL 

of a mixture of solution containing magnetite precipitates under pH 12 conditions were centrifuged 

and the liquid was discarded. In the second stage, 40 mL of deionized water was added to the remaining 

sediment from the previous stage, then centrifuged and the liquid was discarded. The second stage was 

carried out in three repetitions. This repetition was estimated in the laboratory, if approximately 1 mL 

of solid solution at pH of 12 remains in the first stage, which is then washed three times and     

diluted 64000 times (40 × 40 × 40 dilution factor). pH 12 contains an OH− = 10−2 M concentration, so 

only 1000 times dilution is needed to reach pH 9 with an OH− = 10−5 concentration (pH = 14 – pOH 

so pH = 14 – (–log 10−5) = 14 – 5 = 9). After washing the solution until pH 9, then put the magnetite 

nanoparticles in an oven at 40 °C. 
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2.2.3. Preparation of impregnation solution 

The solution consists of magnetite nanoparticles and dispersant (furfuryl alcohol: demineralized 

water in 1:1 mole ratio) determined in w/v (g/mL) to obtain optimal results. Furthermore, three levels 

of magnetite nanoparticles concentration were prepared, including 7.5%, 10% and 12.5%. The solution 

was mixed by a sonicator (CGOLDENWALL manufactured in Zhejiang, China) with an amplitude  

of 40% for 10 min. Although the characteristics of magnetite are insoluble in water, because the 

synthesized magnetite used in this study is nanometer-sized, its solubility increases due to its large 

surface area [51]. In addition, sonication treatment can also increase te solubility of magnetite in  

water [52]. For comparison, untreated and furfurylated wood were also tested in this study. 

2.2.4. Fabrication of magnetic wood 

The fabrication of magnetic wood was carried out by the impregnation process adopted from the 

previous study [21,27,28,53]. Sengon wood samples were oven-dried at 103 ± 2 ℃ until the constant 

weight was achieved. This process started with immersing the samples in the solution containing 

synthesized magnetite nanoparticles and FA at a vacuum of −0.5 bar for 30 min followed by a pressure 

of 1 bar for 2 h. After impregnation, the samples were wrapped with aluminum foil and kept at room 

temperature for 12 h. The foil was removed from wood and placed in an oven at 65 ℃ for 12 h before 

drying at 103 ± 2 ℃ to obtain a constant weight. 

2.3. The physical properties of magnetic sengon wood 

The physical properties tested on sengon wood were weight percent gain, bulking effect, anti-swelling 

efficiency, water uptake and density [54–56]. The weight percent gain formula was defined by Eq 1 below: 

𝑊𝑃𝐺(%) =
𝑊1− 𝑊0

𝑊0
× 100        (1) 

where W0  is the oven-dried weight of samples before the impregnation (g), and W1 is the oven-dried 

weight of samples after the impregnation (g). Then, bulking effect of sengon wood after impregnation 

process was determined using Eq 2: 

𝐵𝐸(%) =
𝑉1−𝑉0

𝑉0
× 100             (2) 

where 𝑉0 is the oven-dried volume of samples before the impregnation (cm3) and 𝑉1 is the oven-dried 

volume of samples after the impregnation (cm3). Anti-swelling efficiency was carried out by soaking 

the specimens in water continuously, and was calculated by following formula (Eq 3): 

𝐴𝑆𝐸(%) =
𝑆𝑢−𝑆𝑡

𝑆𝑡
× 100             (3) 

where 𝑆𝑢 is the volume shrinkage of the untreated sample and 𝑆𝑡 is the volume shrinkage of the 

treated samples. Water uptake value was determined using Eq 4: 

𝑊𝑈(%) =
𝑊2− 𝑊0

𝑊1
× 100         (4) 
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where W1 is the oven-dried weight samples after impregnation (g) and W2 is the weight of sample after 

being immersed for 24 h (g). Density was calculated before and after treatment and then determined 

using Eq 5: 

𝜌(𝑘𝑔/𝑚3) =
𝑆𝑎𝑚𝑝𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡

𝑆𝑎𝑚𝑝𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒
          (5) 

where W1 is the oven-dried weight samples after impregnation (g) and V1 is the oven-dried volume 

samples after impregnation (cm3). 

2.4. Characterization of magnetic sengon wood 

2.4.1. Particle size analyzer (PSA) 

A total of 10 mg of synthesized magnetite nanoparticles dissolved in 100 mL of demineralized water. 

Furthermore, the solution was stirred for 15 min using a sonicator, according to Gerasimov et al. [57].  

A 100 ppm concentration of magnetite nanoparticles was analyzed for particle size using PSA (Beckman 

Coulter LS 13 320 XR). 

2.4.2. Scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX) 

The morphology of sengon wood was examined under SEM (ZEISS EVO10 series). In this 

context, wood sample was cut into 0.5 × 0.5 × 0.5 cm in the tangential plane, placed on the conductor 

adhesive, sputtered with the gold as an electrically conductive metal and observed at 20 kV. To 

determine the chemical component of the treated wood, the EDX analysis was also carried out using 

ZEISS SmartEDX. 

2.4.3. Fourier transform infrared spectrometry (FTIR) 

Changes in the functional group of sengon wood due to impregnation were qualitatively evaluated 

by FTIR (Perkin-Elmer Spectrum One). The sawdust was ground to a size of 100 mesh and embedded 

in potassium bromide pellets (KBr). Meanwhile, this pellet was scanned in the wavenumber        

of 4000−400 cm−1 in a resolution of 4 cm−1 for 32 scans. 

2.4.4. X-ray diffraction (XRD) 

This study used XRD PANalytical AERIS to measure the degree of crystallinity and crystal size. 

Wood sample was sliced about 1 mm thick in the tangential plane. The parameters used were Cu  

anode, 40 kV voltage, 30 mA current and 2θ scan range 5−80° for crystallinity and 5−90° for phase 

analysis with the scanning speed at 2°/step. Additionally, XRD patterns of Fe3O4 nanoparticles were 

analyzed according to JCPDS No. 04-0755. 
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2.4.5. Vibrating sample magnetometry (VSM) 

Magnetic properties of sengon wood were evaluated using VSM250 (VSM Dexing Type 250). 

The parameters measured include magnetization saturation (Ms), retentivity (Mr) and coercivity (Hc). 

The hysteresis loop was analyzed at 298–773 K in an external magnetic field of 100 Oe until 21 kOe 

and the sample dimension was 3.5 × 3.5 × 1 mm in the longitudinal section. 

2.5. Data analysis 

A completely randomized design was used to evaluate data through ANOVA. This was followed 

by Duncan’s tests at α = 5% and statistical analysis was performed by IBM SPSS 25.0. 

3. Results and discussion 

The synthesis of magnetite nanoparticles used the co-precipitation method with a weak base 

precursor of NH4OH and EDTA as a capping agent. These chemicals can control the particle size to be 

smaller and have a uniform morphology [58]. The co-precipitation method was selected for the 

laboratory scale due to its high yield reaching 91.17% [59] and its correlation with the manufacture of 

magnetic wood by ex situ [28]. The addition of EDTA solution reduced surface energy and the 

possibility of magnetite nanoparticle agglomeration to improve the dispersibility. The molecules can 

change the mechanism of nucleation and growth of nanostructures, reducing nanoparticle size and 

supporting the stabilization which are less susceptible to oxidation [60,61]. Moreover, EDTA coating 

improves the adsorption capacity by increasing the surface area efficiently [62]. The sonication process 

was conducted to enhance the solubility of magnetite nanoparticles [63]. According to Sompech et al. [52], 

sonication can reduce the particle size and heat energy to increase the particle movement. 

The choice of weak base NH4OH as the precursor base used in the co-precipitation synthesis of 

magnetite nanoparticles was based on Peternele et al. [50]. The co-precipitation method is commonly 

used to synthesize magnetite from precursor materials in the form of a mixture of iron salts and bases. 

In this method, solutions containing precursor materials are mixed together and the pH of the solution 

is adjusted to induce magnetite precipitation [64]. Magnetite nanoparticles were obtained by the    

co-precipitation of iron (II) and iron (III) salts in aqueous media at different Fe3+/Fe2+ ratios, with 

NH4OH base solution at room temperature, this reaction shown in Eqs 6 and 7. 

Fe3+ + 3OH− = Fe(OH)3 = FeOOH + H2O           (6) 

Fe2+ + 2OH− = Fe(OH)2              (7) 

The reaction between the iron salt solution and the precipitating agent in the form of a base is 

slightly exothermic. The Eqs 8 and 9 are the total reaction for the magnetite formation [65]. 

2FeOOH + Fe(OH)2 = Fe3O4 + 2H2O       (8) 

2Fe3+ + Fe2+ + 8OH− = 2Fe(OH)3Fe(OH)2 → Fe3O4 + 4H2O    (9) 

Based on the reactions above, NH4OH is a precursor for magnetite formation by donating hydroxy 

ions (OH−). According to the transmission electron microscopy (TEM) and the Scherrer equation, the 

material obtained from the NH4OH precipitating agent is more uniform than NaOH. TEM results 
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showed that small magnetite particles were likely embedded into larger particles when treated with 

NaOH. The particles formed were more uniform and monodisperse when treated with NH4OH. 

Therefore, a weak base of NH4OH should be preferentially used as a precursor base in the synthesis of 

magnetite nanoparticles. 

 

Figure 1. Size distribution of magnetite nanoparticles synthesized through the        

co-precipitation method with the weak base precursor of NH4OH. 

Based on Figure 1, the particle size distribution ranged from 17–233 nm with the highest intensity 

at 70 nm and the average was 75 nm. This showed that synthesized magnetite was classified as 

nanoparticle material because the size was less than 100 nm [66] and possessed the good quality to be 

impregnated into sengon wood by the ex situ method. The impregnation process was initiated with 

vacuum condition, which was defined as the condition of the tube having a very low air pressure     

of −0.5 bar. This condition enhanced the impregnation depth by removing air from the porous media 

or wood cavities [67,68], hence particles in the impregnation tube did not affect the penetration of 

magnetite nanoparticles and furfuryl alcohol [38,39]. The amount of magnetite nanoparticles entering 

wood cavities depends on the sengon wood structural anatomy. Martawijata et al. [69] stated that 

sengon wood has a pore diameter of 140–200 µm with oval to round in shape. There are 2–4 pores that 

are radially interconnected and are mostly seen solitary, with a frequency of 1–3 pores/mm2. Based on 

this result, it can be suspected that magnetite nanoparticles that have a size under 140 µm successfully 

entered the wood cell wall. In addition, oven-drying and vacuum processes resulting in wood tends to 

react with chemicals entering the wood. Sengon wood is also known to have cell wall thickness and 

fiber length respectively of 1.55–2.19 and 1170 µm [31,70], indicating there are many empty room 

inside the wood. This statement is also supported by sengon wood density previously obtained was 

only 320 kg/m3, affected by the cell wall thickness of wood fiber [71]. After the impregnation process 

was carried out, the physical properties of wood were measured by calculating weight and volume 

before and after treatment in percent [19]. 
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The impregnation of three levels of magnetite nanoparticles with furfuryl alcohol as a dispersant 

showed significant effects in the weight percent gain, bulking effect, anti-swelling efficiency, water 

uptake and density of sengon wood. The enhancement of the physical properties of sengon wood is 

shown in Table 1. The low weight percent gain, bulking effect and density of the untreated wood were 

caused by no chemicals deposited in the wood cell wall after impregnation. The wood sample was 

originally in the condition of an oven-drying process to degrade the hydrogen bonds between cellulose 

and water molecules which led wood to have a moisture content of under 10% [72]. Impregnation 

treatment was also initiated with a vacuum process to remove air and water vapor from the wood with 

a certain pressure. The wood becomes more reactive to chemicals and easily to bond with. 

Incorporating solid inorganic materials, namely magnetite nanoparticles, is supposed to make the wood 

matrix firmer and dimensionally stable. However, impregnating wood using only magnetite 

nanoparticles and deionized water cannot affect the dimensional stability of sengon wood. Water 

cannot disperse magnetite nanoparticles well since the surface energy of magnetite nanoparticles 

remains higher so they tend to agglomerate and are difficult to disperse uniformly into the wood [73]. 

There was also a slight increase in the physical properties of furfurylated wood, but was 

insignificantly different from the untreated wood. This is because furfuryl alcohol only has a molecular 

weight of 98.1 g/mol, thus, furfuryl alcohol was suspected to bulk on wood surfaces and only added a 

slight weight and volume to sengon wood. On the other hand, magnetite nanoparticles have a molecular 

weight of 231.533 g/mol which can improve the weight percent gain, bulking effect and density of the 

wood after being combined with furfuryl alcohol. This solution forms a colloidal phase in order that 

interaction at the molecular level can be reached to produce wood with high dimensional stabilization 

from changing moisture and temperatures, indicated by the increasing anti-swelling efficiency of the 

furfurylated-magnetite wood. The colloid dispersed into the wood matrix will produce a large number 

of interfacial regions relative to the micro-composite [74]. So, the wood will have a constant dimension 

and is also protected from exposure to direct sunlight and biological attacks (mold, fungi, bacteria and 

insects) [75]. 

Table 1. The physical properties of sengon wood in several concentrations. 

Samples WPG (%) BE (%) ASE (%) WU (%) Density (kg/m3) 

Untreated 0.00 ± 0.02a 0.99 ± 0.66a 0.00 ± 0.84a 72.03 ± 8.69c 230 ± 10a 

Furfurylated wood 9.22 ± 2.66b 2.82 ± 1.75b 13.99 ± 371a 15.01 ± 2.70b 350 ± 26b 

FM 7.5% 144 ± 7.26c 5.77 ± 1.41c 69.91 ± 6.72b 9.62 ± 4.16b 722 ± 80c 

FM 10% 140 ± 7.55c 4.60 ± 0.35c 74.21 ± 8.22b 7.14 ± 6.79a 730 ± 76c 

FM 12.5% 150 ± 8.35c 7.40 ± 0.53d 74.33 ± 4.85b 6.58 ± 3.01a 734 ± 62c 

a–dNote: Alphabetical value means significantly different based on (P-value < 0.05) Duncan’s test; FM: furfurylated-magnetite wood; 

WPG: weight percent gain; BE: bulking effect; ASE: anti-swelling efficiency; WU: water uptake. 

This caused a deep penetration and cross-linked with wood cell components to increase the 

volume and density [42,76]. Prihatini et al. [38] found that the impregnation using water dispersant 

had no different effect on the physical properties of wood. In contrast, furfuryl alcohol addition 

supported the process and increased the physical properties of wood. The physical properties were 

higher than in an earlier study [46], even though the results used the ex situ impregnation method. The 

enhanced anti-swelling efficiency and reduced water uptake of magnetic sengon wood were attributed 



10 

AIMS Materials Science  Volume 11, Issue 1, 1–27. 

to the presence of an EDTA coating on the surface of magnetite nanoparticles. This coating effectively 

prevented the dissolution of nanoparticles when exposed to water. Therefore, the observed values were 

influenced by the increasing concentration of magnetite nanoparticles [77]. 

The solution containing furfuryl alcohol and magnetite nanoparticles also formed a blackish-brown 

resin precipitate into wood cell wall covering the pores. This formed resin also caused a darker 

discoloration of wood (Figure 2), as explained by previous studies [78–80]. Segmehl et al. [81] also 

showed the change of magnetic wood color to a strong grey metallic caused by in situ synthesis. This 

darkening and metallization process proved a distribution of magnetite nanoparticles in the cell wall 

of sengon wood.  

 

Figure 2. The visual appearance of sengon wood of (a) untreated wood, (b) furfurylated 

wood and (c) furfurylated-magnetite wood. 

The improvement in the anti-swelling efficiency of furfurylated-magnetite wood after impregnation 

treatment also occurred. This was because furfuryl alcohol and magnetite nanoparticles replaced the 

free and bound water in the cell wall [56,82]. The sample also showed an increasing trend in      

anti-swelling efficiency, linear with the addition of nanoparticles concentration. Similarly, there was a 

slight decrease in the anti-swelling efficiency of furfurylated-magnetite 10% wood due to the partial 

decomposition of the cell components. In comparison with furfurylated-magnetite wood, furfurylated 

wood has a lower anti-swelling efficiency causing the possibility of a leaching rate during water 

immersion [83,84]. Therefore, the untreated and furfurylated wood could absorb water, represented by 

increasing the uptake. The solution penetration in wood cell wall after treatment was confirmed by 

SEM image in 550 magnification, as shown in Figure 3. 

The results showed that the solutions containing furfuryl alcohol and magnetite nanoparticles 

filled the cell cavities, dispersed into the wood pores and acts as a bulking agent that having ability to 

bond each other and lignin as the wood chemical compounds. Wood polymers are likely a limited 

medium for furfuryl alcohol polymerization, leading to chain elongation and the formation of furfuryl 

alcohol resin within the cell wall [85]. Figure 3a shows the appearance of magnetite bulk synthesized 

by the co-precipitation method under SEM imaging. Nanoparticles tend to have a larger size than 

others due to agglomeration. Wood cavities of the untreated wood sample (Figure 3b) were visibly not 

covered by chemicals due to their reduced physical properties among the others. In furfurylated   

wood (Figure 3c), the cavities were covered by furfuryl alcohol polymer. These samples were not 

provided for the existence of magnetite nanoparticles and furfurylated-magnetite wood (Figures 3d–f) 
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showed penetration in the cell wall represented with a green color. The variations of concentration also 

affected the amount of element Fe which was increased with the addition of magnetite nanoparticles 

in furfurylated-magnetite wood, as shown in Figure 4. EDX analysis was carried out to determine the 

accumulation deposited in wood pores according to the SEM imaging results. In addition, accurate 

data was produced on the determination of elements in tissues, cells, or other samples in correlation 

with SEM imaging [86]. Elemental analysis with inductively coupled plasma mass spectrometry (ICP-MS) 

was not performed due to its destructive nature [87,88]. Based on the study of Bartz et al. [88], the 

results obtained from SEM-EDX could be compared with the qualitative analysis with ICP-MS. 

 

Figure 3. SEM imaging results of (a) magnetite bulk, (b) untreated wood, (c) furfurylated 

wood, (d) furfurylated-magnetite 7.5% wood, (e) furfurylated-magnetite 10% wood and (f) 

furfurylated-magnetite 12.5% wood. 
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Figure 4. EDX results of (a) untreated wood, (b) furfurylated wood, (c) furfurylated-

magnetite 7.5% wood, (d) furfurylated-magnetite 10% wood and (e) furfurylated-

magnetite 12.5% wood. 

The amount of Fe elements in magnetic sengon wood was known to be higher with the increasing 

concentration. Magnetite nanoparticles were synthesized using a weak base of NH4OH resulting in a 

similar size. The addition of EDTA also encapsulated magnetite nanoparticles to prevent agglomeration 

and oxidation reactions [60]. Magnetite nanoparticles dispersed by furfuryl alcohol formed a suspension 

in small particles to increase the reactivity and penetration level. This condition caused the increasing 

weight percent gain, bulking effect and density of sengon wood after the impregnation process as 

shown in Figures 3d–f. Furfurylation also maintained the interaction of the solution and the lignin 

component of sengon wood to reduce the risk of honeycomb occurrence [89,90]. Additionally, there 

were morphology changes in wood cavities due to the pressure exerted on wood, forcing magnetite 

nanoparticles to penetrate deeper and causing the breakdown of the cell walls. The quantity of Ferrum 

element that was deposited in the cell wall is written in Table 2.  

Table 2. The amount of Fe elements contained magnetic sengon wood in several concentrations. 

Samples Fe contain (wt.%) 

Untreated 0 

Furfurylated wood 0 

FM 7.5% 28.75 

FM 10% 49.47 

FM 12.5% 60.23 
 

 

FM: Furfurylated-magnetite wood. 

Changes in the chemical composition of modified sengon wood using furfuryl alcohol as a 

dispersant were analyzed by the FTIR spectrum as shown in Figure 5. The absorption bands of the O–H 
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functional groups were detected at wave numbers of 3380–3387 cm−1, following the results of the prior 

study [91,92]. The existence of the O–H groups was related to characteristics of water molecules in 

the liquid phase which interacted with sengon wood polymer. The intensity decreased with the addition 

of magnetite nanoparticles concentration, associated with the lowering water uptake in sengon wood. 

There was an absorption band in a wave number of 2916 cm−1 in the untreated samples before shifting 

to a wave number of 2902 cm−1 in furfurylated and furfurylated-magnetite wood samples. This was 

identified as aliphatic C–H groups of cellulose and hemicellulose according to the report of preceding 

studies [93–95]. In addition, a peak at wave number 1738 cm−1 in untreated wood was identified as the 

presence of C=O groups originating from the breaking of the ester bonds in hemicellulose and lignin 

chains [46]. Furfuryl alcohol addition also reduced the intensity of C=O groups in treated wood samples. 

 

Figure 5. FTIR spectrum of sengon wood (a) untreated, (b) furfurylated wood, (c) 

furfurylated-magnetite 7.5%, (d) furfurylated-magnetite 10% and (e) furfurylated-

magnetite 12.5%. 

The increasing intensity of the C=C functional group at the wave number 1628 cm−1 showed the 

effect of furfuryl alcohol addition to the vibration of the aromatic furan ring [96]. Furthermore, the 

polymerized furfuryl alcohol showed 2,5-substituted furan ring vibrate [27,97]. The next peak was 

found at wave numbers 1039–1084 cm−1 confirmed as the presence of the C–O functional groups [80]. 

The successful dispersion of magnetite nanoparticles into the wood cavity was shown by the strong 

vibration of the Fe–O groups at wave numbers 585 and 590 cm−1. According to a previous study [98], 

the strong and weak Fe–O peaks of commercial magnetite nanoparticles were detected at wave 

numbers 580 and 436 cm−1. The impregnation treatment with furfurylation destroyed the wood cell 

wall by breaking the side chains in lignin as wood adhesive in the cell wall [42]. Lou et al. [99] 

explained that lignin content affected the absorption efficiency of magnetite nanoparticles and     

the Fe–O vibration synthesized by the co-precipitation method appeared at 579–635 cm−1 [100]. 

Chemical analysis using Raman spectroscopy was not performed in this study. Even though both use 
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wave vibration to detect the chemical composition of the materials, Raman spectroscopy can detect 

chemical compounds, whereas FTIR only detects the functional groups in the materials [101]. By 

observing the wood cell walls, using FTIR is all that is needed to identify magnetite nanoparticles 

presence in the wood cell walls. Prihatini et al. [38] also prove the presence of magnetite nanoparticles 

in the wood cell wall by attracting wood with permanent magnets and resulting in a positive reaction 

although it used a low concentration of magnetite nanoparticles. Thus, the presence of magnetite 

nanoparticles in this paper is believed to be embedded in cell walls and wood cavities. 

There was a decrease in intensity at the identified peak due to the successfulness of the polymerization 

process and the bulking effect on sengon wood. The polymerization reaction caused the rearrangement 

of the crystalline structure of cellulose because of the opening of aromatic rings and the formation of 

hydrogen bonds. There were peaks of 2θ = 35.23 (I311), 44.84 (I400), 56.27 (I511) and 62.33° (I440) 

associated with the presence of magnetite nanoparticles in furfurylated-magnetite wood (Figure 6a). 

These peaks were confirmed to be magnetite peaks as shown in the powder data file (PDF) card in 

Figure 6b. These peaks were also related to an increase in the weight percent gain and bulking effect 

of magnetic sengon wood used as a dispersant to distribute magnetite nanoparticles [102]. Conversely, 

the crystal peaks at 2θ = 15.45 (I020) and 22.92° (I012) were identified by the results of previous    

study [27,103] as characteristics of cellulose in sengon wood, approaching the peak of cellulose shown 

in Figure 6c. For further information, the diffractograms of sengon wood with PDF card of magnetite 

nanoparticles and cellulose are shown below. 

 

Figure 6. The diffractogram of (a) sengon wood in several concentrations, (b) PDF card 

of magnetite nanoparticles and (c) PDF card of cellulose. 

The degree of crystallinity is the parameter affecting the physical properties and strength of wood, 

which was influenced by the size of the crystals’ formation during synthesis. The composition of wood 

polymers, such as cellulose, hemicellulose and lignin, also contributed to determining the crystallinity. 

The amorphous area of hemicellulose and lignin caused the widening of the crystallite peak [104]. 

Fadli et al. [105] found the increasing temperature and stirring rate when the synthesis of magnetite 

nanoparticles also affected the crystallinity of magnetite nanoparticles. The higher crystalline phase 

tends to enhance the physical properties and strength of a material. Meanwhile, the acid treatment leads 

to a decrease in crystallinity to degrade wood cellulose [106,107]. The diffractogram shown in Figure 6a 

was used to determine the crystal size in magnetic sengon wood. According to [98], the measurement 

of crystalline diameter was carried out through the Scherrer equation, as written in the following 

formula (Eq 10): 
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𝐷 =
𝐾𝜆

𝛽 cos 𝜃
               (10) 

The formula above is the relationship between the broadening of the diffraction peak (β), defined as 

the full width of the peak at half maximum (FWHM) and the crystal size (D). The wavelength of    

X-rays (0.15418 nm) is symbolized by λ, while K is the Scherrer constant (0.89) and θ is the Bragg 

diffraction angle [27]. The degree of crystallinity and crystalline diameter of magnetite nanoparticles 

in sengon wood is presented in Table 3. 

Table 3. The degree of crystallinity and magnetite crystalline diameter of sengon wood in 

several concentrations. 

Samples Degree of crystallinity (%) Crystalline size (nm) 

Untreated 66.55 - 

Furfurylated wood 62.21 - 

FM 7.5% 50.35 24 

FM 10% 44.71 24 

FM 12.5% 30.39 37 

FM: furfurylated-magnetite wood. 

Based on Table 3, untreated and furfuryl alcohol-treated wood have higher crystallinity. This was 

because the measurement of the degree was carried out on cellulose. Therefore, wood without 

treatment was the standard value for magnetic sengon and furfurylated wood. The crystal size value is 

an approximation of the size of magnetite crystals deposited in wood after the impregnation process. 

Untreated and furfurylated wood did not contain nanoparticles, hence the crystal size was written as 

zero and wood crystallinity was inversely proportional to the concentration. This was caused by the 

addition of furfuryl alcohol, which had amorphous characteristics of reducing the size of the deposited 

particles. Previously, crystalline sizes larger than 50 nm would lose their magnetic properties due to 

the influence of gravitational forces [108]. The size of magnetite nanoparticles crystalline from this 

study was larger than the previous result [28] which was also synthesized by the co-precipitation 

method using the strong base NaOH precursor. Meanwhile, NH4OH was known to make smaller 

particles of magnetite as compared to NaOH [109]. According to Fadia et al. [110], the crystal size was 

directly proportional to magnetite nanoparticles concentration. Magnetite nanoparticles are subjected 

to oxidation reactions as explained by the following chemical reaction equation (Eq 11) [111]: 

4Fe3O4 + O2 → 6γ-Fe2O3 → 6α-Fe2O3      (11) 

Based on the data of magnetite diffractogram (JCPDS No. 04-0755) [112] compared to the 

maghemite (α-Fe2O3) (JCPDS No. 39-1380), the diffractogram of magnetic wood does not have a 

maghemite phase peak. Various efforts have been made to avoid the oxidation process, specifically in 

nanoparticles synthesis process. The addition of EDTA was carried out to increase the stabilization of 

magnetite nanoparticles and reduce the level of susceptibility to oxidation reactions. This condition 

occurred because the interaction with oxygen was reduced due to the functionalization of EDTA [60]. 

In addition, the impregnation process was conducted through vacuum technology by removing air from  
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the impregnation tube [113] and the oxygen concentration became lower decreasing the possibility of 

an oxidation reaction. 

Magnetic characterization test resulted in a hysteresis loop of sengon wood at various concentrations 

as shown in Figure 7. The results showed that 12.5% furfurylated-magnetite had an elongated and 

narrow hysteresis loop compared to other samples with short and widened loops. According to Tang 

and Fu [114], this loop showed that magnetic sengon wood had superparamagnetic properties. 

 

Figure 7. The hysteresis loop of magnetic sengon wood in several concentrations. 

The untreated and furfurylated wood samples were not tested in this section. This was because 

the instrument was unable to read magnetic parameters generated. In addition, properties were affected 

by the changes in temperature and the portion of the non-magnetic materials [115,116]. Magnetite 

phase must be maintained due to its highest saturation magnetization (Ms), hematite (γ-Fe2O3) and the 

maghemite (α-Fe2O3) values, namely 90–100, 0.3 and 60–80 emu/g, respectively [117]. Furthermore, 

magnetic properties of wood was decreased through the use of magnetite. The values of the saturation 

magnetization, retentivity and coercivity of magnetic sengon wood have also been measured as shown 

in Table 4. 

Table 4. The saturation magnetization, retentivity and coercivity of magnetic sengon wood. 

Samples Ms (emu/g) Mr (emu/g) Hc (Oe) 

FM 7.5% 3.37 0.27 4.79  10−4 

FM 10% 4.28 0.38 2.56  10−4 

FM 12.5% 13.45 0.42 1.56  10−4 

FM: furfurylated-magnetite wood; Ms: saturation magnetization; Mr: retentivity and Hc: coercivity. 

The saturation magnetization value with the addition of magnetite nanoparticles concentration 

and the highest saturation was obtained in furfurylated-magnetite 12.5% wood. According to previous 
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studies [118], the 35 nm magnetite nanoparticles were successfully synthesized with ionic solutions at 

room temperature and produced a saturation magnetization value of up to 25 emu/g. The values 

obtained in this study were lower due to the presence of wood as a non-magnetic substrate, which 

resulted in a decrease. Likewise, the retentivity value was in line with the increase in saturation 

magnetization. This value was reported to be directly proportional to the resistance of magnetic 

properties of the modified wood [119]. Conversely, the coercivity values presented in Table 4 

possessed the same accuracy at 10−4 and this continued to decrease with the addition of higher 

concentration. Characteristics were the factors that caused magnetic sengon wood to have 

superparamagnetic properties [120]. The coercivity value generated from weak base precursor NH4OH 

was 78 emu/g [50]. In this context, furfurylated-magnetite 12.5% wood was the easiest wood to 

magnetize by an external magnetic field and the most difficult to remove magnetic properties compared 

to others [121]. According to Inoue and Kong [118], magnetic materials are classified into soft and 

hard. Soft magnetic materials are characterized by coercivity values ranging from 10−1–10−2 A/m and 

high permeability, while hard magnetic materials possess high retentivity and coercivity values 

between 103–105 A/m. Therefore, furfurylated-magnetite 12.5% wood belonged to the category of 

soft magnetic material.  

This study also verified the correlation of magnetite nanoparticles concentration and weight percent 

gain with the saturation magnetization shown in Figure 8. The black line in the graph signifies that an 

increase in concentration has a favorable impact on saturation magnetization. Similarly, the blue line 

shows that an increase in weight percent gain has a positive effect. The higher concentration of 

magnetite nanoparticles and weight percent gain value require a small external magnetic field applied 

to wood [122]. Kirupakar et al. [123] explained that the higher magnetization caused the increase of 

induced current due to the good distribution of magnetite nanoparticles in wood interior. Saturation 

magnetization value was also influenced by the particles and crystallite size of the materials. Therefore, 

many crystals make up this material due to larger ratio, resulting in a wide magnetic domain [114]. 

 

Figure 8. The correlation of the saturation magnetization with a concentration of magnetite 

nanoparticles and weight percent gain of magnetic sengon wood. 
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Several studies have mentioned the use of soft magnetic materials, which possess a high 

frequency of electromagnetic and lightweight features [124]. Wood with soft magnetic characteristics 

possessed great prospects for application as core materials in power inductors and transformers, 

sensors, active fillers, electromagnetic noise suppressors and other devices. This was because of the 

excellent initial permeability, flux density, Curie temperature and low power loss [125–127]. In 

addition, magnetic wood was also used for medical instruments, building and furniture materials, 

wastewater purification, as well as serving as an electromagnetic shielding material [128]. 

4. Conclusions 

In conclusion, magnetite nanoparticles synthesized using a weak base of NH4OH were reported 

to possess a positive effect on the physical properties of impregnated sengon wood. Furthermore, the 

use of furfuryl alcohol as a dispersant was more effective in increasing magnetite nanoparticles’ 

penetration. The results of wood microstructure images proved the presence of magnetite nanoparticles 

in the cell wall after the impregnation process. This was supported by chemical analysis, stating the 

presence of metallic Fe with an increased percentage due to the addition of magnetite nanoparticles 

concentration. The Fe–O group was also found in the polymers, strengthening the evidence for the 

presence of nanoparticles binding to the cell wall components. In addition, the degree of crystallinity 

decreased with increasing solution concentration. This also increase affected the strength of sengon 

wood, resulting in superparamagnetic properties and classified as a soft magnetic material. Therefore, 

the best treatment for magnetic sengon wood fabrication was furfurylated-magnetite 12.5% wood. 
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