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Abstract: We use multi-objective optimization and numerical simulations to optimize the shear 

strength of a reinforced concrete T-beam. The optimization process involves four factors that are 

related to the Young’s modulus of elasticity and density of both the steel reinforcement and the 

concrete. The factors, which have a limited range, are utilized in the construction of the regression 

equation that forecasts the reinforced concrete T-beam’s ductility and elastic shear strain. Using 

ABAQUS finite element programs, 27 models were prepared for numerical analysis and simulation 

using the well-known sampling technique Box-Behnken design. To find the coefficients that 

correspond to the regression equations, MATLAB codes are utilized to solve complex matrices using 

the least squares method. Checking the regression equation's reliability to compare the outcomes of 

the numerical simulations and the regression equations, a reliability check for the regression equation 

has been implemented. Due to the simultaneous R2 values of 1 and 1 for ductility and elastic shear 

strain, the reliability check was 100%. The optimization of the reinforced concrete T-beam’s shear 

strength capacity can be easily determined, according to multi-objective optimization results, and the 

design of this structural system is highly controllable. 
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1. Introduction 

Frequently, the reinforced concrete T-beams frequently appear in industrial construction, such 

as floors of building, walls retaining and decks of bridges. More generally, all projects concerning 

construction of reinforced concrete [1]. Multiple methods can be used to predict the shear strength of 
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reinforced concrete (RC) beams. Because of the complex nature and the numbers of the parameters 

like aggregate interlock and concrete in compression regions, the precision remains limited. Also, 

there are some other causes affecting the precision, the axial load of the beam and the cross section [2]. 

Many methods supporting the cracking particle method were implemented, which are an alternative 

to the extended finite element method used to study and analyze the crack propagation in       

materials [3–5]. To design any structure, it considers that the design strength and shear behavior of 

members are among the most central concern. Besides that, there are different types of failure, and 

among them shear failure is considered the most critical because of the fragility of concrete systems. 

It is difficult to accurately predict shear failure. Over the years, many experiments and interpretations 

have been done, but shear failure is poorly understood. In spite of that, the design continues, 

depending on the formula derived from experimental data [6]. Abd [7] applied the artificial neural 

network (ANN) method to predict the shear strength of T-beams. He created the model of ANN to 

precede a parametric analysis for studying the impact of the many parameters on the shear strength 

of T-beams. He discovered an excellent agreement between the theoretical results and the experimental 

data. Also, he realized that the ANN model has better accuracy compared to the equations in the 

guidelines. Shahbazian et al. [8] employed models of ANN to assess the feasibility of modeling the 

shear strength of reinforced concrete beams coupled with the tabu search training (TST) algorithm. 

They implemented 248 experimental results from the literature to predict the shear strength of the 

reinforced concrete beam in addition to multiple regression equations. They compared the shear 

design equations of ACI-318-2019 with Tabu Search Trained ANN model. They discovered the 

efficiency of Tabu Search Trained ANNs compared to the other suggested models in literature and 

the design code ACI-318-2019. 

Based on the theory of linear elastic fracture mechanics (LEFM), a fairly high coefficient is 

applied to the stress in the vicinity of the crack tip. This coefficient is called the stress intensity 

factor. The LEFM converts stress to a unique form of distribution. The stress intensity factor depends 

on the material properties, on the size of the crack, on the load and on the geometry of the structure. 

This factor presents a relationship between the material and the reaction of the structure. Numerous 

researchers have aimed to calculate stress intensity factor in concrete structure using experimental, 

analytical and numerical methods [9]. The first mode based on the fracture mechanics theory in 

concrete material was presented by Hillerborg. It was demonstrated that there is a fracture zone 

ahead of the real crack that has an ability to transfer stress. This fracture zone is known as fracture 

process zone (FPZ). The modeling of the FPZ in the beam-column joint is an important topic to 

predict crack propagation [10]. The mechanism of shear failure in the support zone of RC elements is 

determined by many factors: Sliding and rotation of both parts of the element crossed by the diagonal 

shear crack accompanied by the aggregate interlock action in concrete, dowel action of the 

longitudinal reinforcement, transfer of the shear force by the un-cracked concrete in the compression 

zone and direct strut action for point load close to the support. The percentage of each component in 

the shear capacity of steel RC beams without shear reinforcement is determined as: 33%–50% (effect 

of aggregate interlock), 20%–40% (compressive concrete zone) and 15%–25% (dowel action    

effect) [11,12]. Cracking, in particular, is caused by different factors, conditioning both the stiffness 

and durability of structures. Cracking is normal in reinforced concrete structures subject to bending, 

shear, torsion or tension resulting from either direct loading or restraint or imposed deformations. 

Cracks may also arise from other causes such as plastic shrinkage or expansive chemical reactions 

within the hardened concrete [13]. 
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In this paper, the multi-criteria optimization method is dedicated to control the shear crack of a 

reinforced concrete T-beam. Four factors (concrete density, concrete modulus of elasticity, steel 

density and steel modulus of elasticity) are considered for the optimization process which are the 

most important and vital involving factors for any type of reinforced concrete structures that 

withstand the dynamic loading applied for crack and failure purposes. The Box-Behnken design 

sampling method is used to create 27 numerical models in ABAQUS finite element program. 

Regression equations are constructed for the prediction of the shear strength of the structural system. 

It is worth mentioning that this design sampling method is so effective and easy to use for most 

prediction cases and the literature provides strong evidences that this method results in great 

resemblances of the actual behavior of the structural system, especially for numerical analysis. 

2. Materials and methods 

The regression equation is constructed by dedicating four factors, which are concrete density, 

Young’s modulus of elasticity of concrete, steel density and Young’s modulus of elasticity of       

steel (see Table 1). The regression equations for the elastic shear strain and the ductility in the 

reinforced concrete T-beam are represented by the following Eq 1: 

y = f(x)α + ϵ  (1) 

where x is a vector of x from i = 1, ..., k with a function f(x) of k elements. α is a regression 

coefficients vector, and ϵ is with zero mean which is random error. The regression equation needs to 

calculate the regression coefficients which are represented by α and can be calculated as shown in Eq 2: 

α = (XX)−1X  (2) 

where Xˊ is the transpose of X, and (XX)−1 is the inverse of XX [14]. 

The function f(x) for both the elastic shear strain and the ductility in the reinforced concrete     

T-beam consists of multiple terms such as linear, quadratic and interaction terms for the four 

considered factors. 

2.1. Multi-criteria optimization method 

The multi-criteria optimization method is deployed to optimize the involved four factors, which 

are bounded by certain range data as mentioned in Table 1. The regression equations are having 

bounded or limit values where the equations of the elastic shear strain and the ductility in the 

reinforced concrete T-beam are further processed to determine the minimum and maximum values of 

both outputs. The optimized values of each factor are then checked and it is a condition to be in the 

imposed range limits with a condition of being less than the minimum maximum values for each 

regression equation to insure the optimization process for the design of shear strength of the 

structural system. For this purpose, it is difficult to optimize more than one objective, especially in 

the conflicting case. The treatment is to find a compromise solution that achieves all the objectives 

simultaneously. Different methods have been proposed for solving multi-objective optimization 

problems by converting these objectives to a single one and keeping the same constraints available.  

Among the methods, we introduce the harmonic mean for this purpose (see section 3.5.) 
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2.2. Finite element method 

The finite element model of the reinforced concrete T-beam has a length of 2.8 m. The flange   

is 0.3 m width and 0.06 m thickness. The web is 0.08 m width and 0.22 m height. The flange is 

reinforced with 4 longitudinal steel bars with 0.012 m diameter and 19 transverse steel bars of 0.012 m 

diameter with regular space between each two steel bars. The web has two longitudinal steel bars 

with 0.012 m diameter positioned at the bottom of the web. The stirrups are provided in a regular 

distribution with 19 numbers of 0.012 m diameters also. The elastic model, which is Young’s 

modulus and Poisson’s ration data, has been considered for the steel. Also, plastic model data, which 

consists of yield stress and plastic strain, have been assigned for the steel. Furthermore, elastic 

models, which are Young’s modulus and Poisson’s ration data, and concrete damaged plasticity 

model data, which are the plasticity, compressive behavior and tensile behavior, have been added for 

the concrete. 

The T-beam is loaded with a concentrated force 70000 N at a distance of 0.65 m from the center 

of the left support so that to analyze it for shear capacity (see Figure 1). Amplitude is applied for the 

concentrated load regularly with a loading rate of 260 N/s for 100 s. The load value has been selected 

in order to stay in the elastic stage. The elastic stage lets to prepare the end of each model simulation 

for the purpose of comparison for 27 models all. The boundary conditions of the T-beam model are 

in such a way to provide freedom in longitudinal and transverse directions at both supports. The 

supports are constrained only in the vertical direction. The T-beam model is meshed using 828 linear 

hexahedral elements of type C3D8R for the concrete and 1280 linear line elements of type T3D2 for 

the steel bars both for the longitudinal steel bars and the stirrups. 

 

Figure 1. Finite element model (reinforced concrete T-beam). 
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2.3. Material range data 

The regression equations are created supporting the four factors using the Box-Behnken design 

sampling method by dedicating 27 models of the reinforced concrete T-beam in ABAQUS finite 

element program. The models are numerically simulated, and both the elastic shear strain and the 

deflection data are collected after running the models. Table 1 shows the adopted factors and their 

range values. 

Table 1. Factors and range data. 

Factor Symbol Factor Range Data 

X1 Concrete density (ρc) kg/m3 2200–2600 

X2 Concrete Young’s modulus (Ec) GPa 25–35 

X3 Steel density (ρs) kg/m3 7800–8000 

X4 Steel Young’s modulus (Es) GPa 190–230 

2.4. Box-Behnken sampling method 

Box-Behnken designs are used to generate higher order response surfaces using fewer required 

runs than a normal factorial technique. This and the central composite techniques essentially suppress 

selected runs in an attempt to maintain the higher order surface definition. The Box-Behnken design 

uses the twelve middle edge nodes and three centre nodes to fit a 2nd order equation. The central 

composite plus Box-Behnken becomes a full factorial with three extra samples taken at the centre. 

Box-Behnken designs place points on the midpoints of the edges of the cubical design region, as well 

as points at the centre. The Box-Behnken designs of experiments provide modeling of the response 

surface. These designs are not based on full or fractional factorial designs. The design points are 

positioned in the middle of the subareas of the dimension k-1. In the case of three factors, for 

instance, the points are located in the middle of the edges of the experimental domain (see Figure 2). 

 

Figure 2. Box-Behnken sampling method (three factors) (Reproduced from Ref. [15] 

with permission). 
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3. Results and discussion 

3.1. Elastic shear strain 

The results of the numerical simulation of the 27 models in ABAQUS for the maximum elastic 

shear strain (EE23) in ABAQUS have been collected. The maximum shear strain in each model has 

been recorded as a critical response case for the design optimization of the reinforced concrete        

T-beam for shear strength capacity. Different results have been realized due to difference in the 

model data arrangement up-to Box-Behnken design method. The maximum elastic shear strain 

between the 27 models was in the model 21 that was 0.0003274499031 and the minimum response 

was 0.0002360623912 seen in model 24 (see Figure 3). The nature of the responses is due to certain 

patterns of factor arrangement in each model, which produces random responses without any regular 

relation between them. The important point is to identify the maximum elastic shear strain in each 

model so that to identify the maximum of this response between all models because it is the base for 

shear strength capacity for the design of the T-beam. The response of each model displays the role of 

each design factor and its effect on the overall elastic shear strain response in structural system, 

which is a primary indication for the design optimization process of the shear strength capacity. 

 

Figure 3. Maximum elastic shear strain (EE23)-27 models. 

The position and magnitude of the elastic shear strain in each numerical simulation for the 

reinforced concrete T-beam can be seen very clearly through the color and the legend data available 

in each model. The position of the maximum of maximum elastic shear strain that was mentioned 

above was in model 21 and was 0.0003274499031. This can be seen in the web of the T-beam in red 

color in the left side which is occurring in the right place near the left support and propagating from 

the place near the support towards the web and then toward the flange with a slope (see Figure 4). In 

the same way, the position of minimum of the maximum elastic shear strain that occurred in model 24 

with a magnitude of 0.0002360623912 is in the same place with the same pattern and propagation 

but with a different value. These two outputs are used for the construction of the regression equation, 

which is the base of the prediction of the shear behavior of the T-beam (see Figure 5). 
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Figure 4. Maximum elastic shear strain (EE23)-model 21. 

 

Figure 5. Maximum elastic shear strain (EE23)-model 24. 

The elastic shear strain is safe until the propagation of cracks in the concrete. When the cracks 

appear, shear strain is no longer elastic but plastic and it is the first step for the failure stage if the 

loading is increased. It is worth mentioning that the stirrups are positioned in this location of the      

T-beam to withstand the shear stresses to prevent or delay the occurrence of the shear cracks. 

3.2. Ductility 

The ductility results for all 27 models show that the maximum of maximum deflection (U2) 

occurred in model 21 with a value of 0.002570510609 m. The minimum of maximum deflection 

occurred in model 24, which was 0.001898202347 m. It is obvious that the maximum and minimum 
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values of deflection are occurring in the same models for the maximum and minimum values of 

elastic shear strain. The deflection of the T-beam is an index of the ductility and consequently it 

represents the shear strength because the generated energy from the applied dynamic load would be 

dissipated by the deflection response and this behavior is increasing the shear strength. There is a 

random relation between the maximum deflection responses of the 27 models like the maximum 

elastic shear strain responses as described above. The irregular distribution of the model data 

between the 27 models is the origin of this pattern of behavior that is clearly seen in Figure 6. 

 

Figure 6. Maximum deflection (U2)-27 models. 

The positions of the both maximum and minimum of maximum deflections that occurred in 

model 21, which was 0.002570510609 m, and model 24, which was 0.001898202347 m, simultaneously 

are clear and exist at the middle of the reinforced concrete T-beam close to the left support which is 

in blue. These two responses of the reinforced concrete T-beam are dedicated for further analysis to 

construct the regression equation for the deflection of the beam, which is an indication of the 

behavior under dynamic loading for ductility design control (see Figures 7 and 8). 

3.3. Regression equations 

Both regression equations’ results were obtained using MATLAB codes and the Box-Behnken 

design sampling method. The regression coefficients have been found by least square method. The 

shear strain is denoted by EE23 and the ductility is denoted by U2 as they have the same symbol in 

ABAQUS. These equations are predicting the shear strength and the ductility of the reinforced 

concrete T-beam loaded by a dynamic concentrated load as mentioned in the section of the finite 

element model. The regression equations should be checked for the reliability process to calculate 

the coefficient of determination for both regression equations, which is denoted by R2 (see 

supplementary file). 
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Figure 7. Maximum deflection (U2)-model 21. 

 

Figure 8. Maximum deflection (U2)-model 24. 

3.4. Determination the coefficient 

It is necessary to build reliable regression equations, and this depends on determining the 

coefficient of determination R2
. A comparison between the results of the numerical analysis and the 

regression equation will display the value of the coefficient of determination. The determination of 

the coefficient for the elastic shear strain was R2 = 1 (see Figure 9). This is an indication that the 

regression equation for the elastic shear strain is a great representation in predicting the structural 

system response with 100% efficiency and it is totally considered a reliable regression equation. 
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Figure 9. Coefficient of determination-Elastic shear strain. 

 

Figure 10. Coefficient of determination-Maximum deflection. 

The determination of coefficient for the ductility was also R2 = 1 (see Figure 10). This is 

evidence that this regression equation is representing the ductility of the reinforced concrete T-beam 

under the loading up-to efficiency of 100%, which is also considered a reliable regression equation. 

3.5. Multi-criteria optimization problems 

In [16], a method is suggested to solve a multi-criteria programming problem (MOPP). He 

considered that the individual optimal value was greater than zero. Later, many techniques were 

introduced to solve these types of problems [17–20]. Among these techniques, we used the Harmonic 
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mean for values of function to transform the problem into a single one [21]. Our objective function is 

quadratic with a special type of constraint. Mathematically, usually this model is optimizing 

objectives that are simultaneously subject to some constraints. Thus, the multi-criteria quadratic 

programming problem (MOQPP) can be defined as in Eq 3: 

                                              Max. fi = ci
TX + 0.5XTGi X, i =1, 2, ..., r 

Min. fi = ci
T X + 0.5XTGi X, i = r +1, 2, ..., s      (3) 

lbi ≤ xi ≤ ubi, 𝑋 ≥ 0 

where X is with n-dimensional vector of decision variables, c is n-dimensional vector of constants, r 

is the number of objective functions to be maximized, s the number of criteria to maximized plus 

minimized and (s-r) is the number of criteria that is to be minimized. G is (n x n) a matrix of 

coefficients with G as a symmetric matrix. lb and ub are lower bound and upper bound of the variables, 

respectively. Harmonic means that H of a set of data is defined as the reciprocal of the arithmetic 

average of the reciprocal of the given values as in Eq 4. If (x1, x2, …, xn) are n observations, then: 

𝐻 =
𝑛

∑
1

𝑥𝑖

𝑛
𝑖=1   

          (4) 

To combine the objective functions, we determine the common set of the variables from the 

following combined objective function. Let Max. fi = mi, i = 1, ..., r and Min. fi = mi, i = 1 + 1, ..., s. 

To formulate the problem to single objective and by using harmonic mean we have Eq 5: 

𝑀𝑎𝑥. 𝑔 = ∑
𝑀𝑎𝑥.𝑓𝑘

𝐻

𝑟
𝑘=1 − ∑

𝑀𝑖𝑛.𝑓𝑘

𝐻1

𝑠
𝑘=𝑟+1        (5) 

where H and H1 are the harmonic mean for maximized and minimized objectives, respectively. Max. g 

is the combined criteria as shown in Eq 6: 

𝑀𝑎𝑥. 𝑔 = ∑
𝑀𝑎𝑥.𝑓𝑘

𝐻

𝑟
𝑘=1              (6) 

The algorithm is constructed as follows: Solving the objective function Max. fk by the simplex 

method, then check the feasibility. Go to the next step; otherwise, use dual simplex method to 

remove infeasibility. mi is the optimum value for Max. fi, H the harmonic mean for Max. fi. Optimize 

the Eq 5 under the same constraints. Substitute the optimal value to the individual objective to get 

optimal solution for each one. Finally, stop. 

Max. F1 = 1.737983739999329  109, Max. F2 = 0.004465897119022. So, the harmonic mean  

is 0.0089. Now, divide the coefficients of each objective functions by 0.0089, and then sum them. 

The optimal point of Max. g is x* = (2600, 3.500000000000000  10, 800, 2.099999999886206  1011), 

which is in the range of the feasible solution. To get an optimal solution for each objective individually, 

substitute x* and we get f1 = 2.326594836907840  10−4 and f2 = 0.001424567916517. 

4. Conclusions 

The only flaw in the research study’s successful and trustworthy outcomes is that they are 

dependent on ABAQUS program-supported numerical simulation results. In order to confirm the 
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optimization results, it is recommended to expand the research study to include lab specimens of the 

T-beam as a check for the numerical simulations and the analysis of the Box-Behnken design 

sampling method. Also, to confirm the findings and determine which approach is most successful, 

additional sampling techniques, such as LP-TAU, MONTE CARLO and Latin Hypercube sampling 

techniques, can be used for the same research project. Based on the outcomes: 

1. The method predicts the reinforced concrete T-beam’s ductility and elastic shear strain 

outputs very well. Because the coefficient of determination for both outputs of the regression 

equations is 100% reliable, they show excellent representation of the structural system’s responses 

under loading. 

2. Using ABAQUS software, numerical simulations are used to identify the four factors’ roles. 

3. By creating numerous effective design solutions in a very quick and inexpensive process, the 

regression analysis process is an effective tool that can be used to predict and test the structural 

responses during the design stage and after construction. 

4. The goal is to introduce a new algorithm that uses the harmonic mean of the values of the 

objective functions to convert a multi-criteria quadratic programming problem to a single quadratic 

programming problem. The new method involves using MATLAB to code and run the process, 

yielding an acceptable feasible value and the best possible solution for the reinforced concrete T-beam’s 

shear strength capacity. 
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