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Abstract: This article describes ordering in a 2D ferromagnetic nanoparticles array by computer 

simulation. The Heisenberg model simulates the behavior of spins in nanoparticles. Nanoparticles 

interact using dipole-dipole forces. Computer simulations use the Monte Carlo method and Metropolis 

algorithm. Two possible types of ordering for the nanoparticles’ magnetic moments are detected in 

the system. The magnetic anisotropy direction for the nanoparticles determines the type of ordering. 

If the anisotropy direction is oriented perpendicular to the substrate plane, then a superantiferromagnetic 

phase with staggered magnetization is realized. If the magnetic anisotropy is oriented in the 

nanoparticle plane, the superantiferromagnetic phase has a different structure. The nanoparticle array 

is broken into chains parallel to the anisotropy orientations. In one chain of nanoparticles, magnetic 

moments are oriented in the same way. The magnetic moments of the nanoparticles are oriented 

oppositely in neighbor chains. The temperature of phase transitions is calculated based on finite 

dimensional scaling theory. Temperature depends linearly on the intensity of the dipole-dipole 

interaction for both types of superantiferromagnetic transition. 

Keywords: ferromagnetic nanoparticles array; antiferromagnetic; phase transition; dipole-dipole 

interaction; computer simulation 

 

1. Introduction 

2D arrays of ferromagnetic nanoparticles are promising materials with controllable magnetic 

properties. Nanoparticle films are used in spintronic devices. Experimentally, 2D nanoparticle arrays 

are made by deposition from a liquid medium onto a structured substrate [1,2] or lithographic division 
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of a thin film into isolated regions [3,4]. Both methods control particle sizes and their relative 

positions. Changing the structure of the substrate determines the shape and size of the particles. The 

lithographic method creates the most ordered arrays of nanoparticles. The same size of the 

nanoparticles provides their same magnetic moments below the blocking temperature [5]. 

The magnetic properties of the individual nanoparticles differ from the bulk materials. 

Nanoparticles are single-domain due to their small size. There is no phase transition in the individual 

nanoparticle. There is a blocking temperature below which the nanoparticles have a non-zero 

magnetic moment. Collective phenomena in nanoparticle arrays lead to new magnetic properties. 

The system enters a superparamagnetic state at a temperature below the blocking temperature in the 

absence of interaction between the nanoparticles. The magnetic moments of the nanoparticles are 

oriented differently in this phase. The interaction between the magnetic moments of the nanoparticles 

leads to superordered phases in the system. The interaction between the nanoparticles may be 

exchangeable or dipole-dipole. The exchange interaction dominates if the distance between nanoparticles 

is small. It is energetically advantageous for the magnetic moments of the nanoparticles to have the 

same direction in this case. Exchange interaction leads to the implementation of the 

superferromagnetic phase [5–8]. Monte Carlo computer modeling within the Ising model showed 

that the phase transition temperature in such systems depends on the intensity of interaction between 

nanoparticles by logarithmic law [9]. 

Dipole-dipole forces dominate if the distance between particles is large enough for an exchange 

interaction. The distance should not be very large, since the dipole-dipole forces decrease with the 

distance according to the power law. Dipolar interaction can lead to different types of ordering. A 

weak dipole-dipole interaction can create a superspin glass state. This collective ordering is 

analogous to atomic spin glasses [10]. Increased dipolar interaction can result in superferromagnetic 

phase [11]. Confirmation of this condition was obtained experimentally on granular films [12–15].  

The interaction between nanoparticles depends on the distance between them. The lattice period of 

the nanoparticles can be controlled in metamaterials, which are non-magnetic matrices with 

periodically placed nanoparticles. These states are described within the mean field theory [16]. 

Computer modeling of a nanoparticle array with a dipole-dipole interaction within the Ising model 

demonstrated that superantiferromagnetic ordering of particle superspins can be realized in the 

system [17]. The phase transition temperature also depends on the interaction intensity by 

logarithmic law. 

The Ising model describes particles with a light magnetizing axis. The Heisenberg model with 

the anisotropy axis is more adequate for real magnetic nanoparticles. The complex interaction 

between single-particle anisotropy and interparticle interaction should be taken into account when 

describing the magnetic behavior of the nanoparticle array. The effects of single-particle anisotropy 

and interparticle interaction have been experimentally investigated in various papers [18–23]. The 

dipolar interaction energy can have both positive and negative values depending on the direction of 

the nanoparticle anisotropy axes. The sign of energy depends on the mutual orientation of the 

nanoparticle superspins. Dipole-dipole forces can orient nanoparticle magnetizations in both one and 

different directions. 

The purpose of this study is to investigate possible types of ordering of 2D arrays of 

ferromagnetic nanoparticles within the Heisenberg model with the anisotropy axis. 
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2. Model and methods 

A computer experiment investigates a 2D array of ferromagnetic nanoparticles. Nanoparticles 

are located in the nodes of the square grid. The distance between the nanoparticles equals d. 

Nanoparticles are located in the OXY plane with equation z = 0. Nanoparticles have the size a × a × a 

atoms. Periodic boundary conditions apply to the system along the OX and OY axes to eliminate the 

effects of system limitations. The geometry of the system is shown in Figure 1. 

 

Figure 1. The geometry of the system. a is the size of a single nanoparticle. d is the 

distance between neighboring nanoparticles. J0 is an exchange integral within a 

nanoparticle. Jdd is the intensity of the dipole-dipole interaction between neighboring 

nanoparticles. 

Each atom has spin 𝑆 = (𝑆𝑥, 𝑆𝑦, 𝑆𝑧), |𝑆| = 1/2. Heisenberg’s model describes such a spin 

system. The Hamiltonian of the Heisenberg model is the sum of the pair interactions for the nearest 

neighbors (Eq 1). 

                 𝐻 = ∑ 𝐽(𝑆𝑖, 𝑆𝑗) (1) 

The spins 𝑆𝑖  and 𝑆𝑗  are located in neighbor nodes. The interaction type depends on the 

location of the spins. A pair of spins in one nanoparticle interact using exchange forces. Pairs of spins 

from neighbor nanoparticles interact with dipole-dipole forces. Exchange interaction includes two 

terms (Eq 2). 

                      𝐽(𝑆𝑖, 𝑆𝑗) = −𝐽0𝑆𝑖𝑆𝑗 − 𝐴(𝑆𝑖, 𝑆𝑗) (2) 

The second term takes into account the energy of anisotropy. The exchange integral equals 𝐽0. 

Exchange forces rapidly decrease with distance. The exchange interaction between the nanoparticles 

will be small with a large distance between them. Dipole-dipole forces act between the spins of 
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neighbor particles. The dipole-dipole interaction has greater intensity than the exchange interaction 

for spins from neighbor particles. The dipole-dipole forces energy 𝐽𝑑𝑑(𝑆𝑖, 𝑆𝑗)  determines the 

interaction of spins in this case. The energy of the dipole-dipole interaction depends on the 

orientation of the spins relative to the radius vector r of their connecting (Eq 3). 

                     𝐽(𝑆𝑖, 𝑆𝑗) = 𝐽𝑑𝑑(𝑆𝑖, 𝑆𝑗) = 𝐵
(𝑆𝑖𝑆𝑗)𝑟𝑖𝑗

2 − 3(𝑆𝑖𝑟𝑖𝑗)(𝑆𝑗𝑟𝑖𝑗)

𝑟𝑖𝑗
5  (3) 

𝑟𝑖𝑗 is the radius vector between the spins 𝑆𝑖 and 𝑆𝑗. 𝐵 is the dipole forces intensity. Dipole-dipole 

forces act between the spins of neighbor nanoparticles at a distance 𝑑. The dipole interaction energy 

is written in simplified form (Eq 4). 

                  𝐽𝑑𝑑(𝑆𝑖, 𝑆𝑗) = 𝐵
(𝑆𝑖𝑆𝑗) − 3𝑆𝑖𝑑𝑆𝑗𝑑

𝑑3
 (4) 

𝑆𝑖𝑑 and 𝑆𝑗𝑑 are projections of the spins 𝑆𝑖 and 𝑆𝑗 onto the radius vectors between them. The intensity 

of dipole-dipole interaction between nanoparticles is calculated relative to the exchange interaction 

within the nanoparticle (Eq 5). 

                           𝑅 =
𝐵

𝐽0𝑑3
 (5) 

Relative values are more convenient in computer simulations. The computer experiment uses 

the formula for dipole-dipole interaction energy with relative values (Eq 6). 

                   𝐽𝑑𝑑(𝑆𝑖, 𝑆𝑗) = 𝑅𝐽0 ((𝑆𝑖𝑆𝑗) − 3𝑆𝑖𝑑𝑆𝑗𝑑) (6) 

The value 𝑅 depends on the substance of the nanoparticles and the distance between them. The 

computer experiment uses different values of 𝑅. The increase in 𝑅 corresponds to a decrease in the 

distance between the nanoparticles. 

The exchange interaction makes it advantageous to orient the spins in one direction. The 

dipole-dipole interaction can order spins in both one direction and different directions. The 

orientation and magnitude of anisotropy are important in the type of spin ordering. A computer 

experiment is performed for two cases of anisotropy orientation. The direction of anisotropy for all 

nanoparticles is the 𝑂𝑍 axis in the first case. The direction of anisotropy is perpendicular to the 

nanoparticle plane in this case. The anisotropy term in Eq 2 depends on the projection of the spins 𝑆𝑖 

onto the 𝑂𝑍 axis 𝑆𝑖
𝑧 (Eq 7). 

                  𝐴(𝑆𝑖, 𝑆𝑗) = 𝐾𝑆𝑖
𝑧𝑆𝑗

𝑧 (7) 

The anisotropy parameter 𝐾 depends on the kind of substance. The computer experiment uses a 

value 𝐾 = 0.63 𝐽0. This value is characteristic for some materials [24–26]. 

The anisotropy direction determines the preferential spin’s orientation. If the 𝑂𝑍 axis is the 

anisotropy direction, then the spin’s projection onto the 𝑂𝑍 axis dominates the rest of the directions. 

The particles’ spins are oriented substantially perpendicular to the radius vector between the 

nanoparticles (Eq 8). 
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                      𝐽𝑑𝑑(𝑆𝑖, 𝑆𝑗) = 𝑅𝐽0(𝑆𝑖𝑆𝑗) (8) 

As a result, the dipole-dipole interaction energy has a positive value for co-directed spins and a 

negative value for oppositely directed spins. It is energetically advantageous for neighbor 

nanoparticles to have oppositely directed magnetic moments. The dipole-dipole interaction results in 

a superantiferromagnetic phase in the nanoparticle array. 

Staggered magnetization of nanoparticles describes the transition to a superantiferromagnetic 

state. The nanoparticle magnetic moment 𝑚⃗⃗⃗𝑙𝑘 = (𝑚𝑙𝑘𝑥 , 𝑚𝑙𝑘𝑦, 𝑚𝑙𝑘𝑧) is equal to the average value of 

the spins of atoms in the nanoparticle with coordinates (𝑙, 𝑘) (Eq 9). 

                 𝑚⃗⃗⃗𝑙𝑘 = ( ∑ 𝑆𝑖

𝑆𝑖∈𝑚𝑙𝑘

) 𝑎3⁄   (9) 

𝑎 is the size of the nanoparticle. 

Staggered magnetization 𝑚⃗⃗⃗ is equal to difference of magnetic moments in two nanoparticle 

sublattices (Eq 10). 

                𝑚⃗⃗⃗ = ( ∑ 𝑚⃗⃗⃗𝑙𝑘

𝐿

𝑙,𝑘=1
𝑙+𝑘=𝑒𝑣𝑒𝑛

− ∑ 𝑚⃗⃗⃗𝑙𝑘

𝐿

𝑙,𝑘=1
𝑙+𝑘=𝑜𝑑𝑑

) 𝐿2⁄  (10) 

𝐿 is the number of nanoparticles along one axis. 

The anisotropy direction for particles is the 𝑂𝑋 axis in the second case. The anisotropy 

direction lies in the plane of the particles. The anisotropy term in Eq 2 is determined by the 

projection of the spins 𝑆𝑖 onto the 𝑂𝑋 axis 𝑆𝑖
𝑥 (Eq 11). 

                    𝐴(𝑆𝑖, 𝑆𝑗) = 𝐾𝑆𝑖
𝑥𝑆𝑗

𝑥 (11)  

The dipole-dipole interaction has a different sign for different particle arrangements (Figure 2). 

The dipole-dipole interaction energy 𝐽𝑑𝑑𝑥 is negative at co-directional magnetic moments for 

particles located along a straight parallel OX axis (Eq 12). 

                             𝐽𝑑𝑑𝑥(𝑆𝑖, 𝑆𝑗) = −2𝑅𝐽0(𝑆𝑖𝑆𝑗)  (12) 

The dipole-dipole interaction energy 𝐽𝑑𝑑𝑦 for particles with oppositely directed magnetic moments 

is negative if the particles are adjacent along the 𝑂𝑌 axis (Eq 13). 

                          𝐽𝑑𝑑𝑦(𝑆𝑖, 𝑆𝑗) = 𝑅𝐽0(𝑆𝑖𝑆𝑗)  (13) 

Ordering the magnetic moments of nanoparticles in one direction is energetically advantageous 

for chains of particles oriented along the 𝑂𝑋 axis. The magnetic moments of neighbor nanoparticle 

chains are oriented oppositely (Figure 3). 
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Figure 2. Dipole-dipole interaction energy at different orientation of nanoparticle 

magnetization. Arrows show the direction of magnetization of the nanoparticle. The sign 

of the dipole-dipole interaction is indicated between each pair of nanoparticles. Jddx is the 

dipole-dipole interaction energy of OX-adjacent nanoparticles. Jddy is the dipole-dipole 

interaction energy of OY-adjacent nanoparticles. 

 

Figure 3. Chains of particles ordered by dipole-dipole interaction. Arrows show the 

direction of magnetization of the nanoparticle. 

Another type of superantiferromagnetic ordering is realized in this case. The order parameter for 

such a phase 𝑚⃗⃗⃗𝑎 is equal to the magnetization difference of the sublattices. Each sublattice is a set 

of nanoparticle chains oriented along the 𝑂𝑋 axis. Nanoparticles of the first sublattice have even 

numbers along the 𝑂𝑌 axis. Nanoparticles of the second sublattice have odd numbers along the 𝑂𝑌 

axis (Eq 14). 
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                     𝑚⃗⃗⃗𝑎 = ( ∑ 𝑚⃗⃗⃗𝑙𝑘

𝑘=𝑜𝑑𝑑

− ∑ 𝑚⃗⃗⃗𝑙𝑘

𝑘=𝑒𝑣𝑒𝑛

) 𝐿2⁄  (14) 

Such a superantiferromagnetic phase is called a chain phase.  

The structure of the chain phase is similar to the structure of layered antiferromagnets. The 

dimension of the layers is one. This structure imposes a limitation on computer simulations. 

Dimensions of system 𝐿 along axes 𝑂𝑋 and 𝑂𝑌 shall be even. In this case, the superspins are 

oriented oppositely at opposite edges of the system. If the size 𝐿 is odd, then periodic boundary 

conditions result in the same orientation directions of the superspin chains at the system boundary. 

As a result, the system becomes frustrated. The stationary phase is not present in such a system. This 

is a feature of the model, not the real physical system. Proper sizing in system modeling eliminates 

problems. The even system size requirement is also imposed at the superantiferromagnetic phase. If 

the system size is odd, periodic boundary conditions result in a frustrated state of the superspin system. 

3. Computer simulation 

The Metropolis algorithm [27] simulates the states of system spins at different temperatures. 

The number of Monte Carlo steps per spin is 8 × 106. 

The modeling algorithm is modified to take into account the division of the system into 

nanoparticles. All spins are directed randomly in the initial state. At each step, the algorithm selects a 

random nanoparticle and attempts to rotate the spin of the nanoparticle alternately. The spins at the 

nanoparticle boundary turn first. After that, the algorithm moves to the center of the nanoparticle. 

This approach takes into account the single-domain nature of nanoparticle magnetization. 

Phase transitions of the second kind occur only in infinite systems. The algorithm uses periodic 

boundary conditions and finite-dimensional scaling theory to level the finite dimensions of simulated 

systems. Finite-dimensional scaling theory [27] provides a method for determining the phase 

transition temperature in a computer experiment. A computer experiment simulates systems with 

different linear sizes 𝐿 × 𝐿 . System dimensions take values from 𝐿 = 8𝑎  to 𝐿 = 16𝑎  with    

step ∆𝐿 = 2𝑎. 𝑎 is the size of a single nanoparticle. Fourth order Binder cumulants 𝑈(𝐿, 𝑇) [28] 

are calculated for each system at different temperatures (Eq 15). 

          𝑈(𝐿, 𝑇) = 1 −
〈𝑚4〉

3〈𝑚2〉2
, 𝑚2 = 𝑚𝑥

2 + 𝑚𝑦
2 + 𝑚𝑧

2 

             𝑈𝑎(𝐿, 𝑇) = 1 −
〈𝑚𝑎

4〉

3〈𝑚𝑎
2〉2

, 𝑚𝑎
2 = 𝑚𝑎𝑥

2 + 𝑚𝑎𝑦
2 + 𝑚𝑎𝑧

2  

(15) 

Angle brackets denote averaging over thermodynamic configurations. The Binder cumulant 

does not depend on the size of the system at the phase transition temperature according to 

finite-dimensional scaling theory. Binder cumulant temperature plots for systems with different sizes 

intersect at a single point. This point corresponds to the phase transition temperature. 

The dependence of Binder cumulants on temperature for systems with different sizes is shown 

in Figure 4. 
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(a)                                       (b)                  

Figure 4. Temperature dependence of Binder cumulants for systems with different sizes. (a) 

Anisotropy axis is parallel to 𝑂𝑍 axis (𝑎 = 8, 𝑅 = 0.7). (b) Anisotropy axis is parallel 

to 𝑂𝑋 axis (𝑎 = 8, 𝑅 = 0.7). The temperature T is given in relative units. 

Finite dimensional scaling theory allows one to calculate the behavior of various 

thermodynamic functions. Magnetic susceptibility is calculated based on the average value of the 

order parameter (Eq 16). 

                  𝜒 =
𝜕𝑚

𝜕ℎ
=

𝑁𝐽

𝑇
(〈𝑚2〉 − 〈𝑚〉2) 

                   𝜒𝑎 =
𝜕𝑚𝑎

𝜕ℎ
=

𝑁𝐽

𝑇
(〈𝑚𝑎

2〉 − 〈𝑚𝑎〉2) 

(16)  

In this case, the complex magnetic susceptibility of nanoparticle sublattices is calculated. 

Magnetic susceptibility exhibits singular behavior near the phase transition temperature. Examples of 

dependence plots for magnetic susceptibility for nanoparticles with size 𝑎 = 8  and dipolar 

interaction intensity 𝑅 = 0.7 are shown in Figure 5. 

The dependence of susceptibility on temperature near the critical point is approximated by the 

power function (Eq 17). 

                          𝜒~|𝑇 − 𝑇𝐶|−𝛾, 𝜒𝑎~|𝑇 − 𝑇𝑁|−𝛾𝑎 (17) 

𝛾 and 𝛾𝑎 are critical exponents. Finite-dimensional scaling theory determines the dependence of 

thermodynamic functions on the size of the system (Eq 18). 

                            𝜒~𝐿𝛾/𝜈 , 𝜒𝑎~𝐿𝛾𝑎/𝜈𝑎 (18) 

𝜈 and 𝜈𝑎 are critical exponents describing the growth of the correlation radii 𝛾 and 𝛾𝑎 near the 

critical temperature (Eq 19). 

                           𝑟~|𝑇 − 𝑇𝐶|−𝜈 , 𝑟𝑎~|𝑇 − 𝑇𝑁|−𝜈𝑎 (19) 
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Finite-dimensional scaling theory incorporates these critical exponents into the behavior of 

Binder cumulants when changing the size of a system at critical temperature (Eq 20). 

                           
𝜕𝑈

𝜕𝑇
~𝐿1/𝜈 ,

𝜕𝑈𝑎

𝜕𝑇
~𝐿1/𝜈𝑎 (20) 

 

(a)                                       (b)                  

Figure 5. Examples of dependence plots for magnetic susceptibility for nanoparticles 

with size 𝑎 =  8 and dipolar interaction intensity 𝑅 = 0.7. (a) Nanoparticles with 

direction of anisotropy along 𝑂𝑍 axis. (b) Nanoparticles with direction of anisotropy 

along 𝑂𝑋 axis. The temperature T is given in relative units. 

Plots for the dependence of derivatives 𝜕𝑈/𝜕𝑇 and 𝜕𝑈𝑎/𝜕𝑇 on the size of the system 𝐿 on a 

logarithmic scale at critical temperature make it possible to find critical exponents 𝜈 and 𝜈𝑎. Plots 

for the dependence of susceptibility 𝜒 and 𝜒𝑎 on the size of the system 𝐿 at critical temperature 

on a logarithmic scale make it possible to determine the ratios of critical exponents 𝛾/𝜈 and 𝛾𝑎/𝜈𝑎. 

The dependence of order parameters on the temperature near the phase transition is also 

described by the power function (Eq 21). 

                           𝑚~|𝑇 − 𝑇𝐶|𝛽 , 𝑚𝑎~|𝑇 − 𝑇𝑁|𝛽𝑎 (21) 

Finite-dimensional scaling theory describes the dependencies of order parameters on system 

dimensions (Eq 22). 

                               𝑚~𝐿−𝛽/𝜈 , 𝑚𝑎~𝐿−𝛽𝑎/𝜈𝑎 (22) 

Plots for the dependence of order parameters on the dimensions of the system at critical 

temperature on a logarithmic scale allow one to find the ratio of critical exponents 𝛽/𝜈 and 𝛽𝑎/𝜈𝑎. 

Critical exponents can be calculated from plots of thermodynamic functions versus temperature. 

To do this, it is necessary to know the exact value of the phase transition temperature. This 

temperature can be determined from the peak of the magnetic susceptibility plot. However, the 

position of the peak in the graph is determined up to temperature step in the algorithm. This 

inaccuracy leads to large errors in the definition of critical exponents. A small error in determining 
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the phase transition temperature leads to significant errors in the critical exponents. Finite 

dimensional scaling theory makes it possible to more accurately determine the temperature of the 

phase transition from Binder cumulants. Binder cumulants do not exhibit singular behavior and are 

smooth functions. The approximation of Binders cumulants allows one to obtain their values with 

high accuracy. Scale ratios for thermodynamic functions depending on the size of the system give 

good values for critical exponents. It should be noted that the critical temperature obtained from 

Binder cumulants has a lower value than the temperature based on the magnetic susceptibility peak. 

This pattern is observed for all spin models. 

4. Results 

The first computer experiment examines a nanoparticles array with the anisotropy direction 

along the 𝑂𝑍 axis. The phase transition temperature depends on the size of the nanoparticles 𝑎 and 

the relative intensity of the dipole-dipole interaction 𝑅. The Neel temperature 𝑇𝐶 is calculated for 

different values of the dipole-dipole interaction relative intensity from 𝑅 = 0.3 to 𝑅 = 0.7 in  

steps ∆𝑅 = 0.1. The Neel temperature 𝑇𝐶 dependence on the dipole-dipole interaction intensity 𝑅 

for the three nanoparticle sizes is demonstrated in Figure 6. 

 

Figure 6. The Neel temperature 𝑇С dependence on the dipole-dipole interaction intensity 

𝑅 for the three nanoparticle sizes. The temperature 𝑇С is given in relative units. The 

temperature T is given in relative units. 

Neel temperature increases linearly with increasing intensity of the dipole-dipole interaction. 

This result is associated with an increase in the total energy ordering the spins. The phase transition 

temperature decreases as the size of the nanoparticles decreases. This pattern is due to the increasing 

role of the dipole-dipole interaction in the ordering of spins. The dipole-dipole interaction has a 

lower intensity compared to the exchange interaction. The contribution of the dipole-dipole 

interaction to the total energy increases as the particle size decreases. Small particles have fewer 
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pairs of spins interacting with exchange forces. The phase transition temperature is determined by the 

average thermal energy required to flip the individual spin. Spin reversal is hindered by spin-spin 

interaction. As the spin-spin interaction decreases, the phase transition temperature decreases. 

This ordering comes from the superparamagnetic phase to the superantiferromagnetic phase. 

The particles individually enter an ordered state at a higher temperature. The ordering of spins in a 

single particle occurs at the blocking temperature 𝑇𝐵. The particle blocking temperature is higher 

than the system Neel temperature (𝑇𝐵 > 𝑇𝐶). The mean absolute value of magnetic moments for 

nanoparticles describes magnetization without considering the orientation of magnetic moments (Eq 23). 

                           𝑚𝑝 = ∑ |𝑚⃗⃗⃗𝑙𝑘|

𝐿

𝑙,𝑘=1

𝐿2⁄  (23) 

|𝑚𝑙𝑘| is the magnetization module of the nanoparticle with coordinates(𝑙, 𝑘). 𝑚𝑝 takes a value 1/2  

if the spins within each nanoparticle are ordered. Magnetization of different particles can be directed 

in different directions. The superparamagnetic phase is realized in this case. The dependence of the 

staggered magnetization in the system 𝑚 and mean absolute value of magnetic moments 𝑚𝑝 on 

the temperature 𝑇 for the system with 𝐿 = 16 nanoparticles of size 𝑎 = 8 at 𝑅 = 0.5 are shown in 

Figure 7. 

 

Figure 7. The dependence of the staggered magnetization in the system 𝑚 and mean 

absolute value of magnetic moments 𝑚𝑝  on the temperature 𝑇  for the system      

with 𝐿 = 16 nanoparticles of size 𝑎 = 8 at 𝑅 = 0.5. The temperature T is given in 

relative units. 

Staggered magnetization in system 𝑚 and mean absolute value of magnetic moments 𝑚𝑝 

coincide at temperature below Neel temperature (𝑇 < 𝑇𝐶). At temperatures above the phase transition 

temperature (𝑇 > 𝑇𝐶 ), the staggered magnetization in the system decreases rapidly. The mean 

absolute value 𝑚𝑝  remains non-zero over a large temperature range. These values indicate a 
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superparamagnetic phase. Magnetic moments in nanoparticles are oriented in different directions. 

The checkerboard magnetization in the system is zero 𝑚 = 0. The inequality 𝑚𝑝 > 𝑚 is performed 

in the superparamagnetic phase. Nanoparticles are single-domain due to their small size. The 

transition from a fully disordered phase to a superparamagnetic phase is not a phase transition. 

A second computer experiment examines an array of nanoparticles with the anisotropy direction 

along the 𝑂𝑋 axis. The plots for the dependence of the order parameter 𝑚𝑎 and mean absolute 

value of magnetic moments 𝑚𝑝 on temperature 𝑇 are shown in Figure 8. 

 

Figure 8. Plots for the dependence of the order parameter 𝑚𝑎 and mean absolute value 

of magnetic moments 𝑚𝑝  on temperature 𝑇  at 𝑎 = 8 , 𝐿 = 16  and 𝑅 = 0.5 . The 

temperature T is given in relative units. 

Chain ordering comes from the superparamagnetic phase as well as in the anisotropy orientation 

along the 𝑂𝑍  axis. Plots for the Neel 𝑇𝑁  chain-ordered temperature versus dipole-dipole 

interaction intensity 𝑅 for particles with different sizes 𝑎 are shown in Figure 9. 

The Neel temperature of 𝑇𝑁 for chain ordering increases linearly with increasing intensity of 

the dipole-dipole interaction 𝑅 . This trend is attributed to the increasing interaction between 

nanoparticles. The phase transition temperature 𝑇𝑁 increases with increasing particle size 𝑎. This 

growth is due to the fact that more pairs of spins interact through an exchange interaction. The 

exchange interaction has a higher intensity than the dipole-dipole interaction. 
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Figure 9. Plots for the Neel 𝑇𝑁 chain-ordered temperature versus dipole-dipole interaction 

intensity 𝑅 for particles with different sizes 𝑎. The temperature T is given in relative units. 

5. Conclusions 

Computer simulations of the 2D nanoparticle array exposed the possibility for two types of 

superantiferromagnetic ordering. The type of ordering depends on the orientation of the nanoparticle 

anisotropy axis. If the nanoparticle anisotropy axis is directed perpendicular to the plane of the 

system substrate, then staggered ordering is realized. If the anisotropy axis of the nanoparticles lies in 

the plane of the substrate, then the system is divided into two sublattices. Each sublattice is a set of 

parallel nanoparticles chains. The nanoparticle chains are oriented along the direction of the 

anisotropy axis. 

Modern methods of nanoparticle synthesis allow controlling their anisotropy [29,30]. Anisotropy 

can be realized in the particle production step. The anisotropy direction can also change under the 

influence of external factors. The effective anisotropy of nanoparticles can change under the influence of 

temperature and their concentration [31]. A transition from one type of superantiferromagnetic ordering 

to another is possible when the direction of nanoparticle anisotropy changes. 

Superantiferromagnetic ordering has been experimentally observed in various systems. An array 

of Co nanocrystals on a carbon substrate with a particle size 12 nm demonstrates a transition from a 

superparamagnetic phase to a superantiferromagnetic one [32]. The ordering type varies at temperatures 

below 300 K. Nanoparticles in this system have high anisotropy. ZnO nanoparticles show similar 

types of ordering on different substrates at room temperatures [33–39]. Experimental study of the 

behavior for Fe/Fe3O4 nanoparticles on the CoFeB surface demonstrated the dependence of the phase 

transition temperature on the intensity of interaction between particles [40]. 

This article discusses systems with a sufficiently large value of the anisotropy constant. With smaller 

values of this constant, it is possible to magnetize nanoparticles in directions that do not coincide with 

the anisotropy axis. Collective ordering is possible in systems with chaotically oriented anisotropy 

axes of individual nanoparticles. The phase diagram of such systems requires additional research. 
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Calculations of critical exponents show their independence from the intensity of the dipole-dipole 

interaction R. Also, critical exponents are independent from the size of nanoparticles 𝑎. Critical 

exponents are equal to 𝜈 = 1.00 ± 0.04, 𝛾 = 1.78 ± 0.02, 𝛽 = 0.10 ± 0.03. These values are close 

to the critical exponents of thin films [41]. 

Only one value of the anisotropy parameter is used when simulating the system. The behavior 

of the system does not change qualitatively when the value of the anisotropy parameter varies. The 

absence of anisotropy leads to the impossibility of an ordered phase at temperatures other than   

zero (𝑇 > 0). If the anisotropy parameter is much less than the exchange interaction constant, then 

the ordering of the nanoparticles magnetic moments does not occur. The minimum value of the 

anisotropy parameter required for the appearance of a super-ordered phase requires additional 

investigation. 

Changing the direction of effective nanoparticle anisotropy also requires additional modeling. If 

the angle between the direction of anisotropy and the 𝑂𝑍 axis changes under the action of external 

parameters, then the superantiferromagnetic phase passes into the chain phase. The type of this phase 

transition should be studied further. It can be expected to be similar to the spin-flop transition. For 

such a transition, there must be a critical angle of direction of anisotropy, which leads to a change in 

the type of superantiferromagnetic ordering. 

The behavior of an array of ferromagnetic nanoparticles with dipolar interaction in an external 

magnetic field also remains unexplored. The magnetic field suppresses the antiferromagnetic phase 

in ordinary substances. There is a critical value for the strength of the external magnetic field, above 

which antiferromagnetic ordering is replaced by ferromagnetic ordering. The same pattern should 

exist for superantiferromagnetic ordering of the nanoparticle’s magnetic moments. This process will 

be more complex in an array of dipolar interaction nanoparticles. Two additional factors will 

influence the change in ordering type. The magnetization of nanoparticles is more difficult than the 

rotation of a single spin. The critical strength will depend on the angle between the direction of the 

magnetic field and the anisotropy axis of the nanoparticles. The process of suppressing the 

superantiferromagnetic phase and the chain phase will differ. 

Artificial spin ice is formed from arrays of nanoparticles. A necessary condition for the 

existence of spin ice is the presence of long-range anisotropic magnetic interactions between 

nanoparticles. The model proposed in this paper does not show the state of spin ice. This phase 

requires additional assumptions in the model. Obtaining spin ice in an array of nanoparticles is the 

task of the next study. 
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