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Kai Friebertshäuser1, Christian Wieners2 and Kerstin Weinberg1,∗

1 Chair of Solid Mechanics, University of Siegen, Siegen, Germany
2 Institute of Applied and Numerical Mathematics, KIT, Karlsruhe, Germany

* Correspondence: Email: kai.friebertshaeuser@uni-siegen.de; Tel: +49 0271 740 2185.

Abstract: This contribution presents a concept to dynamic fracture with continuum-kinematics-based
peridynamics. Continuum-kinematics-based peridynamics is a geometrically exact formulation of
peridynamics, which adds surface- or volume-based interactions to the classical peridynamic bonds,
thus capturing the finite deformation kinematics correctly. The surfaces and volumes considered for
these non-local interactions are constructed using the point families derived from the material points’
horizon. For fracture, the classical bond-stretch damage approach is not sufficient in continuum-
kinematics-based peridynamics. Therefore it is here extended to the surface- and volume-based
interactions by additional failure variables considering the loss of strength in the material points’
internal force densities. By numerical examples, it is shown that the presented approach can
correctly handle crack growth, impact damage, and spontaneous crack initiation under dynamic loading
conditions with large deformations.
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1. Introduction

Predicting crack propagation and material damage is still very challenging in computational
mechanics. Fracture problems have been addressed by various computational methods such as
damage models or discontinuous finite element discretizations [1–3] and phase-field fracture
simulations [4–6]. All these approaches are based on the classical continuum mechanics assumption
of a homogeneous bulk material. Peridynamics allows an alternative approach to fracture because it
models the material in a non-local form. Initially introduced by Silling [7, 8], peridynamics uses
integral equations to describe the relative displacements and forces between material points. Concepts
like stress and strain are absent, and the behavior of a material point is described solely by its
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interactions with other material points.
The original peridynamic concepts were restricted to the interaction of bonds, which has limited the

ability to account for a material’s Poisson ratio other than 1/4 for 3D problems. Other formulations, like
ordinary state-based peridynamics and non-ordinary state-based peridynamics, address this problem,
confer [9]. A new approach was recently introduced by Javili, McBride & Steinmann, who propose a
continuum-kinematics-based reformulation of peridynamics (CPD) [10–12]. This geometrically exact
formulation relies on an analogy to the classical continuum mechanics and is intrinsically designed to
capture the lateral contraction of the material correctly. Three types of material point interactions are
introduced, namely bond-, surface- and volume-based interactions, which correspond to the invariants
of a general deformation. The relationships between the material parameters of CPD and isotropic
linear elasticity were recently elaborated for two- and three-dimensional problems [13, 14].

The new kinematics of CPD require a new concept of damage and fracture. Because of the three
different types of interactions, it is no longer sufficient to understand material damage as a bond-based
phenomenon. Thus we enrich the material description by kinematic variables that account for the loss
of load-carrying capacity in the material’s force density, which is also extended by a density related to
contact. In that way, crack nucleation and propagation, as well as impact damage, can be modeled. To
the knowledge of the authors, this is the first concept of damage within the CPD framework.

This manuscript is organized as follows. Section 2 introduces the notation and the necessary theory
of CPD. Here the one-, two-, and three-neighbor interactions are defined, and the model is extended to
contact of two or more bodies. Section 3 is the paper’s core; here, we introduce our damage model.
Sections 4–6 present numerical examples. We start with a model validation by a simple 2d crack
growth for a mode I tension test in Section 4. Next, the crack initiation due to reflected impact waves
is presented in Section 5 using the example of a curved bar [15]. Finally, in Section 6, CPD is used to
compute damage induced by the impact of a sphere on a brittle plate.

2. Theory of continuum-kinematics-based peridynamics

In peridynamics, a body is considered as a set of N points in Euclidean space R3, and the dynamics
is described by the movement of these points. Specifically, the bijective mapping Eq 1,

Φt : R3 7→ R3 (1)
B0 7→ Bt ∃ Φ−1

t : Bt 7→ B0

describes the transformation (deformation) of the body from reference configuration B0 to current
configuration Bt at the time t. The movement of a body can therefore be described as a parametrical
(temporal) sequence of deformations Φ : B0 × [0,T ] 7→ R3.

The point position in material configuration is described by Xi and in current configuration as Eq 2,

xi = Xi + u(Xi, t) = Φt(Xi) , (2)

with the displacement vector u(Xi, t) and i = 1, . . . ,N. Points interact only with other points inside of
their specified neighborhood H i

1, which is defined as the set of points inside the spherical space with
the radius δ ∈ R+, also called the horizon δ (see Figure 1). Accordingly, H i

1 includes all points X j
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Figure 1. Deformation of body B0 to Bt and Xi to xi of the material point i.

inside the horizon of point Xi in the reference configuration of the body B0, Eq 3:

H i
1 =

{
X j ∈ B0 | 0 <

∣∣∣X j − Xi
∣∣∣ ≤ δ} ∀ Xi ∈ B0 . (3)

The equation of motion for point i reads Eq 4:

ρ ü(Xi, t) = bint
0 (Xi, t) + bext

0 (Xi, t) ∀ Xi ∈ B0, t ≥ 0 (4)

with the density ρ, the point acceleration vector ü, and the point force density vectors bint
0 and bext

0 ,
which denote force per unit undeformed volume. The external force density bext

0 results from the
external forces that are acting on the body and the internal force density bint

0 from the interactions
between the individual material points. Peridynamics can be understood as a Lagrangian particle
method, because all equations are mapped to the reference configuration. In the following, the
notation ui = u(Xi, t) and bint, i

0 = bint
0 (Xi, t) will be used for improved readability.

All our simulations consider a short period of time, therefore an explicit time integration scheme is
used. We employ the Velocity-Verlet algorithm of Littlewood [16], where for each time t and material
point i, the acceleration, velocity and displacement are calculated as Eq 5,

u̇i(t + 1
2Mt) = ui(t) +

Mt
2

üi(t) , (5a)

ui(t + Mt) = ui(t) + Mt u̇i(t + 1
2Mt) , (5b)

üi(t + Mt) = 1/ρ
(
bint, i

0 (t + Mt) + bext, i
0 (t + Mt)

)
, (5c)

u̇i(t + Mt) = u̇i(t + 1
2Mt) +

Mt
2

üi(t + Mt) , (5d)

with the time step Mt.
Various formulations of peridynamics exist for the calculation of the internal force density, and all

of them are based on the non-local interactions between the material points. The unique point of CPD
is the use of three different types of interactions, also called one-, two- and three-neighbor interactions
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(see Figure 2). Correspondingly, for CPD, bint, i
0 is the sum of the internal force densities of these

interactions, thus Eq 6:
bint, i

0 = bint, i
1 + bint, i

2 + bint, i
3 . (6)

Figure 2. Illustration of one-, two-, and three-neighbor interactions of point Xi.

2.1. One-neighbor interactions

The one-neighbor interaction of point i and j, in standard peridynamics also called the bond, is
defined in material and current configuration as Eq 7:

∆Xi j = X j − Xi , ∆xi j = x j − xi . (7)

One-neighbor interactions can be interpreted as line elements with the initial length Li j in material
notation and the deformed length li j in current configuration. These so called relative length measures
of the one-neighbor interaction are defined as Eq 8:

Li j =
∣∣∣∆Xi j

∣∣∣ , li j =
∣∣∣∆xi j

∣∣∣ . (8)

It is assumed, that all one-neighbor interactions of point i contribute equally. Therefore, an effective
one-neighbor volume is defined as Eq 9,

V i
1 =

V i
H

N i
1

(9)

with N i
1 being the number of one-neighbor interactions for point i and the neighborhood volume by Eq

10:

V i
H

=

{
βi 4

3 π δ
3 (3D problems)

βi π δ2 (2D problems)
(10)

with the factor βi ∈ [0, 1] that takes the fullness of the neighborhood into account. As an example,
it applies βi = 1 if the neighborhood of point i is completely inside the body B0. In contrast, if the
neighborhood of point i is partially outside the body B0, the factor βi < 1 works as a correction factor
to the volume V i

H
.

The force density due to one-neighbor interactions is defined as Eq 11,

bint, i
1 =

∫
H i

1

∂ψ
i j
1

∂∆xi j dV i
1 (11)
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with the harmonic potential Eq 12,

ψ
i j
1 =

1
2

C1Li j

(
li j

Li j − 1
)2

(12)

and the one-neighbor interaction constant C1. The constant C1 can be interpreted as a resistance against
the length change of one-neighbor interactions. With Eq 13:

∂ψ
i j
1

∂∆xi j = C1

(
1

Li j −
1
li j

)
∆xi j (13)

the internal force density bint, i
1 of point i can be formulated as Eq 14,

bint, i
1 =

∫
H i

1

C1

(
1

Li j −
1
li j

)
∆xi j dV i

1 . (14)

2.2. Two-neighbor interactions

Two-neighbor interactions are area elements, respectively triangles, spanned by the points Xi, X j

and Xk. They are constructed by two corresponding one-neighbor interactions ∆Xi j and ∆Xik of point i.
One important condition is that the distance between the points X j and Xk needs to be smaller than the
horizon δ, as displayed in Figure 3. Therefore, the set of all corresponding point-sets for two-neighbor
interactions of point i is defined as Eq 15,

H i
2 =

{(
X j, Xk) ∈ H i

1 ×H
i
1 | 0 <

∣∣∣X j − Xk
∣∣∣ ≤ δ} ∀ Xi ∈ B0 . (15)

✔ ✘

Figure 3. Valid and invalid two-neighbor interaction of point i.

The deformation of two-neighbor interactions is mainly described by the relative area measure, in
material and current notation defined as Eqs 16,17:

Ai jk = ∆Xi j × ∆Xik , ai jk = ∆xi j × ∆xik , (16)

and as scalar quantities the areas

Ai jk =
∣∣∣Ai jk

∣∣∣ , ai jk =
∣∣∣ai jk

∣∣∣ . (17)
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The force density due to two-neighbor interactions is defined as Eqs 18–20:

bint, i
2 =

∫
H i

2

2∆xik ×
∂ψ

i jk
2

∂ai jk dV i
2 (18)

with the harmonic potential

ψ
i jk
2 =

1
2

C2Ai jk

(
ai jk

Ai jk − 1
)2

, (19)

and the effective two-neighbor volume

V i
2 =

(
V i
H

)2

N i
2

. (20)

The number of two-neighbor interactions of point i is N i
2. The two-neighbor interaction constant C2

can be interpreted as a resistance against the area change. With Eqs 21,22:

∂ψ
i jk
2

∂ai jk = C2

(
1

Ai jk −
1

ai jk

)
ai jk , (21)

the internal force density bint, i
2 of point i can be formulated as

bint, i
2 =

∫
H i

2

2 C2 ∆xik ×

(
1

Ai jk −
1

ai jk

)
ai jk dV i

2 . (22)

2.3. Three-neighbor interactions

Three-neighbor interactions are volume elements, precisely tetrahedrons, spanned by the points Xi,
X j, Xk and Xl. They are constructed by the three corresponding one-neighbor interactions ∆Xi j, ∆Xik

and ∆Xil of point i. For a valid three-neighbor interaction, the conditions Eq 23,

0 <
∣∣∣X j − Xk

∣∣∣ ≤ δ , 0 <
∣∣∣X j − Xl

∣∣∣ ≤ δ , 0 <
∣∣∣Xk − Xl

∣∣∣ ≤ δ , (23)

must be met. Consequently, the set of all corresponding point-sets for three-neighbor interactions of
point i is defined as Eq 24,

H i
3 =

{(
X j, Xk, Xl) ∈ H i

1 ×H
i
1 ×H

i
1 | 0 <

∣∣∣X j − Xk
∣∣∣ ≤ δ ,

0 <
∣∣∣X j − Xl

∣∣∣ ≤ δ ,
0 <

∣∣∣Xk − Xl
∣∣∣ ≤ δ} ∀ Xi ∈ B0 . (24)

The deformation of three-neighbor interactions is mainly described by the relative volume measure,
in material and current notation defined as Eq 25,

V i jkl = Ai jk · ∆Xil , vi jkl = ai jk · ∆xil . (25)
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The force density due to three-neighbor interactions is defined as Eq 26,

bint, i
3 =

∫
H i

3

3
(
∆xik × ∆xil

) ∂ψi jkl
3

∂vi jkl dV i
3 (26)

with the harmonic potential Eq 27,

ψ
i jkl
3 =

1
2

C3V i jkl

(
vi jkl

V i jkl − 1
)2

, (27)

and the effective three-neighbor volume Eq 28,

V i
3 =

(
V i
H

)3

N i
3

. (28)

The number of three-neighbor interactions of point i is N i
3. The three-neighbor interaction constant C3

can be interpreted as a resistance against the volume change. With Eq 29,

∂ψ
i jkl
3

∂vi jkl = C3

 1∣∣∣V i jkl
∣∣∣ − 1∣∣∣vi jkl

∣∣∣
 vi jkl (29)

the internal force density bint, i
3 of point i can be formulated as Eq 30,

bint, i
3 =

∫
H i

3

3
(
∆xik × ∆xil

) ∂ψi jkl
3

∂vi jkl dV i
3 . (30)

2.4. Contact

For the modeling of contact between peridynamic bodies, we employ the algorithm by Silling and
Askari [8], which is in detail described in [16]. The approach of this algorithm is mainly based on
short-range forces that are activated at a certain threshold of the point distance.

For the incorporation of contact, Eq 4 needs to be extended to Eq 31,

ρ üi = bint, i
0 + bcon, i

0 + bext, i
0 ∀ Xi ∈ Bt, t ≥ 0 (31)

with the contact force density bcon, i
0 . We consider two different peridynamic bodies BI and BII ,

discretized with the point spacings ∆xI and ∆xII. Then we define the contact point sets H con, i
t and

H
con, j
t as Eqs 32,33

H
con, i
t =

{
x j ∈ BII

t | 0 <
∣∣∣x j − xi

∣∣∣ ≤ lc

}
∀ xi ∈ BI

t (32)

H
con, j
t =

{
xi ∈ BI

t | 0 <
∣∣∣xi − x j

∣∣∣ ≤ lc

}
∀ x j ∈ BII

t (33)

with the critical contact distance lc ≈ max
(
∆xI

2 ,
∆xII

2

)
. Now, the contact force densities yield to Eqs

34,35:

bcon, i
0 =

∫
H

con, i
t

9 Ccon

π δ5

(
lc −

∣∣∣x j − xi
∣∣∣) · x j − xi

|x j − xi|
dV j ∀ xi ∈ BI

t (34)

bcon, j
0 =

∫
H

con, j
t

9 Ccon

π δ5

(
lc −

∣∣∣xi − x j
∣∣∣) · xi − x j

|xi − x j|
dV i ∀ x j ∈ BII

t (35)

with the contact spring constant Ccon and the point volumes V i and V j.
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3. Modeling damage with continuum-kinematics-based peridynamics

In classical peridynamics, damage is modeled by the failure of one-neighbor interactions. The
failure quantity for the strain-based damage model reads Eq 36,

di j
1 =

{
0 if εi j > εc

1 else
(36)

with the one-neighbor interaction stretch Eq 37,

εi j =

∣∣∣∆xi j − ∆Xi j
∣∣∣∣∣∣∆Xi j

∣∣∣ , (37)

and the critical one-neighbor interaction stretch εc. This stretch can assumed to be identical to the
critical bond stretch in classical peridynamics, which has been estimated by Madenci and Oterkus [9]
as Eq 38,

εc =



√√√ Gc

δ
(
3G +

(
3
4

)4 (
K − 5G

3

)) (3D problems)

√
Gc

δ
(

6
π
G + 16

9π2 (K − 2G)
) (2D problems)

(38)

with the critical energy release rate Gc, the shear modulus G and the bulk modulus K. The pointwise
damage quantity Di incorporates the whole neighborhood, and is defined as Eq 39,

Di = 1 −

∫
H i

1
di j

1 dV i
1∫

H i
1
dV i

1

. (39)

These equations cannot directly be used to model damage within the continuum-kinematics-based
framework, because they do not take two- or three-neighbor interactions into consideration. Applying
this damage model alone will not lead to crack paths but to diffuse failure zones, because two- or
three-neighbor interactions are still active and lead to forces between failed points.

To address this problem, failure quantities for two- and three-neighbor interactions, di jk
2 and di jkl

3 ,
are introduced. Here we propose that two- and three-neighbor interactions fail, if one or more
corresponding one-neighbor interactions fail. Therefore, the failure quantity for two-neighbor
interactions can be defined as Eq 40,

di jk
2 =

{
0 if di j

1 = 0 or dik
1 = 0 ,

1 else ,
(40)

and for three-neighbor interactions as Eq 41,

di jkl
3 =

{
0 if di j

1 = 0 or dik
1 = 0 or dil

1 = 0 ,
1 else .

(41)
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With these failure quantities, we re-define the internal force density for one-neighbor interactions
Eq 14 as:

bint, i
1 =

∫
H i

1

di j
1 C1

(
1

Li j −
1
li j

)
∆xi j dV i

1 , (42)

for two-neighbor interactions Eq 22 as:

bint, i
2 =

∫
H i

2

di jk
2 2 C2 ∆xik ×

(
1

Ai jk −
1

ai jk

)
ai jk dV i

2 , (43)

and for three-neighbor interactions Eq 30 as:

bint, i
3 =

∫
H i

3

di jkl
3 3 C3

(
∆xik × ∆xil

)  1∣∣∣V i jkl
∣∣∣ − 1∣∣∣vi jkl

∣∣∣
 vi jkl dV i

3 . (44)

In such a manner, the failed point interactions do not contribute to the internal material response and
their damaging effect is considered.

4. Numerical results for the mode I tension test

In the following section, it is shown, that CPD is able to model crack growth for two- and three-
dimensional problems. Therefore, a square with edge length l and a predefined crack of length a = 1

2 l
is subjected to tension due to the expansion of the upper and lower region of the model with a constant
velocity v0 = 0.005 m s−1 (see Figure 4).

Figure 4. Setup of the mode I tension test.

For the 2D setup, a uniformly distributed point cloud with 200 × 200 points, and for the 3D setup
60 × 60 × 3 points are used. Both setups use the material parameters of steel, as listed in Table 1. As
derived by Ekiz, Javili, and Steinmann [13], the interaction constants of the two-dimensional setup are
Eq 45,

C1 =
12
π δ3

E
ν + 1

, C2 =
27

16 π δ6

E (1 − 3 ν)
ν2 − 1

, (45)

with the Young’s modulus E and the Poisson’s ratio ν. Furthermore, the constants for one- and three-
neighbor interactions of the three-dimensional setup are defined as Eq 46,

C1 =
30 µ
π δ4 , C3 =

32
π4 δ12 (λ − µ) , (46)
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Table 1. Parameters for calculations of the mode I tension test.

Parameter 2D setup 3D setup
Density ρ 7580 kg/m2 7580 kg/m3

Poisson’s ratio ν 0.3 0.3
Young’s modulus E 210 000 MPa 210 000 MPa
Griffith’s parameter Gc 140 N/m 500 N/m
Point spacing ∆x 5 mm 16.7 mm
Horizon δ 15.075 mm 50.25 mm

for C2 = 0, and with the first and second Lamé parameter λ = E ν
(1+ν)(1−2ν) and µ = E

2(1+ν) [14].
In Figure 5, the damage Di for the 2D and the 3D setup is shown. The crack propagates and

grows as expected until the square is broken into two pieces for both setups. Without the additional
failure quantities di jk

2 and di jkl
3 , a diffuse damage field and no clear crack path would be the result of

this simulations. Consequently, CPD can be used to model crack-growth with our proposed damage
model.

0

0.2

0.4

0.6

0.8

1
Di [-]

Figure 5. Damage Di for the 2D (a) and 3D setup (b).

5. Curved bar under pressure

In the following section, crack initiation due to impact is investigated for a two- and
three-dimensional discretizations. For this purpose, a model of a curved bar is subjected to pressure
waves, which are supposed to superimpose inside the material and eventually lead to crack initiation.
The material points are spatially distributed along the curve f (x) = cos

(
π
2 x

)
(see [15] for more

details). As shown in Figure 6, for each root point xi on f , Nn points occur along the curve Eq 47,

ni(x) =
1

f ′(xi)
· (x − xi) + f (xi) , (47)
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with the derivative f ′(x) =
d f
dx = −π2 sin

(
π
2 x

)
. The bar has the width WB = 62.5 mm along the curve

xi

f (xi) = ni(xi)

x

y f (x)
ni(x)

Figure 6. Function f (x) describing the curve of the bar and ni(x) with Nn = 5 material points.

ni(x) and is defined for the root points xi ∈ [− LB
2 ,

LB
2 ] with the bar length LB = 1 m. The number of

points Nn on ni(x) is a measure to describe the density of the point cloud, since it is used to specify
the point spacing ∆x = WB

Nn
. For the three-dimensional implementation, Nn layers of material points are

equally distributed with distance ∆x along z ∈ [−WB
2 ,

WB
2 ]. A coarse point cloud with Nn = 5 is shown

in Figure 7 for the purpose of illustrating the discretization.

Figure 7. Coarse point cloud with Nn = 5 and one layer of points on each side used for a
pressure impulse.

On each side of the curved bar, a pressure impulse Eq 48,

p(t) = −4 ·
p0

t1
2 ·

(
t −

t1

2

)2
+ p0 (48)

with the pressure peak p0 and the impulse duration t1 is applied for one layer of material points in the
left and right boundary (see Figure 8). The pressure is applied via the external body force density Eqs
49–51,

bext, i
0 =

p(t)
∆x

nl/r (49)

with the normal vector

nl =

{
[sinα, cosα]T (2D problems)
[sinα, cosα, 0]T (3D problems)

(50)

for the left side and

nr =

{
[− sin (α), cos (α)]T (2D problems)
[− sin (α), cos (α), 0]T (3D problems)

(51)
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for the right side of the bar, and the angle α = arctan
(
− 1

f ′(LB/2)

)
.

0 t1

0

p0

Time t

Pr
es

su
re

p

Figure 8. Pressure impulse p(t).

The material parameters used for the calculations are shown in Table 2. For the two-dimensional
setup, a pressure impulse with the peak p0 = 4 × 105 N/m and for the three-dimensional setup, p0 =

1 × 106 N/m2 is used. For both setup’s, the pulse has the duration t1 = 300 µs. Remark that for 2D,
the body force density bext

0 has the unit [N/m2]. The interaction constants are calculated as before (see
Eqs 45,46).

Table 2. Parameters for calculations of the curved bar.

Parameter 2D setup 3D setup
Density ρ 7580 kg/m2 7580 kg/m3

Poisson’s ratio ν 0.3 0.3
Young’s modulus E 210 000 MPa 210 000 MPa
Griffith’s parameter Gc 1 N/m 1 N/m
Point spacing ∆x 3.125 mm 12.5 mm
Horizon δ 9.42 mm 38 mm

In Figure 9, the damage Di of the two-dimensional setup is shown. After t = 2.9 ms, a crack in
the middle of the bar is visible. The pressure waves propagate through the bar and then get reflected,
which consequently transforms them into tensile waves. These tensile waves then lead to the initiation
of a crack. The waves continue to propagate in the model and when superimposed again, the same
effect occurs and more cracks are formed. The two-dimensional model reproduces this behavior very
well, since exactly these further cracks occur for time t = 5.8 ms.

The same behavior can also be observed with the 3D model (see Figure 10). As an important
remark, for the visualization of the waves in the model, a stress tensor was artificially calculated.
The calculation of the stresses is not part of the peridynamics and is only used to illustrate the wave
reflection. After the first reflection of the pressure wave, a single crack is initiated in the center of the
model. Also the cracking due to the further superposition of the waves can be detected, as seen in
Figure 11. The position differs from that of the 2D model, but this could be explained by the versatile
influencing factors of CPD, such as material parameters and different discretizations. Here further
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studies are necessary. In summary it can be stated, that CPD can be used to map cracking due to the
material response to pressure waves.

0

0.2

0.4

0.6

0.8

1
Di [-]

Figure 9. Damage Di of the 2D curved bar for t = 2.9 ms (a) and t = 5.8 ms (b).

Figure 10. Damage Di (a) and the trace of an artificially calculated stress tensor (b) of the
3D curved bar for t = 0.5 ms .
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Figure 11. Damage Di (a) and the trace of an artificially calculated stress tensor (b) of the
3D curved bar after t1 = 1.4 ms.

6. Impact damage

In the following section, damage due to contact between two peridynamic bodies is investigated for
our proposed damage model. Here, the shot of a sphere with initial velocity v0 = 50 m/s through a
circular disc that is free in space is computed numerically. As it is displayed in Figure 12, the sphere
has the radius r = 10 mm and the disc the radius R = 250 mm and height h = 10 mm. The material
parameters for both bodies are listed in Table 3. For the modeling of the contact, the search radius
lc = 2.5 mm and the contact spring constant Ccon = 1000 GPa are used.

Figure 12. Setup of the sphere and the circular disc.

In Figure 13, the results of the numerical experiment are displayed for t = 0.26 ms (Figure 13a) and
t = 0.86 ms (Figure 13b). The sphere punches through the circular disc and stamps a hole in it. Slight
damage occurs in the impact area, but no further cracks propagate as a result of the impact. Similar
material response can be seen for variations of material or contact parameters.
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Table 3. Parameters for the calculation of the sphere impact.

Parameter Sphere Disc
Density ρ 7850 kg/m2 2000 kg/m3

Poisson’s ratio ν 0.25 0.2
Young’s modulus E 210 000 MPa 50 000 MPa
Griffith’s parameter Gc 1500 N/m 1 N/m
Point spacing ∆x 4 mm 5 mm
Horizon δ 12.06 mm 40.075 mm
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Figure 13. Damage Di for the time t = 0.26 ms (a) and t = 0.86 ms (b).

7. Summary

This study presents a new approach to dynamic fracture and impact damage within the CPD. We
extend the classical uni-axial damage model and introduce failure quantities for two- and
three-neighbor interactions. With these quantities, two- and three-neighbor interactions are
deactivated if the corresponding one-neighbor interactions fail, which allows cracks to be modeled
within the continuum-based framework.

Three different effects were investigated numerically: crack growth, crack initiation, and damage
due to contact. At first, we found that for two- and three-dimensional simulations, our approach handles
crack growth of a mode I tension test very well. At second, to investigate crack initiation, a curved bar
is subjected to pressure waves. The pressure waves superimpose and lead to tensile waves that initiate
cracks in the model. We observed both a first crack in the middle of the model as well as secondary
cracks due to the further superposition of the waves. At third, additional impact simulations show that
CPD is even able to model a punchthrough impact without further cracking. Clearly, the proposed
damage model can capture effects due to contact between two peridynamic bodies.

To sum it all up, we have introduced a new damage model that extends the novel CPD framework
and now opens up versatile possibilities for the simulation of fracture and damage. We could show that
our damage model can represent the growth of existing cracks, the initiation of cracks, and the damage
due to the contact of two bodies.
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