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Abstract: In this research, two pellets of titanium dioxide TiO2 were prepared at room temperature. 
The first was pure titanium dioxide, and the other was doped with silver (2.5%). The pellets were 
deposited on porous silicon (PSi) with the pulsed laser deposition (PLD) technique. The results of 
scanning electron microscopy and energy-dispersive X-ray spectroscopy showed improvements in 
the surface morphologies of the TiO2/PSi and TiO2@Ag/PSi composites. The composites were then 
tested as CO2 gas sensors. The electrical measurements of the composites showed a decrease in the 
electrical resistance of the CO2 gas sensor doped with a metal. Sensitivity to CO2 increased to up to 
55% in Ag-doped TiO2 film with a concentration of 2.5%, and the highest sensitivity value was 
obtained in the pure titanium dioxide film (26%). 
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1. Introduction 

Porous silicon (PSi) has attracted considerable interest in recent years because of its unique 
physical and optical properties and many applications in technological fields, including optical 
electronics and sensors [1,2]. These characteristics are achieved by increasing its surface area in 
relation to its volume and the number of pores per unit volume [3]. Methods for producing PSi 
include the wet and galvanic methods and methods using metals. These methods are inexpensive, 
simple and efficient in preparing Psi [4,5]. PSi prepared with one of the etching methods shows new 
properties. The ordinary silicon, with an indirect energy gap of 1.12 eV, changes to PSi, with a direct 
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energy gap of 2.7 eV [6]. In the photo-electrochemical (PECE) method used in this study, an 
electrical cell with electrodes is used, and the negative electrode of platinum is connected to the 
negative part of an electric source. The anode is connected to the positive electrode of the electric 
current source. This electrode is made of silicon to be prepared as PSi. The cell is used as a container 
to contain a solution for photo-electrochemical reactions. The solution consists of fluoride acid at a 
concentration of 48%, which is diluted with HF:C H OH solution in a ratio of 1:1 [6,7]. When 
putting (100) n-type silicon wafer inside the container, it is connected to the anode, and this setup 
causes the wafer to be reverse biased, so a laser is used to generate an electron-hole pair on the wafer 
surface. The laser facilitates the passage of current in the cell, and then the reaction process begins. 
The photo-electrochemical technique is a suitable technique for preparing n-type PSi [8]. The 
porosity value of the PSi layer determines the application for which the PSi is used. For example, 
applications of optoelectronic and electronic sensors depend on the porosity [4,9]. PSi can be 
classified into three groups according to porosity: macrostructure, mesostructure and microstructure [1]. 
The porosity of the samples prepared by this technique (PECE) depends on several parameters, the 
most important of which are solution concentration, current density, etching time and laser beam 
intensity [2]. During the anodization of n-type Si, illumination is an essential control parameter that 
may be adjusted for the control of morphology (pore size, pore diameter and pore shape) and 
luminous characteristics [10,11]. PSi possesses the two most important properties that make it 
suitable for use as a gas sensor: a large internal surface area of up to 200–500 m2/cm2, which 
enhances adsorbate effects, and high activity in surface chemical reactions [12,13]. Metal oxides are 
commonly employed in the field of sensors due to their unique features [14–16]. Titanium dioxide 
thin film is used in gas sensors because of its desirable sensitivity and, more importantly, its 
excellent stability in adverse environments [17,18]. Silver with TiO2 films is usually added to 
improve gas detector sensitivity [19–21]. 

2. Materials and methods 

Figure 1 shows the conventional cell diagram required for photo-electrochemical etching, where 
n-type silicon with a crystalline direction of (100) is used, and the wafer is cut into pieces with 1 cm 
diameters and then cleaned with HF:C2H5OH solution in a ratio of 1:10. The samples were immersed 
in the solution and placed in an ultrasound device for 5 min, cleaned with distilled water and dried. 
Then, the samples were placed in the cell and linked, as shown in Figure 1. The greatest penetration 
depth of silicon was achieved using a laser with a long wavelength for the production of a thick layer 
of PSi. A 650 nm red color diode laser and an ammeter device were used in observing the amount of 
current passing through a sample and then determining current density during etching. 
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Figure 1. (a) Schematic drawing of a conventional single-tank etching cell, (b) 
photograph of the Teflon etching cell and (c) Pulsed laser deposition system scheme 

Etching time was fixed at 15 min, and the intensity of the laser beam was set at 27 mW/cm . 
The current density was 16 mA/cm . After etching, the porosity was calculated for each sample 
according to the following weight equation [22,23]: 

Porosity% =                                                                    (1) 

where w1 is the weight of the sample before the etching process, w2 is the weight of the sample after 
etching, and w3 is the weight of the sample after the removal of the porous layer with an NaOH 
solution. The solution was shaken for 20 min for the removal of the formed PSi. The thickness of the 
PSi layer was calculated using the equation below [22,23]: 

Thickness of PSi = (w1 − w3)/(APSi × dPSi)                                              (2) 

where APSi is the area of the PSi surface exposed to the HF acid solution through laser-assisted 
etching, and dPSi is the silicon density.  

After preparing the PSi samples, the thin film is prepared according to the application. Figure 1c 
shows the PLD system used in deposition. The system consisted of a chamber containing a holder 
where a sample to be deposited would be placed and a rotating bench where the target material 
would be placed. Increase in temperature in a specific area was prevented by rotating the target. The 
chamber was emptied of air until the pressure reached 10−1–10−3 bar. We deposited titanium dioxide 
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on some of the prepared samples with the PLD technique [24,25]. A helium-neon laser with a 
wavelength of 532 nm (second harmonic) and energy of 0.8–1.8 mJ/cm  was used at a frequency    
of 3 Hz and laser pulse of about 100 pulses. TiO2 powder was used and prepared in the form of a 
compact disc (pellet) with a diameter of 2.1 cm and a weight of 3 g. The disc was placed under a 
pressure of 10 tons for 5 min and then inserted into the chamber, which in turn was placed on an 
electric motor that rotated continuously. The prepared samples deposited with titanium dioxide were 
placed against the target material (disc), and the chamber was emptied of air until the pressure 
reached 10−3 bar.  

An external laser was used to bombard the target material at an angle of 45º. The substance was 
melted, converted into plasma and detonated. The process resulted in the deposition of atoms and 
volatile particles on the PSi. After deposition, the samples were heated at 300 ℃ for 15 min using a 
helium-neon laser with an energy range of 0.8–1.8 mJ, frequency of 3 Hz and wavelength of 532 nm 
(second harmonic). The surface was examined through scanning electron microscopy (SEM) and 
energy dispersive X-ray spectroscopy (EDS), and the electrodes were deposited on the pure and 
doped TiO2/PSi surfaces. 

3. Results and discussion 

3.1. PSi surface morphology 

3.1.1. Bare PSi surface morphology  

Figure 2 displays the SEM images of the fabricated PSi surface with a 15 min etching time, 
fixed laser beam intensity of 27 mW/cm2 and current density of 16 mA/cm2. 

 

Figure 2. SEM images of (a) bare PSi layer and (b) statistical distribution. 

The surface of the PSi presented a pore-like structure, and the pores were randomly distributed 
in the form of tetragonal cylindrical, pentagonal and hexagonal pores. The distribution of the pores 
was somewhat homogeneous [26]. Table 1 shows that the pore diameters ranged from 0.40 to 1.32 µm, 
and the peak distribution was about 0.62 µm. The percentage of pores was 27%, and the porosity 
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value and layer thickness were 62% and 4.2 µm, respectively (the values were calculated using Eqs 1 
and 2, respectively). The porosity of the PSi layer was determined by the etching current density 
used in the photo-electrochemical etching process, whereas the thickness of the PSi layer was 
determined by the etching time [5,27,28]. 

Table 1. Profile of PSi layer. 

Porosity of PSi layer Psi layer thickness 
(µm) 

Percentage pores number 
(%) 

Range of pore diameters 
(µ) 

62 4.2 26–27 0.50–0.62 

3.1.2. PSi surface morphology after deposition 

The PSi surface was studied using the two different deposition compounds of pure TiO2 and 
silver-doped TiO2 at a concentration of 2.5%. The deposition of the compounds was carried out with 
the PLD technique and a helium-neon laser (second harmonic) with a wavelength of 532 nm. Laser 
energy and frequency were 1.8 mJ and 3 Hz, respectively. 

As indicated in Figure 3a, the statistical distribution indicated that the isolated TiO2 
nanoparticles (NPs) were spread heterogeneously over the PSi surface, and the particle diameters 
ranged from 7 to 225 nm. The peak size was around 90 nm. The statistical distribution indicated that 
the TiO2@Ag NPs were spread homogenously over the PSi surface, the particle diameters ranged 
from 38 to 222 nm, and the peak size was around 38 nm. The doping of titanium oxide with silver 
exerted an effect on the surface area value, particle size, energy gap and photocatalytic activity [29]. 
Gas sensor sensitivity is a function of particle size, surface morphology, crystal structure, and 
conditions of preparation [17,30,31]. 

 

Figure 3. SEM images and the statistical distributions of (a) PSi layer after deposit with 
pure TiO2 and (b) PSi layer after deposit with TiO2 doped by Ag. 
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3.2. Energy-dispersive X-ray spectroscopy (EDS) analysis 

The EDS result in Figure 4a shows a high Si content (42.76%) and moderate Ti content (6.25%). 
The high percentage of the O element (49.22%) was due to the amounts of the O element in the 
silicon oxide layer and TiO2.  

Figure 4b shows the presence of Ag element with a content of 0.92% in the TiO2@Ag 
(2.5%)/PSi sample with a large content of Ti (29.25%). The appearance of the carbon element may 
be due to the components of the solvents used in photo-electrochemical etching. 

 

 

Figure 4. EDS analysis of (a) PSi layer after deposition with pure TiO2 and (b) PSi layer 
after deposition with TiO2 doped by Ag.  
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3.3. X-ray diffraction (XRD) 

The XRD examination was carried out to characterize the crystal structure type and the 
crystalline size of the prepared samples. Figure 5 presents the XRD patterns of the TiO2 
nanoparticles on PSi and the Ag doped TiO2 thin film (Ag 2.5 wt%) on PSi. The detected 
characteristic peaks of TiO2/PSi at (2θ = 27.5°), (2θ = 36.14°), (2θ = 39.28°), (2θ = 41.34°),           
(2θ = 54.44°) and (2θ = 56.79º) of the planes (110), (101), (200), (111), (211) and (220) indicated the 
formation of tetragonal TiO2 (Rutile) nanoparticles with space group (P42/mnm no. 136), dimensions 
(a = b = 4.582 Å, c = 2.953 Å) and angles (α = β = γ = 90°), which agreed well with the standard data 
(JCPDS 065-0192). In addition, a strong peak appeared at (2θ = 69.02°) of the plane (004), which is 
attributed to the PSi layer.  

 

Figure 5. XRD patterns of (a) PSi layer after deposition with pure TiO2 and (b) PSi layer 
after deposition with TiO2 doped by Ag (2.5%). 

After doping with silver (TiO2@Ag/PSi), three new peaks appeared at (2θ = 38.28°),              
(2θ = 44.47°) and (2θ = 64.72°) of the planes (111), (200) and (220), which were attributed to the 
cubic silver nanoparticles with space group (Fm-3m no. 225), dimensions (a = b = c = 4.071 Å) and 
angles (α = β = γ = 90°), which corresponded to the standard data (JCPDS 087-0719). The peaks’ 
intensities decreased with the addition of silver in the structure of the TiO2/PSi, and no other 
impurities’ peaks were detected, indicating the high purity phases of the prepared TiO2/PSi and 
(TiO2@Ag/PSi) samples. 

3.4. Electrical properties of TiO2/PSi and TiO2@Ag (2.5%)/PSi sensors with CO2 gas 

The electrical properties of the prepared samples were measured, including electrical resistance 
and sensitivity, as these properties depend mainly on preparation conditions, film thickness and 
percentage of impurities within a membrane material. 
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3.4.1. Resistance-time characteristics of pure TiO2/PSi and TiO2@Ag (2.5%)/PSi sensors with CO2 
gas 

As shown in Figure 6, the electrical resistances of the samples with pure TiO2/PSi and 
TiO2@Ag/PSi sensors were measured. The conductivity of the TiO2/PSi sensor became considerably 
higher than that of the pure TiO2 film. The general behavior of the gas sensor was to increase in 
resistance after exposure to the gas. In the pure TiO2/PSi sensor, the gas received charge carriers 
from the titanium oxide/PSi substrate. The gas oxidized titanium oxide, so the sensor resistance 
increased.  

 

Figure 6. Electrical resistance vs. time (for 5000 ppm CO2 gas) of PSi layer deposited 
with pure TiO2 and PSi layers deposited with TiO2 doped by Ag at different 
concentrations. 

As shown in Figure 6, in doping with silver (TiO2@Ag/PSi sensor, Ag 2.5%), metal ion dopants 
affected TiO2 by acting as electron (or hole) traps and modifying the e-/h+ pair recombination rate in 
addition to reducing the transition energy of electrons. In doping with silver (TiO2@Ag/PSi sensor), 
the same gas that was exposed to the sensor transformed from an oxidizing gas to a reducing gas, 
that is, it provided electrons to the substrate after doping with silver. The presence of silver resulted 
in increased electrical conductivity, which in turn caused a drop in sensor resistance. The gas in the 
presence of silver metal turned from an electron-withdrawing gas to an electron-donating gas [32,33], 
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so the electrical conductivity increased, and the resistance decreased. This finding was consistent 
with results from other sources [17,34,35].  

3.4.2. Sensitivity of pure TiO2/PSi and TiO2@Ag/PSi sensors in the presence of CO2 gas 

The interaction between the target gas molecules and the sensor surface determined the 
sensitivity of the metal oxide semiconductor sensor. The gas-detecting sensitivity of the sensor 
increased with the surface areas of the materials and strengths of the interactions between the 
adsorbed gases and the sensor surface. TiO2 doped with Ag metal had a higher sensitivity to CO2 gas, 
as shown in Figure 7. Given that surface species and trapped electrons were restored to the 
conduction band, TiO2 films doped with noble metals exhibited increased conductivity and thus 
increased sensitivity. The majority of the gas-sensitive structures were n-type semiconductors, owing 
to intrinsic doping provided by the preparation methodologies, and thus p-type semiconductors 
sensitive to gases were lacking. P-type semiconductor gas sensors showed gas-sensing patterns 
different from those of n-type ones. TiO2-doped Ag has been considered a p-type gas sensor. Notable 
differences between n-type and p-type Ag-doped TiO2 were found, and p-type Ag doping resulted in 
significant response enhancement toward tested reducing gases. 

 

Figure 7. Sensitivity vs. time (for 5000 ppm CO2  gas)  of PSi layer after deposition with 
pure TiO2 and PSi layers after deposition with TiO2 doped by Ag with different 
concentrations (0.5%, 1.5% and 2.5%). 

4. Conclusions 

In this study, two types of gas sensors were manufactured. The first was pure titanium oxide 
particles deposited (by PLD) on a PSi layer, and the other was mixed silver (2.5%) and titanium 
oxide deposited on the same PSi layer. The performance of the gas sensors improved with the mixing 
of titanium oxide with silver and the deposition of titanium oxide on the surface of the PSi. The 
surface morphology of the surface facilitated the capturing of gas particles by increasing the surface 
area and the determination of the shape and size of deposited silver and titanium oxide particles. 
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Moreover, the addition of silver with titanium contributed to the reduction of the resistance of the 
sensor and increased its sensitivity after a gas exposed to the sensor was transformed from an 
oxidizing gas to an ionized gas. 
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