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Abstract: We review approaches to deriving mechanical properties from atomic simulations with a 
special emphasis on temperature-dependent characterization of polymer materials. The complex 
molecular network of such materials implies only partial, rather local ordering stemming from the 
entanglement of molecular moieties or covalent bonding of network nodes, whereas the polymer 
strands between the nodes may undergo nm-scale reorganization during thermal fluctuations. This 
not only leads to a strong temperature-dependence of the elastic moduli, but also gives rise to visco-
elastic behavior that complicates characterization from molecular dynamics simulations. Indeed, 
tensile-testing approaches need rigorous evaluation of strain-rate dependences, provoking significant 
computational demands. Likewise, the use of fluctuations observed from unbiased constant-
temperature, constant-pressure molecular dynamics simulation is not straight-forward. However, we 
suggest pre-processing from Fourier-filtering prior to taking Boltzmann-statistics to discriminate 
elastic-type vibrations of the simulation models for suitable application of linear-response theory. 
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1. Introduction 

For crystalline materials, the prediction of elastic properties became a routine task that usually 
relies on energy minimization to get equilibrium structures, followed by (numerical) assessment of 
the second derivatives of energy upon simulation cell deformation [1–3]. While this approach leads 
to elastic moduli of quite reasonable accuracy when characterizing metals and ionic crystals, 
molecular materials—in particular if they are not crystalline—show strong, and often non-linear, 
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temperature-dependence of mechanical properties [4,5]. This opposes to the zero Kelvin 
approximation inherent to structures derived from energy minimization. Instead, Monte-Carlo or 
molecular dynamics simulation methods are required to account for temperature effects to atomistic 
models [6,7]. 

A very intuitive molecular dynamics simulation approach for the assessment of mechanical 
properties is to essentially mimic the corresponding experiment by inducing a deformation of the 
simulation model and sampling the restoring forces. On this basis, each mode of deformation (tensile 
loading, shear, bulk compression) can be probed, and the elastic moduli attributed to the curvature of 
the respective stress-strain diagram. On the other hand, a very elegant route was originally suggested 
more than 50 years ago—by attributing the spontaneous fluctuations of a sample volume to a linear 
response model [8,9]. This allows for simultaneous sampling of all elastic moduli from constant-
temperature, constant-pressure molecular dynamics or Monte-Carlo simulations. 

Both of these approaches call for careful implementation when applied to complex molecular 
materials. In what follows, we will review the fundamental simulation protocols and outline 
strategies for error control. To demonstrate the assessment of temperature-dependent elastic moduli, 
we selectively picked a recent molecular dynamics simulation model that mimics an epoxy    
polymer [10]. This not only reflects a particularly prominent class of molecular materials, but also a 
rather rigorous benchmark for system complexity. Indeed, freshly cured epoxy resins are non-
crystalline (and desired to remain so within most technical applications), like most polymer 
materials, and show little ordering beyond the range of 1–2 nm. On the other hand, there is 
significant local ordering at the <1 nm scale stemming from the well-defined chemistry of binding 
the monomeric units into polymer strands. These strands may occur as in principle stand-alone fibers 
which are however twisted and entangled with each other [11]. More robust polymer materials, such 
as epoxy resins, are however comprised of covalently bonded networks [12,13]. As a consequence, 
the entire sample of the material may be considered as a single molecule. The mechanical properties 
dramatically depend on the degree of cross-linking which, in state-of-the-art industrial application, 
reaches almost 100% of the available binding sites [14]. In our benchmark model, we achieved 98% 
crosslinking of the base monomer (bisphenol F diglycidyl ether, BFDGE) and the linker species (4,6-
diethyl-2-methylbenzene-1,3-diamine, DETDA) [10,15]. This could be achieved from systematically 
exploring the curing process from combined quantum/molecular mechanical treatment of linking 
reactions and extended analyses of overall network relaxation upon increasing degree of cross-
linking [10,15].  

Despite this high level of crosslinking, epoxy resins are best described as molecular networks 
with a clear distinction between strands and nodes [12,13]. The nodes that (covalently) connect 2-4 
strands are separated by 1–2 nm, whereas the strands comprise of molecular moieties which atoms 
are bonded at ~0.15 nm distance. This structural diversity has important implications on the 
mechanical properties. While damaging and fracture is related to the cleavage of crosslinks or, much 
less frequently, rupture of strands, even the network of intact nodes gives rise to non-linear stress-
strain characteristics [10]. The 1–2 nm sized strands are comparably flexible and may rotate, bend, or 
twist in response to mechanical load—but also by thermal fluctuations. For this reason, we find 
strong changes of the mechanical properties as functions of temperature. For the same reason, we 
however also find strong dependence of the stress-strain diagrams as functions of the strain rates 
used to deform the material [4,5]. 
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2. Elastic moduli from energy minimization 

The most frequently used approach to computing elastic moduli from atomic simulations is 
based on non-dynamic calculations [16,17]. Starting points are relaxed structures resulting from 
energy minimization. These are then subjected to small deformations ߝ ̅(e.g. by linearly shifting atom 
positions according to ±1% uniaxial deformation ߳ଵଵ, ߳ଶଶ and	߳ଷଷ or ±1° shear in ߳ଶଷ, ߳ଵଷ and	߳ଵଶ , 
respectively) and the corresponding stress ߪത is related to (using Voigt notation) [18]: 
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Despite the inherent zero Kelvin approximation, this is the method of choice for crystalline 
materials, provided that the melting point is far above the technically relevant temperature       
(usually 300 K) for which the prediction of elastic properties shall apply.  

For such systems, typical calculations focus on units cells subjected to periodic boundary 
conditions—which implies only few explicit atoms and hence allows for high-accuracy quantum 
mechanical description. Using this single crystal approximation, symmetry-equivalent elastic moduli 
ܿ௜௝ may be ruled out and the independent deformation modes may be either probed individually or 
concerted fitting of ܿ̿ according to Eq 1 is performed [19]. Along this line, tensile deformations and 
shear are typically implemented as <5% deformation and <10° shear of the unit cell vectors, whereas 
the explicit atoms therein are allowed to relax according to energy minimization as a function of ߝ.̅ 

For simple crystals like pure metals, structure relaxation typically leads to linear atomic 
displacements according to ߝ,̅ however for more complex systems such as intermetallic phases, ionic 
and molecular crystals the atomic displacements significantly depend on the interplay of overall unit 
cell deformation and the heterogeneity of local interactions. This is particularly evident for molecular 
crystals which feature strong covalent bonds within the molecules and much weaker interactions (H-
bonds, π-stacking, van-der-Waals) between the molecules.  

3. Temperature-dependent stress-strain profiles 

Inhomogeneous atomic displacements upon crystal deformation are also crucial for rationalizing 
the temperature-dependence of the elastic properties. The reorganization of local atomic moieties 
may involve significant displacements normal to the overall mode of deformation ߝ ̅applied to the 
crystal. Examples are zig-zag shifts leading to the puckering of layers or rotation/slipping of 
molecular fragments such as polymer strands [5]. Subject to the strength of local interactions, these 
displacements may occur spontaneously during deformation—or involve the crossing of energy 
barriers ∆ܧ  before locking into a favorable configuration. While the former situation is well-
described by energy minimization approaches, barrier crossing calls for explicit account of 
temperature T and thus requires Monte-Carlo or molecular dynamics (MD) simulations. Among 
these two techniques, MD simulations are widely preferred for rationalizing complex materials 
because of its direct insights into reorganization dynamics. 
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In MD simulations of material deformation, the likeliness of reorganization events triggered by 

the crossing an energy barrier ∆ܧ is related to ݌ ൌ ଴݁݌
ି ∆ಶ
ೖಳ೅ with ݇஻ being the Boltzmann constant 

and ݌଴ being a kinetic pre-factor which depends on the strain rate applied to induce deformation. 
Atomic displacements confined by only small barriers, say ∆ܧ ൏ ݇஻ܶ, typically occur on time scales 
that are much lower than the time scales at which deformation experiments are performed. Such 
small-barrier reorganization hence appear as elastic modes unless the deformation rate reaches the 
speed of sound. On the other hand, local reorganization events that require the crossing of large 
barriers happen only rarely. As a consequence, the material will undergo only a fraction of all 
possible relaxation moves. Each reorganization event lowers the stress and the overall restoring force 
response to a given deformation will thus depend on the available relaxation time.  

As a simplified picture, such pseudo-elastic behavior may be considered as a first order kinetics 
assuming at least two types of local deformations, (a) linearly strained regions with comparably large 
potential energy and (b) domains in which atomic displacements normal to the applied deformation 
mode helped to lower energy. The overall stress σ will then result from a combination of type (a) and 
type (b) contributions, subject to the corresponding occurrences ℎ௔ and ℎ௕ ൌ 1 െ ℎ௔, respectively: 

ߪ ൌ ℎ௔ ∙ ௔ߪ ൅ ሺ1 െ ℎ௔ሻ ∙ ሻݐℎ௔ሺ		ℎݐ݅ݓ					௕ߪ ൌ 1 ∙ ݁ି
௧ ఛೝ೐೗ೌೣೌ೟೔೚೙ൗ             (2) 

where the characteristic relaxation time scale ߬௥௘௟௔௫௔௧௜௢௡ is the inverse of the a→b transition rate 
  .௔→௕ሺܶሻ—which is a function of temperature as given by the Arrhenius law [20]ݎ

߬௥௘௟௔௫௔௧௜௢௡ ൌ 1 ௔→௕ൗݎ ൌ ݐݏ݊݋ܿ ∙ ݁ା
∆ா

௞ಳ்ൗ                                       (3) 

To illustrate the importance of local reorganization events, in Figure 1 we depicted snapshots 
from an epoxy polymer model taken from [10]. In this 100 ns MD simulation run we did not apply 
external loading to the model system, but only used an (anisotropic) barostat-thermostat algorithm to 
inspect thermal fluctuations at 1 atm and 300 K, respectively. Comparing the two snapshots, we find 
(i) a quite homogeneous distribution of atomic displacements in the ball-park of 0.1–0.2 nm and (ii) a 
strongly inhomogeneous pattern of atomic displacements up to 1 nm. Here, (i) reflects typical 
vibrations of atoms with respect to their lattice site. In contrast to this, the much rarer, but larger 
displacements of type (ii) illustrate local reorganization of polymer strands. For the latter, the system 
must overcome energy barriers stemming from the dissociation of strand-strand contacts and the 
sliding of adjacent molecular moieties [5].  
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Figure 1. (a): Snapshot from a 98%-cured epoxy polymer model as adopted from [10]. 
(b): same system after 100 ns MD simulation at 1 atm and 300 K. The scale bar indicates 
1 nm. The extend of atomic displacements is highlighted by a color code to discriminate 
(i) 0.1–0.2 nm scale fluctuations (grey) that are homogeneously distributed in the 
polymer model—and actually occur on much faster time scales <10 ns. On the other 
hand, (ii) we identified 0.5–1 nm scale atomic displacements that stem from local 
rearrangement of polymer strands with respect to each other. The close-ups highlight the 
flipping of a polymer strand (red) with a maximum atomic displacement of about 1 nm. 
This kind of reorganization events (ii) involves the crossing of energy barriers and thus 
occurs on much slower time scales as compared to the 0.1–0.2 nm vibrations (i). Note 
that the extent of chain flexibility strongly depends on the type of polymer and increases 
with decreasing degree of cross-linking. 

In absence of external loading, such local rearrangement events occur without orientation 
preference and thus lead to fluctuations of the simulation cell (which we will inspect more closely in 
the next section). However, in a model system which experiences deformation, the rotation of 
polymer strands within the twisted network gets biased in favor of stress reduction. This leads to an 
exponential decay of ߪሺݐሻ as predicted by Eq 1—and monitored within MD simulations at constant 
strain as illustrated in Figure 2.  
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Figure 2. (a): tensile stress relaxation as a function of time as observed in deform-and-
hold MD simulations. Using the same starting point, relaxation at constant elongation of 
the simulation model is explored at different temperatures and subjected to exponential 
fits. On this basis, the cascade of relaxation moves is approximated by first-order kinetics 
triggered by an average reorganization barrier ∆ܧ . (b): the Arrhenius plot of the 
relaxation rate according to Eq 3 leads to ∆ܧ ൌ 2.5	ሺേ0.7ሻ	݇஻ ∙ 300	K. Note that the 
simulation model uses a reactive force-field that diminishes barriers from bond 
formation/cleavage. The relaxation kinetics reported here hence refer to the sliding and 
twisting of polymer strands, exclusively (see also Figure 1).  

The most widely spread approach to assessing elastic moduli at non-zero temperature is to 
perform MD simulations combined with induced deformation of the simulation cell. In analogy to 
the experiment, tensile testing or shearing within MD runs may be implemented by application of 
external stress with is ramped up linearly as a function of time. The fundamental difference here is 
however the large gap between experimental time scales and the ns to μs time scales available to MD 
simulation using force-fields of atomic resolution. This is even worse for ab-initio MD with offer 
electronic resolution, but barely reach the ns time scale. To get meaningful stress-strain diagrams 
from molecular simulation, the common route is to apply strain to the simulation cell and sample the 
resulting stress.  

Along this line, the shape of the simulation cell is controlled externally, typically whilst 
maintain the overall volume of the system. In ref. [10], we used an unbiased approach for this 
purpose, namely via implementation of axial deformation at constant rate using ߳ଵଵ ൌ 1 ൅ ߳ሶ ∙
ሺݐ െ ܽ ଴ሻ and fixing the length of the corresponding cell vector റܽ toݐ ൌ ߳ଵଵ ∙ ܽሺݐ଴ሻ, whereas a 2-
dimensional barostat algorithm allows relaxation in the perpendicular directions [10]. Stress-strain 
profiles collected in this manner will nevertheless depend on the applied rates and convergence 
checks from comparing a series of deformation runs of different strain rates are advised. For simple 
single crystalline systems, this often suffices to obtain reasonable agreement with the experiment. In 
turn, molecular materials—like the polymer model used as a demonstrator system in Figures 1      
and 2—are however quite likely to display very slow relaxation modes [5]. Indeed, tensile testing of 
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epoxy polymer shows strain rate dependence even in experiments performed on the time scale of up 
to 105 s—which exceeds the scope of MD simulations by more than 10 orders of magnitude [21].  

To model such systems in a more realistic manner, MD simulations need to be redirected to 
mimic quasi-static conditions. For this, a series of deformed simulation cells may initially be 
prepared from taking snapshots from constant strain rate runs. Next, the corresponding models are 
inspected in parallel MD runs at constant strain. This allows investing up to μs of relaxation time to 
an individual data point of the stress-strain diagram. The underlying relaxation process can be 
followed by monitoring stress as a function of time—as illustrated in Figure 2. While the overall 
relaxation might require even longer time scales, already 10 ns scale runs may offer insights into 
partial relaxation which suffices for exponential fits of the decay in ߪሺݐሻ as denoted in Eq 2. Using 
the asymptotic stress ߪሺݐ → ∞ሻ from this procedure for comparison to the experiment, we indeed 
found quite convincing agreement of the elastic part of the stress-strain diagrams and even the 
ultimate stress of the epoxy system before fracture [10,21]. 

4. Stress response from temperature-dependent fluctuations 

A very elegant way of assessing elastic properties of materials is to take use of spontaneous 
fluctuations from the equilibrium geometry [8,22]. For a given set of temperature and pressure 
conditions, we can describe the equilibrium cell of a simulation model by the length of the box edges 
ܽ଴, ܾ଴, ܿ଴  and	the	angles	between	the	cell	vectors ,଴ߙ	  ,଴ߚ ଴ߛ , respectively, and expand a Taylor 
series for describing the energy cost ∆ܧ of deviations ∆ܽ, ,ߙ∆ ∆ܾ, ,ߚ∆ ∆c	and	∆γ, respectively. For 
the example of bulk compression ∆ܸ, we thus get: 
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whereas full analogous expansions ∆ܧሺ∆ܽሻ ሻߙ∆ሺܧ∆ ,  etc. are obtained for tensile and shear 
deformation modes, respectively. Note that all derivatives are taken with respect to the equilibrium 
geometry which causes the first derivatives in Eq 4 to vanish. 

Per definition, elastic deformation implies a linear response of the restoring stress as a function 
of strain, namely: 
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    (6) 

In absence of external loading, the deviations of simulation cell volume ∆ܸ ൌ ܸሺݐሻ െ ଴ܸ (and 
likewise ∆ܽ,  etc.) only stem from thermal fluctuations and are hence as small as actually possible 	ߙ∆
at non-zero temperature. As a consequence, the elastic behavior is typically well described by the 

idealized linear formulation of Eq 5 with ܭ ൌ డమா

డ௏మ
ቚ
௏బ

 being a constant. While the implementation of 
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so-called non-linear elastic moduli is straight-forward [23], in what follows we focus on the ideal 
elastic case. 

After sufficient relaxation of a material under investigation to ensure thermodynamic 
equilibrium by means of constant-temperature, constant-pressure MD simulation, the fluctuations of 
the simulation cell are simultaneously obtained by monitoring the cell vectors as functions of time [22]. 
Taking use of Boltzmann statistics, the occurrence profile h of spontaneously observed deformations 
related to a given mode can directly be related to the corresponding energy profile. For the example 
of volume fluctuations∆ܸ ൌ ܸሺݐሻ െ ଴ܸ this implies 

ℎሺ∆ܸሻ ൌ ℎ଴ ∙ ݁
ିಶ

ሺ∆ೇሻ
ೖಳ೅ 			ൌ 	ℎ଴ ∙ ݁

ି
ಶబశ	

భ
మ಼ሺ∆ೇሻ

మ

ೖಳ೅ ൌ ݐݏ݊݋ܿ ∙ ݁
ି
ሺ∆ೇሻమ

మ೏∆ೇ                    (7) 

where the right part of Eq 7 refers to the fitting of a Gaussian distribution to the occurrence statistics 
of ∆ܸ ൌ ܸሺݐሻ െ 〈ܸ〉௧ with ଴ܸ ൌ 〈ܸ〉௧ and ݀௏ ൌ ݀∆௏ being the standard deviation of ∆ܸሺݐሻ. Likewise, 
Gaussian fits may be performed for the occurrence profiles of cell vector dimensions, e.g. ∆ܽሺݐሻ or 
the cell angles, e.g. ∆ߙሺݐሻ to provide the corresponding standard deviations ݀௔	and	݀ఈ, respectively. 
Thus, the analyses of a single MD run at thermodynamic equilibrium offers the entire set of elastic 
constants: 

ܭ ൌ ௞ಳ்

ሺௗೇሻమ
∙ 〈ܸ〉௧              (bulk modulus) 

(8)௔ܻ ൌ
௞ಳ்

ሺௗೌሻమ
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       (Youngs modulus in a direction) 

௔௕ܩ ൌ
௞ಳ்

൫ௗം൯
మ ∙

ଵ

〈௏〉೟
          (ab shear modulus) 

Despite the elegant simplicity of this approach, practical application to characterizing complex 
materials is complicated by the overlapping of elastic modes with other processes such as visco-
elastic deformation. Indeed, for molecular materials models subjected to direct sampling of 
occurrence statistics we typically find the elastic moduli from Eq 8 to be underestimated. This is 
nicely illustrated by our beforehand discussed benchmark system modelling an epoxy polymer [10].  

To assess the Youngs modulus for deformations along a, we find a superposition of elastic and 
visco-elastic fluctuations than can formally be written as: 

ܽሺݐሻ ൌ ܽ଴ ൅ ∆ܽ௘௟௔௦௧௜௖ሺݐሻ ൅ ∆ܽ௩௜௦௖௢ሺݐሻ                                         (9) 

As a consequence, the standard deviation taken from the overall occurrence statistics ݀௔ is equal 
or larger than that of the purely elastic deformation models, Figure 3 clearly indicates ݀௔ ൐ ݀௔೐೗ೌೞ೟೔೎ 
in the epoxy model. 
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Figure 3. Dimension of the cell vector a as a function of time as obtained for the epoxy 
polymer benchmark model. The plot shows a running average over (t, t-3 ns) to help 
discriminating fast fluctuations from the much slower viscous modes of reorganizing of 
the model. While the latter reflects rare transitions from one local energy minimum to 
another, elastic deformation implies fluctuations within a local energy minimum 
configuration. 

Ideally, the elastic constants should be derived from an exclusive statistics of ∆ܽ௘௟௔௦௧௜௖ሺݐሻ. For 

this, we however must discriminate elastic from non-elastic deformation which is far from trivial in a 
complex molecular material. The only guide for such differentiation is given by the different time-
scales of elastic deformation (fastest modes) and the usually much slower visco-elastic modes. 
Indeed, when sampling the occurrence profiles over short (here 5 ns) time intervals we found the 
standard deviations ݀௔ in line with experimental values of the Youngs modulus [10].   

In case of extended sampling over longer periods we therefore suggested to sample ݀௔ in 5 ns 
intervals, and then use the overall average 〈݀௔〉 as input to Eq 8 [10,15]. While this lead to excellent 
agreement of bulk, Youngs and shear moduli in line with the experiment, the obvious downside of 
this approach is the somewhat arbitrary choice of the time intervals. Moreover, few but still some of 
these intervals include larger scale deformation stemming from viscous modes of molecular 
movements. Anyway, we argue that fragmenting the statistics in time intervals converges to 〈݀௔〉 ≅
〈݀௔೐೗ೌೞ೟೔೎〉 for sufficiently short sampling periods, whereas the direct sampling of overall statistics 
implies 〈݀௔〉 ൌ 〈݀௔೐೗ೌೞ೟೔೎〉 ൅ 〈݀௔ೡ೔ೞ೎೚〉 and thus inadequate inputs to Eq 8. In ref. [10], the choice of 5 
ns was motivated by choosing the sampling intervals short, whilst still providing smooth occurrence 
profiles for fitting the Gaussians reliably.  

From a materials science perspective, the separation of (ideal) elastic and pseudo/visco-elastic 
modes reflects the spatial and time-depend fluctuations of elastic constants in polymer materials at 
the nm (ns) length (and time) scales, respectively [5,24]. From a mathematical viewpoint, the 
separation of scales is routinely performed by means of Fourier filtering. To bring this together, we 
analyzed the Fourier transforms of the simulation cell shape and dimensions as shown in Figure 4. 
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Figure 4. Fourier transforms (FT) of the fluctuations of ܽሺݐሻ, ሻݐܸሺ	and	ሻݐሺߙ  being 
functions of ߥ as shown by dashed curves in red, blue and green, respectively (right axis). 
Estimates of ܽ௘௟௔௦௧௜௖ሺݐሻ, ሻݐܸ௘௟௔௦௧௜௖ሺ	and	ሻݐ௘௟௔௦௧௜௖ሺߙ  are obtained from back-
transformation using ߥ ൒  ௖௨௧ filtering. On this basis, we obtain the Youngs, shear andߥ
bulk moduli (solid curves) at 300 K and 1 atm as functions of ߥ௖௨௧, respectively (left 
axis). To identify the best choice of cut-off delimiters ߥ௖௨௧ for separating the time scales 
of fast, elastic modes and longer termed viscous reorganization, we suggest the first 
minimum in the corresponding FT-plot. Indeed, this leads to excellent agreement with 
the experimental data as indicated by (x) along the left axis [21,25,26].  

The intensities of the Fourier transforms of ܽሺݐሻ, ሻݐܸሺ	and	ሻݐሺߙ  show a clear peak at low 
frequencies ߥ ൏ 0.05 െ 0.1	nsିଵ, subject to the mode of deformation. In turn, a broader spectrum is 
found for the faster vibrational modes. To separate elastic and visco-elastic type fluctuations, we 
suggest Fourier-filtering by means of a cut-off frequency delimiter ߥ௖௨௧: 

ܽሺݐሻ ൌ 	ܽ௘௟௔௦௧௜௖ሺݐሻ ൅ ܽ௩௜௦௖௢ሺݐሻ ൌ ,ሻሿݐሾܽሺܶܨଵሾିܶܨ ߥ ൒ ௖௨௧ሿߥ ൅ ,ሻሿݐሾܽሺܶܨଵሾିܶܨ ߥ ൏  ௖௨௧ሿ     (10)ߥ

with 

ܽ௘௟௔௦௧௜௖ሺݐሻ ≅ ,ሻሿݐሾܽሺܶܨଵሾିܶܨ ߥ ൒  ௖௨௧ሿ                                (11a)ߥ

ܽ௩௜௦௖௢ሺݐሻ ≅ ,ሻሿݐሾܽሺܶܨଵሾିܶܨ ߥ ൏  ௖௨௧ሿ                                 (11b)ߥ

Likewise, analogous filtering of ߙሺݐሻand	ܸሺݐሻ is obtained, however using individual frequency 
delimiters ߥ௖௨௧  to account for the different dynamics of tensile (ߥ௖௨௧ ൌ 0.1	nsିଵሻ, shear (ߥ௖௨௧ ൌ
0.05	nsିଵሻ and bulk volume (ߥ௖௨௧ ൌ 0.04	nsିଵሻ deformations. 

On the basis of these approximations, we sampled the fluctuations ݀௔೐೗ೌೞ೟೔೎ and ݀௔ೡ೔ೞ೎೚ of merely 
elastic ܽ௘௟௔௦௧௜௖ሺݐሻ and viscous ܽ௩௜௦௖௢ሺݐሻ deformation modes of the simulation cell as illustrated in 
Figure 5. This separation of time scales leads to more reliable sampling of the elastic-type 
fluctuations ݀௔೐೗ೌೞ೟೔೎ as compared to the statistics taken from a series of time intervals we discussed 
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earlier. This is also reflected by comparing our modeling results to the experimental assessment of 
the Youngs, shear and bulk moduli as functions of temperature, respectively. 

 

Figure 5. (a) Profiles of ܽሺݐሻ , grey curve, and its Fourier-filtered (ߥ௖௨௧ ൌ  0.1 ns−1) 
components ܽ௘௟௔௦௧௜௖ሺݐሻ and ܽ௩௜௦௖௢ሺݐሻ shown in blue and red, respectively. Note that the 
10 ns scale shifting of the simulation cell dimension ܽሺݐሻ  is practically exclusively 
described by ܽ௩௜௦௖௢ሺݐሻ , whereas the fast, elastic-type vibrations within local energy 

minima is obtained as ܽ௘௟௔௦௧௜௖ሺݐሻ. The standard deviations ݀௔೐೗ೌೞ೟೔೎ (and likewise ݀ఈ೐೗ೌೞ೟೔೎ 

and ݀௏೐೗ೌೞ೟೔೎ ) provide reliable estimates of the Youngs, shear and bulk moduli, 
respectively. (b) Occurrences h of ܽሺݐሻ, ܽ௘௟௔௦௧௜௖ሺݐሻ  and ܽ௩௜௦௖௢ሺݐሻ  and corresponding 
Gaussian fits shown as dots and solid curves, respectively. The color code is analogous 
for both figures. 

For such benchmarking, we decided to focus on the study of Littell et al. in which a consistent 
series based on a constant experimental setup was used (Figure 6) [21]. Likewise, we analyzed the 
elastic properties as a function of temperature using the same atomic configuration as starting point 
for MD runs at 300,350,400 and 450 K, respectively. While the modeling data obtained at 300        
and 350 K nicely agrees with the experimental data available, we find that a clear-cut separation of 
time scales for elastic/viscous deformation modes may not be achieved for MD runs at 400 K or even 
larger temperatures. This limitation is in line with the intrinsic difficulty in discriminating elastic and 
viscous deformations in polymers near their glass transition temperature (~440 K) [10]. 
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Figure 6. Elastic moduli of epoxy polymers cured from bisphenol F diglycidyl ether and 
4,6-diethyl-2-methylbenzene-1,3-diamine as functions of temperature. The dashed lines 
show the average results of tensile and compression experiments performed at a strain 
rate of 10−3 s−1 as taken from ref. [21]. Youngs, shear and bulk moduli as obtained from 
MD simulations at 300 and 350 K are marked as (x) using red, blue and green color, 
respectively. 

5. Conclusions 

Molecular modeling and simulation approaches are continuously catching up with the 
complexity of modern molecular materials. While early simulation studies of polymer networks 
mainly coped with the appropriate description of molecular interactions [11], current computational 
resources allow all-atom modeling based on robust empirical interaction potentials such as the OPLS 
or GAFF force-fields [27,28]. Clearly, the length scales inherent to proper modeling of complex 
polymer networks still oppose a full ab-initio description, in particular when it come to dynamics 
calculations. However, reactive force-field approaches and combined quantum/classical techniques 
help to provide near ab-initio accuracy where needed, namely for the cross-links between the 
polymer precursors [10,15,29–31].  

This not only boosted the quality of assessing the atomic interactions of a given polymer model, 
but also greatly helped to create the model itself. Indeed, for non-crystalline networks of molecules it 
is far from trivial to provide realistic starting structures and extensive relaxation of the simulation 
systems is needed to ensure convergence. With typically dimensions exceeding the 10000 atoms 
scale and relaxation times beyond the 10 ns scale, the use of smart molecular mechanics models is 
likely to prevail the state-of-the-art also in the nearer future. 

The issue of structural complexity, and the time-dependent diversity of local ordering in 
molecular materials is also reflected in the analysis and the understanding of mechanical properties. 
The techniques reviewed in the present work offer a versatile toolbox for this purpose. Among these 
methods, the computational demand differs quite significantly. Temperature-dependent analyses of 
molecular dynamics simulation runs are clearly the most expensive option—but allow exciting 
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atomic scale insights into complex network dynamics in parallel to computing macroscopic 
properties. Thus, for the actual understanding of molecular materials we consider molecular 
simulations as an important, if not indispensable extension to the experiment. 
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