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Abstract: A dual doped regio-regular poly(3-hexylthiophene-2,5-diyl) (P3HT) was investigated to 
develop a multi-functional organic field effect transistor (OFET). OFETs based on a pristine P3HT 
and a dual doped P3HT (P3HT:PCBM:I2 blend) were fabricated to study the impact of doping on the 
electrical properties of the samples, and to examine the mechanism through which it amplified the 
output performance of the doped OFETs. A series of experimental techniques such as device 
electrical characterization, active layer surface analysis, and photon absorptivity measurements were 
conducted to quantitatively characterize the principal parameters that are susceptible to change as a 
result of doping. Topographic mapping revealed the expected doping-induced improvements in 
surface morphology, which could be associated with the ability of iodine to improve interdigitation 
between adjacent P3HT chains. Similarly, absorption spectra showed a 3 nm red-shift of the light 
absorbance spectrum of the doped samples compared to the undoped samples. The electrical 
conductivity of the samples was also examined at various conditions of temperature and light 
intensity, and the values obtained from the doped sample were approximately one order of magnitude 
higher compared to those of the undoped sample at room temperature, which explains the reason 
behind the higher output current drawn from the doped device compared to that of the undoped 
OFET. The explanation for this is two-fold, both PCBM and iodine promote the generation of free 
charge carriers, which increases the electrical conductivity of the active layer; and in addition to that, 
the improved P3HT main-chain interdigitation brought about by the introduction of iodine results in 
an increase in charge-carrier mobility, which also results in higher electrical conductivity. The 
findings of this study offers valuable information that could be instrumental in further advancing the 
future organic semiconductors based studies.   
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1. Introduction 

While the cutting-edge silicon-based electronic devices are advancing in an unprecedented 
fashion, the call for cost-effective, environmentally friendly, lightweight, and physically flexible 
electronic products has brought enormous attention to the semiconducting-polymer-based technology. 
Over the past few decades, semiconducting polymers have been the focus of a wide spectrum of 
advanced research to overcome their inherent drawbacks, in an effort to make them commercially 
available and competitive with their silicon-based counterparts [1–4]. These studies have, to a certain 
extent, narrowed down the gap in performance and applicability between the traditional inorganic 
semiconductors and organic semiconductors in a wide range of applications [5–8] such as 
thermoelectric systems, photovoltaics, screen displays, biosensors, etc., in which, some of those 
applications have been commercialized successfully [9].  

Regio-regular poly(3-hexylthiophene-2,5-diyl) (P3HT), a p-type conjugated semiconducting 
polymer, is among the list of most frequently studied semiconducting polymers. It has been the 
subject of many studies for a variety of applications, both in its pristine and doped forms [10–12]. 
Although they follow different mechanisms, scientific studies have shown that doping organic 
semiconductors has the same outcome as doping inorganic semiconductors, improvement in 
electrical conductivity [13–15]. As such, studies done on P3HT for potential thermoelectric and 
photoelectric applications have shown a noticeable enhancement in device performance as a result of 
doping [5,16–18]. As illustrated in those articles, the doping-induced performance enhancements 
could be attributed to multiple contributing variables associated with the introduction of the doping 
species into the host polymer semiconductor.  

We have previously reported preliminary data on a multi-functional OFET based on a 
dual-doped P3HT [19]. In that study, the active layer of the OFETs comprised of P3HT, 
simultaneously doped with [6,6]-Phenyl C71 butyric acid methyl ester (a mixture of isomers 
(PCBM)) and iodine (I2) to enhance the targeted photoelectric and thermoelectric functionalities, 
respectively. We found that each dopant resulted in improved device performance in their respective 
functionalities, compared to the P3HT-based OFETs. Such performance enhancement could be 
attributed to multiple doping induced factors, which includes improved molecular structural 
alignment which would favor charge carrier mobility, or it could also be as a result of donor/acceptor 
interface facilitated free charge carrier generation, or maybe both factors could have come to effect 
simultaneously. It is very important to underline that the charge transfer that takes place at the 
donor-acceptor interfaces is driven by the energy offset between the frontier orbitals (HOMO/LUMO) 
of the host polymer (P3HT) and that of the dopants (PCBM and Iodine). It is through this process 
that the free charge carrier density is improved. Schematic representation of both the photoelectric 
and thermoelectric charge transfer mechanisms are depicted in Figure 1a,b, respectively.  
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(a) (b) 

Figure 1. (a) Schematic of a doping enhanced photoelectric (charge generation) process. 
(b) Schematic of a doping enhanced thermoelectric (charge generation) process. 

In the present work, OFETs based on pristine-P3HT, and doped-P3HT were studied to 
investigate the impact of doping on the electrical properties of the doped samples, and the 
experimental results were analyzed to explain the doping-related performance enhancements seen in 
the doped OFETs. Additionally, it is worth mentioning that a great deal of optimization was done on 
the previously reported devices, that the data collected from these set of devices surpasses that the 
ones reported previously.  

2. Materials and method 

2.1. Device fabrication  

Two types of organic semiconductor (OSC) solutions; one of P3HT (purchased from 
Sigma-Aldrich, product #: 445703), and one of a dual doped P3HT, were first prepared in two 
separate vials. The undoped solution was prepared by dissolving 10 mg of P3HT in 1 mL of 
1,2-dichlorobenzene (purchased from Alfa Aeser, product #: A13881), while the doped solution was 
prepared by dissolving a mixture of 10 mg of P3HT, 0.5 mg of PCBM (purchased from 
Sigma-Aldrich, product #: 684465), and 0.5-mol% of iodine (purchased from Alfa Aeser, product #: 
A12278) in 1 mL of 1,2-dichlorobenzene. Both solutions were stirred with magnetic stirrer bars 
overnight. Every item consumed in this work was used as received from their respective vendors.  

All the experimental measurements done in this work, except for the photo absorption studies, 
were conducted on organic field-effect transistor device samples. The OFETs were fabricated on 
prefabricated heavily doped n-type silicon wafers with an ~300 nm thick thermally grown SiO2 
dielectric layer. The steps of the device fabrication process are as follows: the wafers were first 
cleaned according to a series of standard cleaning procedures, which started with sonication in 
acetone and isopropyl alcohol baths for 10 min each, followed by 15 s of plasma cleaning. Following 
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the cleaning procedure, the wafers were subjected to a surface treatment process which was carried 
out by submerging the wafers in a 10 mM octyltrichlorosilane (OTS) solution for 20 min. After the 
dielectric layer surface modification process, the wafers were blow-dried with nitrogen gas, and then 
passed through another round of plasma cleaning for five seconds. Once the wafers have passed 
through the cleaning and surface treatment stages; the source, drain, and gate, gold (Au) contacts 
were deposited on the dielectric surface, where, a 3 nm thick chromium (Cr) film was first deposited 
to help the ~70 nm thick Au film adhere well to the dielectric surface. The metal contact deposition 
process was done inside a high-vacuum Electron-beam (E-beam) deposition chamber. A 
prefabricated source-drain deposition shadow mask with transistor channel length of 50 μm and 
channel width of 1 mm was used to transfer the patterns onto the dielectric surface. To complete the 
bottom-gate—bottom-contact thin-film transistor structural configuration (see Figure 2), the OSC 
solutions were spin-coated onto the top of the source-drain contacts at 1000 rpm for 30 s, followed 
by 3000 rpm for 10 s, covering the whole of the FET channel with a thin film of ~60 nm thickness. 
Finally, the OFETs were annealed inside a vacuum oven, at ~100 ℃, for 3 h. 

 

Figure 2. Schematic of the bottom-gate—bottom-contact structural configuration of the OFET. 

For absorption studies, thin-films of the OSC solutions were spin-coated onto cleaned plain 
glass slides. Similar to the OFET samples, these samples were also annealed for 3 h inside a vacuum 
oven at ~100 ℃. 

2.2. Characterization 

The output current and transfer characteristics of the OFETs were measured using a KEITHLEY 
4200-SCS semiconductor analyzer connected to a SIGNATONE 1160 series probe station. These 
measurements were carried out at varying conditions of light intensity and temperature. The impact 
of doping on the morphology (thin film surface topography) of the active layer was studied using a 
Bruker Veeco Dimension XT Atomic Force Microscope (AFM). As for the photo absorption 
measurements, the doped and undoped polymer films were measured by a PerkinElmer Lambda 
1050 UV/VIS/NIR Spectrometer.  

3. Results and discussion 

As mentioned above, the OFETs were tested under varying conditions of light intensity and 
temperature. The doped sample’s sensitivity to changes in light intensity and temperature, and its 
doping related improvements in performance, were analyzed by comparing to the performance 
produced by the undoped OFETs. The photoelectric measurements were carried out under light 
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intensities 2.22 mW/cm2, 4.45 mW/cm2, and 10.01 mW/cm2; while the thermoelectric measurements 
were conducted at temperatures 20 ℃, 25 ℃, and 30 ℃. Each measurement was done at gate 
voltages +60 V, +30 V, 0 V, −30 V, and −60 V. 

As indicated in the photoelectric output current performance of the OFETs shown in Figure 3, in 
both the doped and undoped devices, the increase in light intensity resulted in higher output current, 
and this is attributed to photoelectric mobile charge generation. However, if the performance of these 
device under the same test conditions is compared to each other, the doped devices outperformed the 
undoped samples by a significantly higher margin, ranging by as high as a factor of 30. This outcome 
is due to the presence of PCBM photo-acceptor in the doped samples, which led to more free charge 
carrier generation. Similarly, in the thermoelectric measurements, the thermoelectric effect in both 
the doped and undoped samples showed an increasing trend as the uniformly applied heat was 
increased. However, again, as shown in Figure 4, at each test temperature, the doped OFET produced 
higher output current than the undoped OFET. This is mainly attributed to the higher charge 
concentration (compared to the undoped samples) that resulted from the iodine thermoelectric dopant 
facilitated charge generation.  

   

(a) (b) (c) 

  
(d) (e) (f) 

Figure 3. Source-drain output current I-V curves of the P3HT based OFET at (a) 2.22 
mW/cm2, (b) 4.45 mW/cm2, and (c) 10.01 mW/cm2. Source-drain output current I-V 
curves of the doped-P3HT based OFET at (d) 2.22 mW/cm2, (e) 4.45 mW/cm2, and (f) 
10.01 mW/cm2. 
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(a) (b) (c) 

 
(d) (e) (f) 

Figure 4. Source-drain output current I-V curves of the P3HT based OFET at (a) 20 ℃; 
(b) 25 ℃; and (c) 30 ℃. Source-drain output current I-V curves of the doped-P3HT 
based OFET at (d) 20 ℃; (e) 25 ℃; and (f) 30 ℃. 

In our previous work, we concluded our findings with a hypothesis that the drastic increase in 
output current seen in the doped samples was as a result of doping induced improvement in the 
electrical conductivity (σ) of the active layer. To justify this hypothesis, in this work, we processed 
the far more optimized data acquired from both the doped and undoped samples, to quantitatively 
explain the impact of doping on the overall performance of the devices. The electrical conductivity 
of each sample, under each test condition, was calculated using the Ohmic model shown in Eq 1; 
where, “L” represents the transistor channel length, “A” represents the cross-sectional area of the 
gate voltage induced conducting channel, and “Ids” represents drain current at a particular drain 
voltage, “Vds”. The values for Ids and Vds were extracted from the linear regime of the source-drain 
I-V curves acquired at Vg = −60 V. In a typical organic field effect transistor, the cross-sectional area 
of the conductive channel is determined by multiplying the channel width (W) by the thickness of the 
conductive channel (which has been reported to be in the range of 3.4–4 nm). 

	

	
                                 (1) 

In favor of the previously made assumption, the electrical conductivity plots in Figure 5a,b 
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show that each dopant resulted in enhancement of the electrical conductivity of the doped thin films, 
which ultimately resulted in better device performance of the doped OFETs compared to the undoped 
ones. Details on how much of an impact each dopant has in the much-improved performance 
exhibited by the dual-doped OFETs can be comprehended by weighing the effect of dual-doping 
covered in this study with the previously reported studies on only PCBM doped OFETs [20]. 

  

(a) (b) 

Figure 5. Electrical conductivity of pristine and doped P3HT thin-film active layers 
plotted against (a) light intensity, and (b) temperature.  

In the photoelectric measurements, the increase in electrical conductivity with light intensity is 
mainly attributed to the PCBM photo-acceptor facilitated Frenkel exciton dissociation into free 
charge carriers [21–24]. In addition to that, as has been reported previously [25], the introduction of 
iodine could have also resulted in the formation of new transitional states in the host P3HT 
molecules, leading to the generation of more free charge carriers from low-energy photons (visible 
light range). The latter effect was characterized using a UV-VIS-NIR spectrometer, and as shown in 
Figure 6, the light absorbance plot shows a red-shift of the absorption peak of the doped sample by 
~3 nm. Furthermore, based on what has been reported in the literature, the higher electronegativity of 
iodine (2.66) compared to that of carbon (2.55) causes electrons to be transferred from the carbon 
atoms of the host P3HT main chain to the iodine dopant molecules, resulting in the formation of a 
C–I chemical bond, leaving the carbon atoms positively charged [26]. According to those reports, it 
is this C–I bond that enables the iodine doped samples to absorb light of longer wavelength (low 
energy) by promoting the formation of new optical transitions at lower energies than in the neutral 
P3HT, hence the red-shift. Another feature of iodine doping on facilitating exciton dissociation into 
free charge carriers was reported by Zhuo et al. [27]. In their report, they explained that this 
particular effect came about as a result of iodine inducing phase separation between P3HT and 
PCBM molecules. It is important to understand that, in terms of the overall impact of doping on the 
electrical conductivity of the doped samples, the imminent impact of iodine in generating free holes 
in the P3HT main chain via the C–I interaction goes hand-in-hand with the free charge carrier 
generation at the P3HT-PCBM and P3HT-I2 interfaces. Therefore, we believe that those attributes 
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that are related to iodine could have played an indubitable role in the collective better outcome 
exhibited by the doped samples. The UV-Vis measurement was conducted in the wavelength range 
between 400–650 nm, with data point collection interval of 1 nm.  

In the thermoelectric measurements, in addition to the thermoelectric charge generation (at the 
P3HT-I2 interface), the increase in the electrical conductivity of the active layer with temperature, to 
a certain extent, can also be associated with the temperature-induced higher charge mobility.   

 

Figure 6. UV-Vis spectra of a pristine and a doped P3HT thin-films on plain glass substrates. 

This doping related electrical conductivity enhancement was further evaluated from the 
standpoint of two important parameters that critically defines it, charge density and mobility.  

The charge density analysis, in the conducting channels of the doped and undoped samples, was 
carried out to examine the impact of doping on charge carried density. The study was done at each 
test condition under which the electrical characterization of the OFETs was conducted, and as shown 
in the charge concentration plots shown in Figure 7, the charge density in the conducting channel of 
the doped sample was found to be higher than that of the undoped samples. The higher charge 
concentration (at each data point) observed in the doped sample is a clear indication that both the 
photoelectric and thermoelectric doping mechanisms effected their intended purpose, charge carrier 
generation. It is worth noting that the charge concentration indicated in the discussion is of the gate 
voltage induced conductive channel, not of the bulk of the active layer.  
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(a)  (b) 

Figure 7. Charge carrier concentration in the gate voltage induced conducting channels 
under varying conditions of (a) light intensity, and (b) temperature.  

The principal purpose of the dual doping employed in this study was to enhance the ability of 
the P3HT-based OFETs to detect and respond to changes in light intensity and temperature. These 
effects were designed to come about as a result of the doping facilitated free charge carrier 
generation prompted improvement in the electrical conductivity of the active layer. With that being 
said, it is also important not to ignore the possibility of doping related morphological changes in the 
thin films. As proposed by Lee and Sun, iodine ions can stimulate improvement in P3HT main chain 
interdigitation (ordered main chain packing) [28]. Based off their claim, this more orderly packing 
leads to a structural arrangement on a molecular level; and based on that claim, one could 
hypothesize that the morphological enhancements would result in better charge carrier mobility in 
the polymer matrix. To examine if the low iodine doping concentration (0.5 mol%) used in this study 
has a meaningful impact on the thin-film active layer morphology, AFM scans were conducted on 
both the undoped and dual-doped samples. The surface roughness data shown in Figure 8a (as 
Roughness Average (Ra) and Root Mean Square (RMS) Roughness (Rq), elucidates that even at as 
low as 0.5 mol% doping concentration, iodine was effective in improving the surface morphology of 
the doped active layer. This observation falls in agreement with previously reported study on iodine 
doping [24], and based on those resemblances, here, we are making an assumption that the iodine 
doping could have also resulted in a more ordered P3HT chain packing, leading to higher charge 
transport. One way to experimentally warrant this assumption is to calculate charge mobility in the 
doped and undoped samples under the same test conditions and see if the results are in support of the 
argument. The linear charge-mobility ( ) in the conducting channel of each device was calculated 
using Eq 2, where, “L” represents the channel length; “W” represents the channel width; “Cox” 
represents the capacitance per unit area of the SiO2 dielectric layer, and “Vd” represents the drain 
voltage at which the transfer characteristics measurements were conducted. The variables  and 

 were extracted from the linear regime of the transfer curves. As the data presented in Table 1 
shows, under similar test conditions (at 20 ℃, 25 ℃, and 30 ℃), the charge mobility in the doped 
samples was higher than that of the undoped samples by approximately as high as a factor of 5. From 
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this observation, we can infer that the iodine doping-induced morphological improvement has, to a 
certain extent, elevated the performance of the doped devices by improving charge carrier mobility. 
Additionally, in both the doped and undoped samples, the increase in charge mobility with 
temperature adds to the overall contribution of mobility to the improved electrical conductivity with 
increase of temperature. The AFM images of the undoped and dual-doped P3HT thin films, from 
which the average surface roughness data was extracted from are displayed Figure 8b,c. 

	 	
                              (2) 

Table 1. Charge carrier mobility in the undoped and doped P3HT based OFETs at 
temperatures 20 ℃, 25 ℃, and 30 ℃. 

Temperature (℃) Doped (cm2/Vꞏs) Undoped (cm2/Vꞏs) 
20 6.48 × 10−3 1.76 × 10−3 
25 8.66 × 10−3 1.79 × 10−3 
30 9.47 × 10−3 1.97 × 10−3 

 
(a) 

(b) (c) 

Figure 8. (a) Surface roughness (in terms of Ra and Rq) of the pristine and doped P3HT 
thin-films. (b) AFM image of a P3HT thin-film. (c) AFM image of a P3HT:PCBM:iodine 
blend (doped P3HT) based thin-film.  
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From a collective standpoint, all of the above-discussed doping-related attributes improved the 
electrical conductivity ( ) of the doped active layer by improving two critical parameters, carrier 
concentration ( ) and mobility ( ); and this observation falls in agreement with Eq 3, which 
integrates the effect of charge density and charge mobility on the overall electrical conductivity of a 
semiconductor.  

                                   (3) 

4. Conclusion 

In summary, OFETs with P3HT-based active layer were fabricated in both pristine and doped 
forms. The devices were characterized under varying temperature and light intensity test 
environments. The experimental data collected under those test conditions was analyzed to 
quantitatively characterize the electrical conductivity of both the undoped P3HT and dual-doped 
P3HT (P3HT:PCBM:I2 blend) thin films. We found that the improvement in device performance seen 
in the doped samples was as result of doping induced enhancement in the electrical conductivity of 
the doped active layer. The electrical conductivity of the samples was then studied from different 
perspectives in relation to doping and doping-related parameters. Our findings showed that both the 
PCBM and iodine dopants contributed to the increase in charge density seen within the doped OFETs, 
while the iodine doping induced better interdigitation of the P3HT main chains resulted in a higher 
charge carrier mobility than that of the undoped OFETs. It is our supposition that the combination of 
these two effects is the driving force behind the much-improved device performance recorded from 
the doped OFETs. The findings of this study could be instrumental in further advancing future 
organic semiconductor based studies.  
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