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Abstract: The purpose of colloid science is to understand the underlying mechanisms involved in the
formation of ordered arrangements of particles, and to observe the self-assembly process in systems
of components larger than molecules. A major focus of colloid science has been on understanding the
forces between colloidal particles suspended in a fluid. For a long time, the main obstacle to verifying
theories of colloidal forces has been the lack of experimental methods capable of directly measuring
the forces between colloidal particles separated by a gap of few nanometers. Recently, advances have
been made with new imaging techniques revealing some of the secrets of the spontaneous formation of
pattern in homogeneous fluids. During the same time, models of interactions have been developed and
tested on macroscopic observations of suspensions after changing their composition. It is clear that
a general theory for the forces may not be suitable for all systems, as their characteristics are highly
dependent on chemistry and the microscopic environment. In colloidal suspensions, it is now well
established that an attractive interaction at distances slightly larger than the particle size is dominated
by a repulsive contribution at larger distances. The competition between attraction and repulsion forces
is responsible for the appearance of stable clusters of generic aggregation numbers. This paper is
intended to provide (i) evidence of the confidence of potential models with competing attractive and
repulsive interactions and (ii) appropriate tools for finding intriguing phenomena in the generation of
nanostructures.

Keywords: colloidal suspensions; microemulsions; diblock copolymers; density fluctuations; static
structures

1. Introduction

A great number of experimental and theoretical studies of soft materials have suggested that
diverse microscopic structures may exist in colloidal particle suspensions. With sizes between 10 and
1000 nanometers, the colloidal suspensions form complex fluids more sensitive to mechanical stress
than the purely molecular systems. Generally, the colloidal particles may have well defined electric
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charges which must be compensated by those of solvent molecules to ensure the electrical neutrality
of the system. Thus the complexity of these fluids is increased by the presence of dissolved ions,
surfactant or polymer molecules and other small solutes in the solvent [1]. Aqueous solutions of
micellar dispersions, globular proteins, microemulsions and diblock copolymer systems giving rise to
systems separated by microphases with periodic density modulation are particularly interesting.
Synthesized polymers such as polyethylene (PE), polystyrene (PS), polymethylmethacrylate
(PMMA)... are present in many chemical realizations of biopolymers [2, 3] like cellulose, proteins,
actin filaments and deoxyribonucleic acid (DNA). They are used in various forms [4] such as gels,
rubbers, synthetic fabrics, molded pieces, etc.

Soft materials are also scientifically important for testing and improving our understanding of
self-assembly hypotheses more sophisticated than is needed to describe the molecules, see e.g., [5].
Self-assembly is a process in which components spontaneously form ordered aggregates without
human intervention. Although much of the self-assembly processes have been performed on
molecular components, interesting applications of self-assembly can be found with particles of larger
sizes [6].

Among the particles suspended in a solvent, one can single out two distinct types. The lyophobic
particles abhor the solvent and undergo a weak dissolution. These particles carry charges of same
sign causing a mutual repulsion that prevents them from approaching each other. The suspensions
of arsenic trisulfide (As2S3) or clay are typical examples, with a high negative charge that precludes
the particles from coagulating. Conversely, the lyophilic particles, such as starch suspensions, feel a
strong attraction for the solvent. They are characterized by a significant solvation, i.e., a great ability
to aggregate with the solvent molecules, until formation of gels when the concentrations are high
enough [3]. The difference in behavior of these two types of colloidal suspensions is related to the
process of charge compensation and to the local changes undergone by the electrolyte solution in
presence of charged particles.

As regards the conditions of stability in colloidal solutions, they strongly depend on mutual
interactions between particles and ions. Unlike molecular systems where the range of interaction is
comparable to the particle size, in colloidal suspensions the range of interaction is smaller than the
particle size. Under certain circumstances, the sticky hard sphere model [7], albeit crude, has been
used successfully in studies on colloidal suspensions [8]. As a result, the nanometer-sized particles
form clusters and ordered colloidal suspensions widely depending on concentration, temperature,
solvent composition, chemical constituents on the colloids, etc. Between colloidal particles, the main
source of attractive forces is of the van der Waals type. But the colloidal suspensions must often be
stabilized by repulsive forces to prevent the aggregation of particles of the dispersed phase [3]. The
two main mechanisms that produce the repulsive forces are electrostatic stabilization and steric
stabilization [9]. Electrostatic stabilization is based on the repulsion of colloids carrying similar
electrical charges. Steric stabilization consists in fixing the polymers having a high affinity with the
solvent, on the colloidal particles, so that the latter, is getting close, would prefer to interact with the
solvent and repel each other. Contrarily, in some cases, non-adsorbed polymer solution is expelled
from the thin excluded volume surrounding each colloidal particle, causing a weak attractive
depletion force between the colloidal particles, which is inherently entropic [10]. Thus, a colloidal
suspension is said to be stable when a sufficiently strong repulsive force counteracts the van der Waals
attraction. In other words, the stability of a colloidal suspension results from the balance between

AIMS Materials Science Volume 6, Issue 4, 509–548.



511

attractive interactions and repulsive interactions which are exerted on the particles.
On the side of experiment, the confocal microscopy [11–13] and the small angle neutron scattering

[14] reveal the formation of clusters growing in size and becoming strongly anisotropic, eventually
coalescing into elongated structures. For the advance in theory of these intriguing complex fluids,
the cornerstone is the definition of the interparticle potential, which is then rigorously included in
simulations done using the method of the statistical mechanics [15].

The known interaction models for colloids encompass an attractive well at short distances just
behind the collision diameter, followed by a long-range repulsion. As already mentioned, the
long-range attraction favoring the aggregation is countered by the long-range repulsion, which
prohibits further growth. As an example, the double Yukawa potential [16] with appropriate values of
the parameters has the good features for studying the colloidal suspensions [17–20]. The long-range
repulsion changes drastically the phase diagram of purely attractive potentials at long distances [21].
Specifically, in case of long-range forces between colloids being only attractive, the colloidal
suspensions exhibit a stable liquid-vapor transition depending on the potential well. The inclusion of
long-range repulsion makes possible metastable fluid–fluid transition and so complicates the
thermodynamic phase transitions considerably [17, 22, 23]. The phase diagram of the colloid-polymer
systems depend on the ratio of the colloid particle size σ to the gyration radius rG of the polymer that
corresponds roughly to the position of attractive well of the potential [1, 10]. It has been shown [24]
that the critical point disappears when rG/σ < 1/3. A similar absence of liquid–gas transition is found
for proteins and large molecules as the fullerene C60. An effective way to determine the strength and
range of interparticle interactions is to study the temperature-induced phase transition, where the
inverse of attractive strength of the potential is used as a measure of the temperature.

This work is devoted to the features of a certain class of soft materials such as colloids, globular
proteins, microemulsions, copolymers, etc. and their modelling in terms of effective pair potential.
Our study is limited to spherical particles and interactions between them which depend on the distance
only, not on mutual configurations. The only exception will be the inclusion of the interactions potential
between two plates. For details on these questions, we refer the reader to the literature [25–27] and
specially to the book of Israelachvili [28] that contains many problems and discussion topics. As
the statistical-mechanical simulations proceeding from microscopic definitions do eventually lead to
predicting macroscopic properties, some results of static structure and thermodynamics of the cluster
fluid phases will be presented in the last part of the manuscript.

2. Colloids, globular proteins, microemulsions, copolymers

Colloidal suspensions are involved in many phenomena (precipitation, flocculation,
sedimentation...) playing an important role in the formation of clusters and in the transport of certain
substances [4, 14, 29, 30]. It is of great interest for environment to regulate sedimentation in estuaries
silted up with sand, clay and silt or to control the transport of toxic metals in water or sol. As another
example, various constituents of the cytoplasm form a colloidal suspension in the living cell, the
dispersion medium of which consists of water containing mineral salts and monosaccharides in
solution, and the dispersed phase is formed of protein macromolecules.

Certain colloidal suspensions are rich in spheroidal aggregates of nanometric size formed of
molecules having a hydrophilic polar head directed towards the solvent and a hydrophobic tail
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directed towards the core. In some cases, the molecules can self-assemble in aqueous medium to form
micelles, liposomes or bilayer sheets (Figure 1). Liposomes (micelles consisting of concentric lipid
bilayers enclosing aqueous compartments) are increasingly used in pharmaceutical research (to carry
drugs and monitor their accumulation) and in medical imaging by introducing fluorescent-labeled
substances.

Figure 1. Colloidal suspensions: micelle, liposome, bilayer sheet.

As already mentioned, attractive interactions promote ordered phases, whereas long-range
repulsions inhibit this tendency. At low density, long-range repulsions may lead to glasses and,
combined with long-range attractions, a variety of others states may be found [31, 32] as gels, glassy
states of clusters, reminiscent states of Wigner glasses. When the density is increasing, clusters can
become more and more anisotropic and lead, at the end, to gelation by forming a network with
chainlike local structure [22, 33]. For small ranges of interaction compared to the particle size,
simulation computations have shown the presence of a Wigner glass of clusters observed in charged
colloidal dispersions for very low concentration [34], in analogy with the Wigner crystals produced
by long-range Coulombic interactions in the electron gas [35].

Globular proteins in aqueous solutions have been widely studied. A protein is a biological
macromolecule formed of one or more polypeptide chains, each of them consisting of small subunits
(amino acids) linked together, that constitutes their elementary structure. Different chemical
properties determine the spatial arrangement of the amino acids along the polypeptide chain. A
special case is represented by the spherical globular proteins, which are highly soluble in the solvent
(Figure 2). They play an important role in metabolism. Representative of globular proteins are
albumins and globulins, abundant in animal cells and blood serum. Hemoglobin is a protein whose
primary function is the transport of oxygen in humans and other vertebrates, and which is responsible
for the color of red blood cells. Lysozyme is encountered in a number of secretions (tears, saliva,
breast milk, mucus ...) and egg white in many species of animals. Enzymes are most often proteins,
consisting of amino acid chains and acting in lowering the activation energy of a chemical reaction,
thereby increasing reaction rate.
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Figure 2. A polypeptide chain made of amino acids and a spherical globular protein.

A number of techniques have been designed to produce proteins crystals. Systematic investigation
of the process is difficult due to the slow time scale: the growth of a regular crystal may take weeks or
months. Aside from the crystallization of dense colloidal suspensions, spherical clusters of proteins
may also be formed at lower concentrations. Recent experiments indicate that clusters formed in
dilute solutions exhibit no tendency of bulk phase transition [36,37]. In contrast, a liquid–liquid phase
separation occurs when a protein solution is cooled below its cloud point temperature, i.e., the
temperature above which the aqueous solution remains practically homogeneous and transparent,
whereas below that temperature it separates into two coexisting liquids, one is rich in proteins and the
other is poor in proteins. The onset of the formation of droplets via liquid–liquid phase separation
(sometimes called coacervation) takes only few minutes. Note that liquid–liquid transition may be
metastable because of the long time of equilibration; the demixion into two distinct liquid phases
separated by a sharp meniscus may take many days. The clusters formation is different from the
critical nucleus occurring during the vapour–liquid phase separation.

Of particular interest is the spontaneous microphase formation in systems of spherically symmetric
particles lying at the interface of two simple liquids. These systems, known as microemulsions, are
of industrial importance because they produce very low interfacial tensions (by cosolubilizing certain
elements in the medium) and of scientific interest because the formation of their microstructures is not
yet well understood. A microemulsion is a thermodynamically stable dispersion of two immiscible
liquids, optically isotropic and stabilized by one surfactant (amphiphilic molecules). Since the typical
sizes of mesophases (of few nanometers) are smaller than the light wavelength, the dispersions are
generally transparent. In contrast, the macroemulsions made of large droplets of diameter greater than
1 µm, in the gravitational field, are thermodynamically unstable in the sense that the droplets sediment
or float, depending on the densities of the dispersed phases.

A microemulsion contains a polar solvent (water), a nonpolar solvent (oil) and a surfactant,
composed of long amphiphilic molecules having at one end a hydrophilic polar segment and at the
other end a hydrophobic segment. Usually, a second amphyphilic component (cosurfactant) is
introduced in order to ensure the flexibility of the interface and favour the microemulsion formation.
By its tendency to locate between water and oil regions, the surfactant reduces the interfacial tension
by several orders of magnitude and imposes a topological order of the microemulsions, but
microemulsions remain geometrically disordered in the interstitial domains [38]. The role of the
surfactant is to leave the dispersion macroscopically homogeneous and to arrange the mesophases on
a microscopic scale. The microstructure has been examined by various techniques, e.g., light
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scattering, conductivity, diffusion by NMR, etc. as a function of the temperature [39–41]. It seems
now admitted that, at low volume fraction of one component (water or oil) in the other, the picture of
microemulsion structure is that of discrete swollen micelles of which the long-range order remains
unpredictable. At intermediate volume fraction of water and oil, microemulsions may organize
themselves into mesophases spatially periodic, separated by equilibrium bicontinuous structures like
sheets between water-rich and oil-rich domains [38, 42, 43].

As in microemulsions, many exotic geometries have been observed in diblock copolymers
consisting of two types of monomers. The monomers A and B are arranged such that there is a chain
of each monomer grafted together to form a single copolymer chain (Figure 3). Ternary mixtures of
A, B homopolymers and AB diblock copolymers are similar in some respects to mixtures of water, oil
and surfactant. The copolymer acts as a surfactant for the A and B homopolymer mixture, decreasing
the surface tension between the A-rich and B-rich domains, as it accumulates on the interface, and
maintaining a topological order of the domains. Above a certain temperature, the large collection of
diblock copolymers is equally distributed in a disordered state, like in liquids. Below that
temperature, when entropy is dominated by enthalpy, the diblock copolymers form regular structures
common to the microemulsions [44–46]. Despite this similarity, the diblock copolymer is generally
not a solubilizer of homopolymers as efficient as good amphiphile in the oil and water mixture.

Figure 3. (a) A diblock of two monomers. (b) A triblock of three monomers. (c) A disorder
phase. (d) An order phase of many layers.

3. The Gouy–Chapman model for charged particles

In the colloidal suspensions, the repulsive part of the potential generated by the electrostatic forces
plays a more significant role than for other simple liquids. The interface between a charged particle
and the solvent is the seat of a potential difference that, in the simplest model, gives rise to an
electrical double layer: on one side of the interface the charge is clearly positive while on the other
side it is clearly negative. Therefore, the electrical double layer is equivalent to a plane capacitor. The
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first quantitative study of the electrical double layer has been achieved by Helmholtz (1879) who
considered a solid immersed in a solution. The study showed that the charged particles do not form a
rigid layer, because of the thermal agitation. Later on, Gouy [47] and Chapman [48] independently
developed a rational model showing that the charged particles farthest from the interface may come
and go more freely than those near the interface. This is the diffuse layer model. Note in passing that
the Gouy–Chapman model is based on a similar model developed by Debye and Hückel [49] for
strong electrolytes.

The Gouy–Chapman model deals with the case of colloidal particles surrounded by a diffuse layer.
Like the Debye–Hückel model, the Gouy–Chapman model is based on the solution of the simultaneous
Boltzmann and Poisson equations that, together, make possible the calculation of the electric potential
Φ(r) in terms of the coordinates r and ionic concentration c in the solution.

The Boltzmann equation results from statistical considerations but it could be otherwise supported
by a thermodynamic argument, as a direct consequence of the equilibrium of a system of charged
particles [28]. In such a system not subject to an interparticle interaction, it is judicious to consider
the electrochemical potential (µi + zieΦi), where µi

(
= µ0 + kBT ln c

)
is the chemical potential of the

component i and zieΦi the electrical work. If cA and cB are supposed to be the concentrations of
the same constituent at two distinct points of the solution, and ΦA and ΦB the electric potentials at
these respective positions, the thermodynamic equilibrium is given by the equality of electrochemical
potentials:

µ0
A + kBT ln cA + zeΦA = µ0

B + kBT ln cB + zeΦB. (1)

Moreover, assuming that µ0
A = µ0

B and that the electric potential in the unperturbed region, say at the
point B, is ΦB = 0, Eq 1 simplifies to a form that is precisely the Boltzmann distribution:

cA = cB exp
(
−

zeΦA

kBT

)
. (2)

Thus, the Boltzmann distribution provides the variation law of the concentration of a constituent into
the diffuse layer, as a function of the concentration cB in the unperturbed region and electric potential
ΦA at the point where the concentration cA is calculated.

Concerning the Poisson equation, which is a consequence of Coulomb’s law, it connects the electric
charge density ρ(r) with the electric potential Φ(r) for each point of the diffuse layer. The local form
of the Poisson equation is ∇2Φ(r) = −ρ(r)/(ε0ε), where ε0ε is the dielectric constant of the suspension
and ∇2 the Laplacian operator in Cartesian coordinates.

In the Gouy–Chapman model, the colloidal particles are treated as parallelepipeds of thin thickness
(Figure 4). For ensuring that the equipotentials in the diffuse layer are parallel to the larger surface of
the parallelepiped, the Poisson equation at one dimension is used:

d2Φ(x)
dx2 = −

ρ(x)
ε0ε

. (3)

If the electric charge is assumed to be uniformly distributed on the surface of the colloidal particle, the
charge density ρ(x) to be introduced in Eq 3 is:

ρ(x) =
∑

i

zieni(x) =
∑

i

zien0i exp
[
−

zieΦ(x)
kBT

]
, (4)
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where ni(x) is the number of ions of species i, per unit volume, given by the Boltzmann distribution
(Eq 2), and zi the charge of ions of species i assigned of the corresponding sign. The parameter n0i is
the number of ions, per unit volume, in the region not perturbed electrically far away from the diffuse
layer, and Φ(x) the electric potential at the point where ni(x) is calculated. By combining Eqs 4 and 3,
the differential equation giving the variation of electric potential, as a function of the abscissa x, reads:

d2Φ(x)
dx2 = −

1
ε0ε

∑
i

zien0i exp
[
−

zieΦ(x)
kBT

]
. (5)

Figure 4. Distribution of the ion concentration in the diffuse layer near a colloidal particle.

Without changing the generality of the calculation, we assume that the numbers of ions of two
species are equal (n0+ = n0− = n0), so that the previous differential equation becomes:

d2Φ(x)
dx2 = −

1
ε0ε

en0

{
exp

[
−

eΦ(x)
kBT

]
− exp

[
eΦ(x)
kBT

]}
. (6)

On multiplying both sides of the above equation by 2dΦ(x)
dx , the first integration is easily performed. The

result is: [
dΦ(x)

dx

]2

=
2n0kBT
ε0ε

{
exp

[
−

eΦ(x)
kBT

]
+ exp

[
eΦ(x)
kBT

]
+ C

}
. (7)

We then carry out the changes of variables α = e/(2kBT ) and κ = α [2n0kBT/(ε0ε)]
1
2 , as well as[

1 + exp(αΦ0)
]

= A and
[
1 − exp(αΦ0)

]
= B, where Φ0 is the electric potential on the surface of the

colloidal particle. With the boundary conditions at infinity: Φ = 0 and dΦ(x)/dx = 0, the integration
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of Eq 7 reduces∗ to:

Φ(x) =
1
α

ln
[
A − B exp(−2κx)
A + B exp(−2κx)

]
. (8)

As expected, in the case of a negatively charged colloidal particles (clay suspension), the electrical
potential is always negative, with the value Φ0 at x = 0. Equation 8 can be then used to find the
asymptotic form of the electric potential Φ (x) :

Φ(x) ' −
2
α

B
A

exp(−2κx), (9)

showing that Φ(x) decreases exponentially, tending to 0 by negative values when x goes to infinity
(Figure 5). It follows from this function that the parameters α and κ have the dimensions of the inverse
of an electrical potential and the inverse of a length, respectively: recall that e is expressed in C, kBT
in J, n0 in m−3 and ε0ε in C2·N−1·m−2. As a consequence of Eq 9, we define the pair potential u(x)
between two particles as the product of the electrical potential Φ(x) by the charge of the particle −Q,
namely:

u(x) = −QΦ(x) =
2Q
α

B
A

exp(−2κx) . (10)

Figure 5. Schematic representation of the electrical potential. (a) The broken lines represent
the electrical potentials generated by individual particules. (b) The curve in full line stands
for the electric potential between two particles close to each other.

The cation and anion distributions in the diffuse layer are easy to determine by eliminating Φ(x)
between Eqs 8 and 4. The distributions calculated here correspond to the case of a clay suspension for

∗Noting that the integration constant is C = −2, the term in braces of Eq 7 is the perfect square:{
exp

[
−

eΦ(x)
2kBT

]
− exp

[
eΦ(x)
2kBT

]}2

,

and the integral can be easily done by separation of variables.
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which the surface is negatively charged, for given values of n0 and φ0. If we note that

exp
[
eΦ(x)
kBT

]
= exp [2αΦ(x)] =

{
exp [αΦ(x)]

}2 , (11)

the distribution of anions (Eq 4, with zi = −1) can be written with the help of Eq 8 as:

n−(x) = n0 exp
[
eΦ(x)
kBT

]
= n0

[
A − B exp(−2κx)
A + B exp(−2κx)

]2

, (12)

and the distribution of cations (with zi = +1) is:

n+(x) = n0 exp
[
−

eΦ (x)
kBT

]
= n0

[
A + B exp(−2κx)
A − B exp(−2κx)

]2

. (13)

It should be noted that the curves representative of the distributions n+(x) and n−(x) tend both toward
the asymptotic limit n0 when x goes to infinity, each curve approaching the asymptote from a different
side because n+ > n−, dn+/dx < 0 and dn−/dx > 0 (with Φ < 0 and dΦ/dx > 0, see Eq 9). Schematic
representations of the ionic concentrations as a function of the distance are shown in Figure 6. At low
distances, the two curves are strongly asymmetric with respect to the asymptote n0. For a colloidal
particle negatively charged, this means that the concentration of cations in the diffuse layer is greater
than the concentration of anions. In this specific case, the negative charge of the clay suspension is
balanced by an excess of cations and a deficit of anions, with respect to the concentration n0 of the
unperturbed solution. For ions in the solution of same sign as the colloidal particle, it is said that the
adsorption is negative, while for ions of opposite sign to the colloidal particle the adsorption is positive.

Figure 6. (a) Variation of ionic concentrations near a negatively charged surface. (b)
Distribution of the total charge in the diffuse layer.

The previous expressions of the electric potential and ionic concentrations correspond to the case
where the colloidal particles are far from each other, so that their mutual interactions are neglected. If
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the flat and parallel faces of two identical particles approach one another, the diffuse layers interfere
with each other and the electrical potential is modified. The electric potential between two particles is
portrayed by the full line in Figure 5.

4. Repulsive potential of Verwey and Overbeek

The method used by Verwey and Overbeek [50] to determine the expression of the repulsive part of
the potential is the same as that of Gouy [47] and Chapman [48], with the difference that the colloidal
particles are spherical. Over the last seventy years, the stability of colloidal suspensions has been
extensively studied with the repulsive potential developed by Derjaguin and Landau [51] as well as
by Verwey and Overbeek [50]. This potential was originally constructed to describe the effective
interactions between spherical colloidal particles in an aqueous monovalent electrolyte solution (n0+ =

n0− = n0), which has given rise to the concept of electrostatic screening. In this section, we present a
neat demonstration of this repulsive potential due to Denton [52], which is based on an analogy between
the metallic liquids and the colloidal suspensions [53,54]. Indeed, if the macroions† are assumed to be
tantamount to the metallic ions and the microions to the electrons, it is logical to continue the analogy
by using the formalism of the screening theory (linear response theory) to derive the effective potential
between the macroions.

The system studied by Denton consists of NM macroions and Nm microions occupying a volume V ,
at temperature T . The macroions and microions are immersed in a solvent constituted by a uniform
continuous medium of dielectric constant ε0ε. The macroions are charged hard spheres of diameter
σ, carrying a charge −Ze uniformly distributed on the surface. Note that the charge of macroions is
negative, contrary to the metallic ions. All the point microions carry the same charge ze. Therefore,
the overall electrical neutrality condition reduces to ZNM = zNm.

By analogy with the liquid metals, the Hamiltonian of the system may be evaluated with the energies
of interaction of the different components [15]. The potential for the direct interaction between two
macroions is expressed as:

uMM(r) =
Z2e2

4πε0ε r
if r > σ , (14)

and the potential between two microions is:

umm(r) =
z2e2

4πε0ε r
. (15)

Regarding the potential between a macroion and a microion, it is chosen under the following form
proposed by van Roij and Hansen [55]:

uMm(r) =


−

Zze2

4πε0ε
σ
2

α if r < σ
2 ,

−
Zze2

4πε0ε r
if r > σ

2 .

(16)

†The terms frequently used in literature are macroions for the colloidal particles and microions for the ions in solution. These are the
ones that will be used here.
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The potential is Coulombic outside the macroion and constant inside. It may be noted that this potential
differs from the Ashcroft pseudopotential used in liquid metals [56], where the value zero in the ionic
core is justified by the presence of core electrons. As expected, the parameter α must be determined
afterwards, within the condition that the microionic density profile in the heart of the macroion is zero.

After defining the potentials between the different entities, the response function theory may now
be used in order to investigate how the system reacts to the perturbation caused by the presence of
macroions. This involves calculating the linear response function χ(1)(q) of the classical one component
plasma (OCP), composed of a mixing of macroions and microions. Unlike the method employed to
determine the response function χ(1)(q) for liquids metals, for the classical OCP the general formalism
[57, 58] must be used, which connects the response function χ(1)(q) with the structure factor S (q) by
the formula:

χ(1)(q) = −βnmS (q) = −
βnm

1 − nmc(q)
, (17)

where nm is the effective density of microions, and c(q) the Fourier transform of the direct correlation
function c(r) that will be defined in the following.

The calculation of the effective density nm of microions is performed in considering only the volume
Vm available to the microions, i.e., the volume V of the system excluding the macroion volume (πσ

3

6 NM)
not occupied by the microions. So, the expression of the effective density is:

nm =
Nm

Vm
=

Nm

V − πσ
3

6 NM

. (18)

As regards the function c(q), it can be estimated with the mean spherical approximation (MSA),
proposed by Lebowitz and Percus [59]. The MSA of statistical mechanics amounts to identifying the
direct correlation function c(r) as the scaled potential umm(r) by means of the formula
c(r) ' −βumm(r). Thus the function c(q) that is the Fourier transform of c(r) reads:

c(q) =

∫ (
−
βz2e2

4πε0εr

)
exp(−iq · r)d3r = −

βz2e2

ε0εq2 . (19)

The substitution of the Eq 19 into Eq 17 leads to the linear response function χ(1)(q):

χ(1)(q) = −
βnm

1 − nmc(q)
= −

βnm

1 + κ2

q2

, (20)

where:

κ =

(
βz2e2nm

ε0ε

) 1
2

. (21)

With the response function χ(1)(q), it becomes possible to determine the contribution of the potential
induced by the microions, uind(r). If the notations of the liquid metal are transposed to the colloidal
suspensions, uind(r) reads:

uind(r) = FT
[
χ(1)(q)u2

Mm(q)
]
, (22)
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where uMm(q) is the Fourier transform of the potential uMm(r) defined by Eq 16. The calculation of
uMm(q) is conducted as that of the Ashcroft form factor. Its outcome is:

uMm(q) = −
Zze2

ε0εq2

[
(1−α) cos

(qσ
2

)
+ α

sin( qσ
2 )

qσ
2

]
. (23)

Note the presence of the unknown parameter α in the previous relation. As it has been indicated,
its determination is made possible by requiring that the microionic density profile cancels out in the
core of macroions. To ensure this condition, one can calculate first the density profile of microions in
reciprocal space with the standard relation:

nm(q) = χ(1)(q)
∑

l

exp(−iq · Rl)uMm(q) , (24)

where Rl is the position of center of mass of the l-th macroion. The substitution of χ(1)(q) and uMm(q)
in Eq 24 gives nm(q), namely:

nm(q) =
Z
z

(
κ2

q2 + κ2

) (1 − α) cos
(qσ

2

)
+ α

sin
(qσ

2
)

qσ
2

∑
l

exp(−iq · Rl). (25)

In order to determine the density profile of the microions in real space, the inverse Fourier transform
of nm(q) is carried out. However, to simplify the calculations, Denton [52] suggested to single out
the macroion at R = 0 and neglect the other terms in the sum over l. The result of the inverse Fourier
transform is‡ :

nm(r) =



Z
z

(
κ2

4π

) [
−1 + α + α

κσ
2

]
exp(−

κσ

2
)
sinh(κr)

r
if r <

σ

2
,

Z
z

(
κ2

4π

) (1−α) cosh
(
κσ

2

)
+ α

sinh
(
κσ
2

)
κσ
2

 exp(−κr)
r

if r > σ
2 .

(26)

Taking into account that the density profile is zero when r < σ/2, the expression of the unknown
parameter α reduces to:

α =

κσ
2

1 + κσ
2
. (27)

Consequently, if α is inserted in Eq 23, the expression of uMm(q) becomes:

uMm(q) = −
Zze2

ε0εq2

 1
1 + κσ

2


cos

(qσ
2

)
+ κ

sin
(qσ

2
)

q

 . (28)

‡The Fourier transform and inverse Fourier transform are defined by the expressions:

nm(q) =

∫
nm(r) exp(iq·r) d3r,

and nm(r) =
1

(2π)3

∫
nm(q) exp(−iq·r) d3q.
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Then, the potential uind(r) induced by the microions is obtained by inserting the expressions of χ(1)(q)
(Eq 20) and uMm(q) (Eq 28) into (Eq 22), namely:

uind(r) = −
1

8π3

∫  1
1+ κσ2

2(
Z2e2

ε0εq2

)
κ2

κ2+q2

cos
(qσ

2

)
+ κ

sin
(qσ

2
)

q


2

exp(iq·r)d3q. (29)

The calculation of the inverse Fourier transform is simple though tedious. The result is:

uind(r) =



− Z2e2

8πε0εr

 1

1 +
κσ

2


2 [

(2 + κσ)κr − κ
2r2

2

]
if r < σ ,

Z2e2

4πε0ε


exp

(
κσ

2

)
1 +

κσ

2


2

exp(−κr)
r −

Z2e2

4πε0εr
if r > σ .

(30)

Finally, by adding the induced contribution uind(r) to the direct contribution uMM(r), given by Eq
14, we obtain the repulsive potential between macroions beyond σ in the explicit form:

urep(r) = uMM(r) + uind(r) =
Z2e2

4πε0ε

exp
(
κσ
2

)
1 + κσ

2


2

exp(−κr)
r

. (31)

This expression is the same as that found by Verwey and Overbeek with the Boltzmann and Poisson
equations. While the Gouy–Chapman repulsive potential (Eq 10) between the parallel faces of two
charged particles, u(x), is a purely Coulomb one, the Verwey-Overbeck repulsive potential (Eq 31)
between two spherical colloidal particles, urep(r), is screened Coulomb potential decreasing more
rapidly than u(x). In addition, both potentials are very sensitive to the value of the salt concentration
in the solution§, decreasing with r much more rapidly when κ is large, i.e., when the effective density
and the valence of the microions are more important.

5. Attractive potential of Hamaker

Beside the repulsive potential of Verwey and Overbeek [50], which depends on the salt
concentration in solution, there is an attractive potential attributed to microscopic forces acting
between the atoms of the colloidal particles. Remember that polar molecules form permanent dipoles
tending to align themselves under the action of the van der Waals attractive forces. As regards the
nonpolar molecules (and atoms), they form instantaneous dipoles capable of inducing dipoles in
neighboring atoms, which are the cause of dispersion forces of London [60]. For the molecules and
atoms, the van der Waals and London forces extend to distances that do not exceed one nanometer.

§The salt concentration c is expressed in moles per liter (M) and the average number of ions n0 in ion per m3. These two quantities
are related to each other by the formula:

n0 = 1000Nc,

where N is the Avogadro number.
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When two colloidal particles approach one another, each atom belonging to the first particle interacts
with all the atoms of the second particle in a manner more or less additive. As we shall see, the sum
of all these microscopic interactions is likely to generate an attractive force between the colloidal
particles, called the Hamaker force [61]. Whereas the London forces between the atoms have ranges
of one nanometer, the Hamaker forces between the colloidal particles extend over a range of hundred
nanometers while decreasing more slowly. This range is comparable to that of the repulsive Verwey
and Overbeek forces.

In order to derive the expression for the Hamaker force, we first calculate the potential between
an atom of the colloidal particle 1 and all the atoms of the nearest colloidal particle 2 (Figure 7).
Taking account of the potential between two neighboring atoms resulting from the formation of two
instantaneous dipoles [60], u(r) = −C6/r6, we may compute the potential between the atom 1 of the
particle 1 and the particle 2 by performing the sum over all the atoms of the particle 2:

uat.1/part.2(r) = −
∑
part.2

C6

r6 . (32)

To obtain the result, the discrete sum over the atoms is replaced by an integral over the volume of
particle 2 by considering the number of atoms per unit volume ρ and the volume element dτ:

uat.1/part.2(r) = −

∫
C6

r6 ρdτ. (33)

Figure 7. Integration on the particle 2: the volume element consists of two spherical caps of
thickness dr′.

Then, the integration element dτ in the above equation is taken to be an infinitesimal volume
between two concentric spherical caps intercepted by the angle 2θ, of which the volume element is:

dτ = 2πr′2(1 − cos θ)dr′. (34)

If the atom of interest (atom 1) is close to particle 2, it can be taken that it sees a flat surface. Therefore
the potential between atom 1 and particle 2 is reduced to the following expression:

uat.1/part.2(r) = −

∫ ∞

r

C6

r′6
2πρr′2(1 − cos θ)dr′ = −

πρC6

6r3 . (35)
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It should be noted that this potential decreases as 1/r3 whereas the potential between two dipoles
decreases as 1/r6. But to determine the potential between two colloidal particles, it remains to carry out
the sum over all the atoms of particle 1, that is tantamount to integrating over the volume of particle 1.
If S denotes the area of the two opposite faces, the integration element is dV = S dr and the potential
between two colloidal particles, per unit area, is equal to the integral of Eq 35 taken between r and
infinity:

uatt(r)
S

= −
πρC6

6

∫ ∞

r

1
r3 dr = −

A
12πr2 , (36)

where A (= π2ρC6) is the Hamaker constant. Equation 36 yields the attractive potential, per unit area,
between two colloidal particles, the surfaces of which are flat and face to face. The variation law 1/r2

should be noted. Note also that the Hamaker constant A has the dimensions of energy. It varies little
with the nature of particles and solvent, and its numerical value is of the order of the thermal energy
kBT . For example, it has the value A = 6.3×10−21 J for quartz–water–quartz interfaces and A = 10−18 J
for copper–vacuum–copper interfaces. The values of the Hamaker constant may be found in literature
for all kinds of surfaces separated by a vacuum or a solvent [62].

There are alternative Hamaker formulas for other shapes of particles but they are more complicated
[28, 63]. We only mention the expression of Hamaker’s potential between two spheres of diameter σ:

uatt(r) = −
A
12

[
σ2

r2 − σ2 +
σ2

r2 + 2 ln
(
1−

σ2

r2

)]
. (37)

When r > σ, Eq 37 is written in the approximate form:

uatt(r) ' −
A
12

{
σ6r2 + 2σ8

3r6 (
r2 − σ2)} , (38)

so that, for r � σ, the potential behaves as:

uatt(r � σ) ' −
A
36

(
σ6

r6

)
, (39)

and for r ' σ+, as:

uatt(r = σ+) ' −
A
12

[
σ2

(r + σ) (r − σ)

]
' −

A
24

(
σ

r − σ

)
. (40)

When two spherical particles with diameters σ1 and σ2 are close to each other, the following formula
may be used:

uatt(r) = −
Aσ
12r

[
1 +

r
σ

(
1 −

σ

2σ1 + 2σ2

)
+ 2

r
σ

ln
( r
σ

)
+ ...

]
, with σ =

2σ1σ2

σ1 + σ2
. (41)

In contrast to the repulsive potential of Verwey and Overbeck, the attractive potential of Hamaker
between two spherical colloidal particles decreases as r−2 and depends very little on the nature of the
electrolyte, while they extend over comparable ranges.
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6. Casimir potential

It has been mentioned that the dispersion forces have their origin in the fluctuations of atomic
dipole moments. The process is as follows. The electric field created by the dipole moment of an
atom, propagating at the speed of light, induces a dipole moment on close neighboring atoms, the
direction of which is the same as the first dipole moment. The attraction between them is maximum
if the two dipole moments are aligned, as in two polar molecules. But in the case of two atoms far
away from each other, there is a misalignment of the instantaneous dipole moments. This results in a
reduction of the dispersion forces because the electric field emitted by the second atom arrives at the
first one with a certain phaseshift. This process gives rise to a delayed effect of dispersion forces [64]
hardly affecting the interaction between the atoms. By contrast, it can significantly alter the interactions
between colloidal particles when the separation distances are greater.

The first application of the delayed effect to the calculation of the interactions between colloidal
suspensions has been studied with Eq 36 required for two parallelepipedical colloidal particles located
face to face, with the delay function f (p) as [65]:

uC
att(r)
S

= −
A

12πr2 f (p), (42)

where f (p) is an empirical function varying between 1 and 0 when the parameter p increases from 1 to
infinity. The parameter p yields a relative measure of the distance r separating the plates with respect
to the wavelength λ of the radiation of the electromagnetic field. With the parameter p defined by the
relation p = 2πr/λ, the empirical function f (p) is expressed as:

f (p) =


1.01 − 0.14p if 1 < p < 3,

2.45
p − 2.04

p2 if 3 < p < ∞.
(43)

Incidentally, it can be noted that the dispersion forces cause the appearance of a particular type of
forces acting in the vacuum. By investigating the fluctuations of the electromagnetic field,
Casimir [66] showed that a macroscopic force must be exerted between two parallel plates
(conductive and uncharged) in vacuum, in equilibrium with the photons of the vacuum. Qualitatively
the phenomenon might be explained as follows. The conductive plates form a resonant cavity,
imposing the boundary conditions L = pλ on the photons, where L is the distance between the two
surfaces, λ the wavelength of a photon and p an integer. Among the photons contained in the
enclosure, only those with a wavelength less than L are confined between the plates. Therefore, the
deficit of photons between the plates gives rise to a reduction in pressure and an attraction of the
plates.

In quantum mechanics, the energy levels of a harmonic oscillator are given by the relation:

En = ~ω(n + 1
2 ), (44)

where ~ω = hν, and n is the number of photons present in the mode of pulsation ω. However, at zero
temperature, although there is no photon¶ in the enclosure, the energy of the electromagnetic quantum

¶One of the laws of black body radiation indicates that the number of photons in an enclosure is proportional to the cube of the
temperature. Thus, at zero temperature no real photon is present.
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vacuum at zero-point (n = 0) is 1
2~ω, generating a pressure at the origin of a macroscopic force between

the plates.
It should be mentioned that the functional form of the pressure created between the plates, at zero

temperature, can be obtained by a simple dimensional analysis. Noting that the effect is of quantum
and relativistic origin, it may be expected that the pressure F/S (in N·m−2) depends on the universal
constants ~ (in J·s) and c (in m·s−1), as well as the spacing L (in m) between the plates [67, 68]. The
equation of dimensions binding these four variables is:

F
S
∝
~c
L4 . (45)

The exact formula [69] of the pressure indicates that F/S follows a universal law independent of the
nature of the conductors, the expression of which is:

F
S

= −
π2

240
~c
L4 . (46)

The sign of the pressure shows that the Casimir force is attractive and that the potential uC
att, per unit

area, is of the form:
uC

att(L)
S

= −

∫
−
π2

240
~c
L4 dL = −

π2

720
~c
L3 . (47)

Expressions for the Casimir force have been obtained for alternative configurations, and the
temperature dependence has been also studied. As an example, it has been shown that the expression
for the attractive force exerted between a plate and a sphere of radius R is F = (π3/360)R(~c/L3).
Between a plate and a sphere of radius R = 98 µm, the force is F = 33 × 10−12 N when L = 200 nm.
Although this force is very small, its magnitude is comparable to that of the forces involved in
biological systems, which are perfectly measurable by atomic force microscopy. Inspired by the
classical Casimir effect, an additional mechanism for the confinement of density fluctuations in an
electrolyte solution by the walls has been recently investigated [70].

7. Interparticle interaction potentials

The most common expression used for the potential between two spherical colloidal particles of
diameter σ consists of (i) the hard-sphere potential uHS (r) of diameter σ, (ii) the purely repulsive
potential urep(r) resulting of the diffuse layer (Eq 31) and (iii) the attractive potential uatt(r) caused
by the dispersion forces (Eq 37). Together, these three contributions make up the DLVO (Derjaguin-
Landau-Verwey-Overbeek) potential, the form of which is:

uDLVO(r) = uHS (σ) +
Z2e2

4πε0ε

[
exp( κσ2 )
1 + κσ

2

]2 exp(−κr)
r

−
A
12

[
σ2

r2 − σ2 +
σ2

r2 + 2 ln
(
1 −

σ2

r2

)]
. (48)

It is clear that the stability of colloidal suspensions is accounting for the competition between the
attractive and repulsive contributions to the DLVO potential. Figure 8 displays a schematic
representation of the DLVO potential for two different electrolytes. If the electrolyte concentration is
important, κ is large and the decay of the repulsive part of the DLVO potential is rapid. For large
concentrations in salt (c ' 1 M), the attractive part of the DLVO potential prevails, which helps to
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explain the irreversible aggregation of macroions in such solutions. Therefore, the repulsive part of
the DLVO potential should be overshadowed by the attractive part, thus reducing the potential barrier.
For lower salt concentrations, the repulsive part is increasing and gives rise to a higher potential
barrier (∼ kBT ) that prevents the contact of the macroions. This explains the reversible liquid–gas
transition observed in electrolyte solutions of salt concentration less than 10−3 M. For salt
concentrations even lower, the attractive Hamaker potential is partially masked by the repulsive
contribution. In fact, all experiments with electrolyte solutions where the salt concentration is about
10−5 to 10−6 M have shown that the DLVO potential has a long repulsive barrier [71, 72].
Nevertheless, it should be emphasized that the tail of the DLVO potential for long distances is always
negative because the attractive Hamaker potential decreases less rapidly than the repulsive Verwey
and Overbeck potential.

Figure 8. Representation of the DLVO potential between two spherical colloidal particles
immersed in electrolyte solutions of different concentrations.

Among the mesoscopic systems, polymers are also objects studied with great attention. In solution,
the polymers can be found under the form of chains of macromolecules (i) unfolded and entangled
with each other or (ii) folded in on themselves, forming slightly inter-penetrable spherical objects.
The classic model of a spherical polymer, developed by Daoud and Cotton [73], consists of a sphere
of radius Rc (called the crown radius), inside which the density profile of the monomers follows a
power law established by the authors. In turn, the sphere is surrounded by a diffuse layer made of f
monomers, such as hair stood on head, where the density profile is characterless.

As regards the interactions acting between spherical polymers, the model of Asakura and
Oosawa [74] is usually employed. Initially, these authors studied the interaction between two large
spheres immersed in a fluid of small particles not interacting between themselves. They provided the
explanation for the following mechanism: when the distance separating two large spheres is less than
the diameter of small particles, the latter are expelled from the intermediate region between the large
spheres, producing an anisotropy of the local pressure and an attraction force between the large
spheres that gives rise to the depletion potential.

Later, Pincus [75] developed a potential describing the interaction between a polymer ball and a
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wall. This potential has the universal logarithmic form, u(r) ∼ −kBT ln(r/Rc), valid at any distances.
More recently, a purely repulsive potential has been proposed to represent the interaction between two
spherical polymers [76]. Its expression is of the form:

u(r) =
5

18
kBT f

3
2



− ln
(

r
Rc

)
+

1

1 +

√
f

2

if r ≤ Rc ,

1

1 +

√
f

2

(Rc

r

)
exp

− √
f

2Rc
(r − Rc)

 if r > Rc ,

(49)

where f is the number of monomers at the periphery of the sphere of radius Rc. Outside the sphere, the
potential is made of a screened Coulomb potential, whereas inside the sphere the logarithmic form of
interaction with a wall is preserved.

Regarding the molecular fluids, an early study has been done to investigate the behavior of carbon-
60 and the possible existence of its liquid phase [77]. The pair potential between two molecules of C60

is composed of the sum of all interatomic potentials, the interatomic interaction being modelled by the
Lennard–Jones potential. This potential is characterized by a strong repulsion and an attractive part
substantially shorter than that of the Lennard–Jones potential. It clearly demonstrates that the existence
of the liquid phase of C60 is strictly related to the extension of the attractive part of the potential.

Other potentials with an attraction at intermediate range and a repulsion at long range can also
produce peculiar phase diagrams. Unlike to the DLVO potential, the tail of these potentials for large
distances is slightly positive. Such potentials are particularly useful for describing the behavior of
colloidal suspensions, spherical polymers, protein solutions, etc. In this regard, one may infer that the
competition between the attractive and repulsive parts, on different length scales, is responsible for the
formation of inhomogeneous fluid phases, such as gels in non-equilibrium systems [78], microphase
separation [17], clusters in equilibrium systems [19], etc. In solutions of charge-stabilized colloids
and non-adsorbing polymers, the long-range repulsion is due to the charged colloidal particles, while
the long-range attraction is caused by the solvent containing non-adsorbing polymers responsible for
the depletion effect. It should be noted that the issue concerning the competition between long-range
attractive and long-range repulsive parts of the potential had been already raised by Lebowitz and
Penrose [21] fifty years ago. From an exact theory, the authors noticed that the presence of a long-
range repulsive potential could bring the system to break down into droplets or froth, without causing
a first order liquid–vapor transition. While this potential makes sense for complex liquids (charged
colloidal particles, spherical polymers, globular proteins...), it is irrelevant for simple liquids.

To end this discussion, we would like to mention the influence of the general form of interparticle
potential on the phase diagram of a fluid of identical particles. The respective roles of the repulsive
and attractive contributions of the Lennard–Jones potential on the stability limits of the phase diagram
of fluids are known since long time. They deal essentially with the liquid–vapor and liquid–solid
transitions. However, in recent years, it has been shown that some empirical potentials, hardly more
complicated than the Lennard–Jones potential, can produce phase diagrams radically different from
those of simple liquids, giving rise to new phase transitions. Despite their spherical symmetry, such
potentials can also generate inhomogeneous fluid phases [10, 79].

Much effort is currently devoted to understanding the aggregation properties and to predict a variety
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of locally inhomogeneous structural states at equilibrium by looking at the features of potential models.
In addition to the square-well-linear model [80–83] and other piecewise-continuous models [84–86],
here are three models often used: double Kac potential [19, 87–89], double Yukawa potential [17, 19,
90–92] and Lennard–Jones-like plus screened Coulomb potential [78, 93–97].

The double Kac model is formed by the hard-sphere potential followed by two Kac potentials, of
which the overall analytical expression is [87, 89]:

βu(r) = uHS (σ) − εaγ
3
a exp

(
−γa

r
σ

)
+ εrγ

3
r exp

(
−γr

r
σ

)
, (50)

where β (= 1/kBT ) is the inverse temperature, σ the hard-sphere diameter, γa and γr characterize the
extent of the interactions and εaγ

3
a and εrγ

3
r their strengths. The choice of these parameters describing

short-range attraction and long-range repulsion should respect the relations εrγ
3
r < εaγ

3
a � 1 and

γa > γr > 0. Another potential frequently used is the double Yukawa model [16] of the following
form [18, 93]:

βu(r) = uHS (σ) − Ka
σ

r
exp

[
−za

( r
σ
− 1

)]
+ Kr

σ

r
exp

[
−zr

( r
σ
− 1

)]
. (51)

Its strictly positive parameters zi and Ki characterize, respectively, the range and the magnitude of the
attractive and repulsive contributions. The smaller zi, the greater the extension of the interaction. By
a judicious choice of these parameters it is easy to generate a deep short-range attraction and a small
repulsive barrier at long range. The formation and growth of equilibrium clusters in suspensions of
weakly charged colloidal particles and/or small non-adsorbing polymers may be also studied with the
potential composed of the Lennard–Jones and the repulsive Yukawa potentials (LJY):

βu(r) = 4ε
[(
σ

r

)2α
−

(
σ

r

)α]
+ A

exp
(
− r
ξ

)
r/ξ

, (52)

with α > 6 to ensure a very long-range attraction. Different choices of the parameters ε and α as well
as ξ and A lead to different scenarios such as crystal made of finite-sized clusters, lamellar phases [98]
and elongated structures forming a connected network (gel) [94].

8. Phase transitions

It is fascinating that a small variation of a parameter, like temperature, causes in some cases a
spectacular modification of the system and the appearance of new phases of matter whose collective
behavior bears little resemblance to that made of few particles. The liquid state theory aims to identify
both range and strength of the interactions among particles in terms of experimentally accessible
parameters, such as molecular length, density and temperature. But it is rare to find an interacting
many-particle system likely to be described easily by a microscopic approach near the critical points.
More useful is the macroscopic approach having its origin in the thermodynamic theory of critical
phenomena, which ignores the interactions between particles. Since all macroscopic properties can be
deduced from the free energy, their dramatic changes involved in phase transitions correspond to
singularities in the free energy. As with any thermodynamic system, there is a competition between
entropy and enthalpy, whose balance corresponds to the minimization of free energy. Hence, the study
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of phase transitions is related to finding the origin of these singularities and to the identification of
new phases.

Among the numerous phase transitions, the liquid–gas transition is well known with the line in the
(p,T ) plane (Figure 9a) that ends at the critical point (Tc, pc), and the coexistence interval containing
a mixture of gas and liquid of densities ρG = 1/vG and ρL = 1/vL, at T < Tc, in the (p, ρ) plane
(Figure 9b). Since the liquid–gas coexistence curve p(T ) terminates at a critical point, there is a
possibility to convert liquid to gas continuously without crossing the phase transition line, that is not
possible for the liquid–solid transition line. Another interesting phase transition occurs in the Ising
ferromagnetic system. The system is in a paramagnetic (disordered) phase for a temperature greater
than the critical temperature (Curie temperature Tc), while it remains in a ferromagnetic (ordered)
phase below Tc (Figure 9c). If a magnetic field H is applied to a ferromagnetic material (Figure 9d),
a discontinuity occurs in magnetization density m = M/V as the magnetic field H goes to zero, for
T < Tc. From these figures, it can be seen that the isotherms p(ρ) and H(m) have much in common
due to the similarity between H and p and between m and ρ. Note that jumps in the magnetization m
and the density ρ decrease when the temperature increases towards Tc.

Figure 9. Phase diagram of a liquid–gas transition (a) p(T ) and (b) p(ρ). Phase diagram of
a ferromagnetic transition (c) H(T ) and (d) H(m), where H is the magnetic field and m the
magnetisation density. Note the similarity between p and H and between ρ and m (see text
for details).

In spite of apparent similarities between these two phase transitions, they differ in their specific
features. Generally, to distinguish two phases of a material one uses an order parameter, which is
equal to zero in the disordered phase and non-zero in the ordered phase (usually the low temperature
one). For the liquid–gas transition, the order parameter (ρ−ρc) is defined as the difference between the
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density ρ and the critical density ρc, and for the ferromagnetic transition, the role of the order parameter
is played by the magnetization density m. In the case of the liquid–gas transition, the order parameter
has the dimensionality n = 1, since the density is a scalar, while for the ferromagnetic transition, the
order parameter has the dimension n = 3 because of the vectorial character of the magnetization M.
Figure 10 shows the phase diagram of the Ising ferromagnetic system representing the magnetization
density m as a function of the temperature T and the magnetic field H. There are two ways in which
the transition may occur as H varies. For temperatures T < Tc, the system undergoes a first-order
phase transition with magnetization passing abruptly from a positive value to a negative value. In
contrast, near the critical point, the system undergoes a continuous or second-order phase transition
with magnetization varying continuously. It is said that a second-order phase transition is accompanied
by a spontaneous symmetry breaking in which the system chooses to be in either an up or down-spin
phase.

Figure 10. Isotherms in the phase diagram of the ferromagnetic system. First-order transition
when the magnetisation density m changes abruptly, for T < Tc, and second-order transition
when m changes continuously, around Tc.

When a system is divided in a small number of domains, keeping the thermodynamic variables
constant, the macroscopic properties of each domain remain usually the same as the whole. However,
as the number of domains becomes important in such a way that the size of each domain becomes
less than a certain length ξ, the properties of each domain may start to considerably differ over the
system. The typical length scale ξ is known as the correlation length, i.e., the length over which the
fluctuations of microscopic variables are correlated. At the critical point, the system is divided into
locally ordered domains scattered in the bulk, whose mean size corresponds to the correlation length ξ,
and mean lifetime to the correlation time τ. The experiments indicate that the correlation length and the
correlation time increase more and more as the critical point is approached from the low temperatures
side. In particular, it is observed that the correlation length ξ remains finite for a first-order phase
transition, but becomes infinite for a second-order one. When T tends to Tc, the correlation length
diverges according to the simple form ξ ∼ (Tc − T )−ν, where ν is known as a critical exponent. As a
consequence of large fluctuations, which become correlated over all distances near the critical point,
the system is in a single phase, since the disordered phase has a stability similar to the ordered phase.
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It is a matter of fact that the singular behavior of various thermodynamic functions, in the vicinity
of the critical point, is governed by a set of critical exponents for transitions as different as those of
liquid–gas and ferromagnetic. In addition to the exponent ν, the most commonly encountered critical
exponents are: (i) β which describes the order parameter m below Tc as m ∼ (Tc − T )β, (ii) γ
describing the susceptibility (i.e., the response of the order parameter m to its conjugate field H)
χ = ∂m

∂H

∣∣∣
H=0
∼ |T − Tc|

−γ, (iii) α describing the heat capacity (i.e., the thermal response function)
C = ∂E

∂T

∣∣∣ ∼ |T − Tc|
−α, etc. It is remarkable that the critical phenomena of very different physical

systems show the same temperature dependence, with roughly similar values of the critical exponents.
For the liquid–gas transition α ' 0.11, β ' 0.32, γ ' 1.24, ν ' 0.63 and for the ferromagnetic
transition α ' −0.1, β ' 0.34, γ ' 1.4, ν ' 0.7, related by α + 2β + γ ' 2. Detailed studies of this
universality applied to critical phenomena (see, e.g., [99]) go beyond the scope of this review.

The divergence of the correlation length near second-order phase transition indicates that the
thermodynamical properties are insensitive to microscopic details of the system. This is a motivation
to search for a phenomenological description of critical phenomena capable of describing a wide
variety of model systems. In the next section, we introduce such phenomenological approach to
second-order phase transitions, known as the Landau-Ginzburg theory, in which the order parameter
goes to zero continuously. It should be noted that this theory is quite general in a way that it may be
used for a great number of systems with various dimensionality: three-dimensional systems (fluids,
ferromagnetic systems...), two-dimensional systems (films, emulsions...), one-dimensional systems
(polymers, chains of atoms weakly coupled...).

9. Phenomenological approach: Landau-Ginzburg theory

The Landau-Ginzburg theory [100] has been first developed to investigate the charged superfluids;
its way of operation is the minimization of the free-energy functional. If applied to complex fluids
near the critical point, the expansion of the free-energy functional can be written as an integral over all
space of an appropriate function of the order parameter and its spatial deviations as:

F [m(r)] =

∫ [
a [m(r)]2 + b [m(r)]4 + c [∇m(r)]2 + d

[
∇2m(r)

]2
+ ...

]
dr , (53)

where the order parameter, noted m(r) = ρ(r) − ρc, is the difference between the local density ρ(r)
and the critical density ρc. It may be noted that the odd powers of m(r) are absent in the integrand
(free-energy density) by virtue of the conservation law of particles. Besides, the third and fourth
terms are the square gradient and square Laplacian of the order parameter, respectively. Depending
on the system under study, other terms may be added or dropped in the expansion. For instance, in
homogeneous fluids, all the spatial derivatives of the order parameter are neglected even if m(r) is
subject to fluctuations at the microscopic level‖. On the contrary, in inhomogeneous fluids the spatial
derivatives are expected. As an example, the Ornstein–Zernike (OZ) theory may be rederived [101]
with Eq 53, when only the coefficients a and c are kept. By stability consideration, both parameters a
and c must be positive, however, a vanishes at the critical point.

In other circumstances, as in microemulsions [42,102] and homopolymer-diblock copolymer blends
[103, 104], the terms pertinent to a study of the critical behavior are those involving the coefficients

‖This local inhomogeniety assumption has been discussed by Landau in his theory of the spatial correlation functions, see Landau
LD, Lifshitz EM (1968) Statistical Physics, London: Pergamon.
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a, c and d, with a positive value of a in order that the free energy has a minimum. In that case, it
has been argued that the stability condition imposes c2 − 4ad < 0, so that d is positive and c may be
positive or negative. It should be mentioned that at the change of sign of c, by varying an appropriate
parameter, the system undergoes a phase separation into a bulk phase or a spatially modulated phase.
The condition c = 0, referred to as the Lifshitz point, has been first introduced in the context of
ferromagnetic systems [105], but it is also known to exist in other systems like liquid crystals [106],
microemulsions [42, 102], block copolymers [103, 104].

In the Landau-Ginzburg theory, it is convenient to write the free-energy functional F [m(r)] in an
alternative form by expanding the order parameter and its spatial deviations in Fourier series as:

m(r) =
∑

q

mq exp(iq · r) with mq =
1
V

∫
m(r) exp(−iq · r)dr , (54)

∇m(r) =
∑

q

(iq)mq exp(iq · r) , (55)

∇2m(r) =
∑

q

−q2mq exp(iq · r) . (56)

After substitution of these relations in Eq 53 and integration, all the terms of the form
mqmq′ exp

[
i(q + q′)·r)

]
vanish when q′ , −q and are equal to

∣∣∣mq
∣∣∣2 when q′ = −q, so that F

[
mq

]
reads:

F
[
mq

]
= V

∑
q

(a + cq2 + dq4)
∣∣∣mq

∣∣∣2 . (57)

It should be noted that each term of the sum in Eq 57 depends only on single density modes mq

contributing additively to the free energy. Thus, the different mq are statistically independent, i.e.,
noninteracting. Because of the truncation of the Fourier series, Eq 57 is only valid for small q, where
the wavelength 1/q is great compared to the interparticle distance.

10. Density fluctuations near the critical point

As an application of the Landau-Ginzburg phenomenological approach, we perform a quantitative
description of the density fluctuations in self-assembly structures such as microemulsions and diblock
copolymers. These systems are homogeneous and disordered over macroscopic length scales, but they
are inhomogeneous over mesoscopic length scales [38]. The presence of fluctuations in the systems is
provided by the emergence of a peak in the static structure factor located between the
long-wavelength limit and the principal peak of diffraction. These fluctuations give rise to an
instability of the homogeneous phase leading to microphase separation.

It should be pointed out that the free energy (Eq 57) may be written as a function of the density
fluctuations under the form [101]:

βF
[
mq

]
N

=
∑

q

1
S (q)

∣∣∣∣∣mq

ρ

∣∣∣∣∣2 , (58)

where S (q) is the static structure factor, i.e., the linear response of the system with respect to the particle
density. This relation results from the fluctuation-dissipation theorem meaning that the structure factor

AIMS Materials Science Volume 6, Issue 4, 509–548.



534

S (q) of the system is directly proportional to the susceptibility χ(q) according to the formula χ−1(q) =

−(δ2F
[
mq

]
/δm2

q). The comparison of Eq 57 with Eq 58 allows to deduce the following expression for
the structure factor at small q:

S (q) '
1

βρ(a + cq2 + dq4)
. (59)

A point of particular interest is the correlation of the density fluctuations in complex systems near
the critical point. To gain an insight into the density fluctuations in fluids, the total correlation function
h(r) may be investigated by X-rays or light scattering experiments through the structure factor S (q),
that is related to the Fourier transform of h(r) as follows:

S (q) = 1 + ρh(q). (60)

The microscopic nature of the density fluctuations is also studied by the Ornstein–Zernike relation
whose the FT reads (Eq 17):

1 + ρh(q) =
1

1 − ρc(q)
, (61)

where c(q) is the FT of direct correlation function c(r). This shows that the correlation functions depend
on the set of the arbitrary phenomenological parameters a, c and d, which are non-universal functions
of microscopic interactions. The understanding of the physical origin of long-range character of h(r)
is a major problem of complex fluids near the critical point. The slower the correlations attenuation
the greater is the characteristic size of fluctuations. In an attempt to explain the asymptotic behavior of
h(r) for large r, one might calculate the inverse FT of Eq 59.

As already mentioned, the OZ theory may be rederived by taking account only of the terms with
the coefficients a and c in Eq 59. In this well-known theory, which predicts the large isothermal
compressibility χT at the critical point, the structure factor for small values of q is:

S (q) '
1

βρ(a + cq2)
. (62)

Far away from the critical point, the structure factor at q = 0 is S (0) = (βρa)−1 = ρχT/β, where χT

is the isothermal compressibility. But at the critical point, a tends to zero as a consequence of the
divergence of the isothermal compressibility. Taking the inverse FT of the Lorentzian representation
of Eq 62, presumably good for small wave vectors, provides the total correlation function where the
leading term at large distances is:

h(r) '
1

4πβρ2c
exp(−r/ξ)

r
, (63)

with the correlation length ξ =
√

c/a. This is in agreement with the fluctuation theorem for the
isothermal compressibility:

ρkBTχT = S (0) = 1 + 4πρ
∫

h(r)r2dr, (64)

which predicts that h(r) must vanish asymptotically at large distances more rapidly than 1/r3. The
thermodynamic stability in the OZ theory requires positive values of a and c, and at the critical point,
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where a→ 0, the correlation length tends to infinity, so that h(r) is no longer exponentially damped
at the critical point. Hence the asymptotic behavior of h(r) given by Eq 63, which is only correct
for moderately large values of the isothermal compressibility, away from the critical point, whereas it
behaves as 1/r at the critical point.

The Landau-Ginzburg expansion of the free-energy functional (Eq 57) is now used to investigate
the structure factors and the total correlation function of the microemulsions [42] and diblock
copolymers [107, 108]. In this case, a, c and d are arbitrary phenomenological parameters fit
accurately on experimental scattering data of these systems up to a small microscopic cutoff

compared to the inverse of the interparticle distance.
The structure factor is a crucial property of systems measured by X-ray or neutron scattering and

calculated from the interparticle potential in various ways. Remember that the structure factor S (q)
describes the arrangement of the particles, in the reciprocal space, for any system. In the case of
simple liquids, the principal peak in S (q), at q = qp, gives an indication on the mean distance between
particles. More relevant for the purpose is the value of S (q), at q = 0, that increases drastically when
the first-order liquid–vapor transition occurs, due to the increase of the density fluctuations in vapor
state. By contrast, in more complex systems, a pre-peak may emerge in the structure factor at the small
wave vector qc (0 < qc < qp), when the long-range repulsion in the pair potential is sufficiently large,
which is the signature of the formation of clusters in the system. In certain circumstances, the pre-peak
in S (q) grows, indicating a disordered-pattern of clusters, with the possibility to display spontaneous
modulated phases when the pre-peak is diverging. This transition (modulated phases) as observed in
S (q), at q = qc, has an analogy with the liquid–vapor transition predicted by the divergence of S (q) at
q = 0. Indeed, both transitions are the consequence of instabilities of the uniform phase with respect
to the density fluctuations. In simple liquids with long-range attraction of the van der Waals type, the
long-wavelength fluctuations dominate, while in complex liquids, with a long-range slightly repulsive
interaction, the density fluctuations of the microscopic wavelength 2π/qc are predominant, leading to
the microphase separation.

Additional information about the density fluctuations in disordered phases may be extracted from
the structure factor, judging by whether the discriminant ∆ of the polynomial in Eq 59 changes its sign.
With the conditions ∆ = c2 − 4ad > 0, a > 0 and d > 0, the inverse FT of Eq 59 and straightforward
algebra leads to total correlation function [23, 42]:

h(r) '
(

1
4πβρ2∆1/2

)
1
r
[
exp(−r/ξ1) − exp(−r/ξ2)

]
, (65)

with two correlation lengths:

ξ1 =

√
2d

c − ∆1/2 and ξ2 =

√
2d

c + ∆1/2 . (66)

With the conditions ∆ = c2 − 4ad < 0, a > 0 and d > 0, the inverse FT of Eq 59 reads:

h(r) '
(

1
4πβρ2 |∆|1/2

)
1
r

exp(−r/ξ) sin(r/δ) , (67)

with two correlation lengths:

ξ = 2

√
d

2 (ad)1/2 + c
and δ = 2

√
d

2 (ad)1/2
− c

. (68)
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Depending on the values of the parameters a, c and d, the total correlation function h(r) may present
either a decay resulting from a combination of two Yukawa functions, with the correlation lengths ξ1

and ξ2, or a damped oscillatory behavior with a periodic spatial variation δ, generating modulated
phases in the system.

To obtain more information on how the copolymer in mixtures of homopolymers (or the surfactant
in microemulsions) tends to order the mesophases and also to order itself, it is useful to introduce the
disorder line and the Lifshitz line. The disorder line is the locus of points in the phase diagram at
which the oscillatory behavior appears in the total correlation function h(r). It occurs when (c2 − 4ad)
is negative and c has a specific negative value. It should be noted that the parameter c depends on the
copolymer density, while the question arises whether it varies with the temperature [109]. The total
correlation function is presented in Figure 11 for a system where c is variable and a = d = 3. The
discriminant (c2 − 4ad) is negative when 6 > c > −6. It can be seen that the faster attenuation of the
total correlation function h(r) is for c = 10 whereas its oscillatory behavior begins to dominate for
c < −4.

The Lifshitz line is the locus of points at which the peak in the structure factor S (q) just starts to
move out of zero wave vector towards a nonzero value. It appears when ∂S 2(q)/∂q2|q=0 = 0, i.e.,
c = 0. In other words, it corresponds to the point at which the structure factor (Figure 12) ceases to
decay monotonously, when c < 0, in contrast to the disorder line which indicates the point at which
the oscillatory component (Figure 11) appears in the total correlation function h(r). It should be noted
that the position of the peak in S (q) moves to large wave vectors when c decreases and divergences for
c=−6.

In the context of diblock copolymer blends, Eq 67, with ∆ < 0, is needed to describe the
disordered phase with the correlation length ξ and the wavelength δ. From an experimental point of
view, the oscillation in h(r) reflects the tendency of the copolymer to order the A and B monomers in
space. It depends on the concentration of diblock copolymers [109, 110] and the temperature [108].
At low copolymer content, the parameter c is positive and the total correlation function decreases
monotonously with the distance. As the copolymer density increases and the temperature remains
constant, one expects the wavelength δ to decrease and to enforce the order over shorter distances.
When the amount of copolymer continues to increase, c changes its sign at crossing the Lifshitz line.
It remains negative for larger copolymer content up to the occurrence of the disorder line, at the
divergence of the peak in S (q) when ∆ = (c2 − 4ad) = 0. The divergence of the subsidiary peak of
S (q) at q = qc indicates a strong increase of the fluctuations and an instability of the homogeneous
phase leading to microphase separation. The instability of the homogeneous phase is realized at the
wavelength value of δ = 2π/qc.

11. Structure factor of complex liquids

In Section 10, the structure factor was determined from a phenomenological approach in terms of
the three parameters a, b and c to be adjusted on the experiment data. In this section, we determine the
structure factor from the microscopic theory of liquids, as a function of the pair potential.

We first consider the calculation of the structure factor S (q), and then investigate the features of the
pre-peak on S (q) (magnitude and position). When the MD simulation is used, the accuracy of results
strongly depends on the potential model. In contrast, when the liquid theory methods are employed,
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Figure 11. Total correlation function h(r) for the system with a = d = 3 and different values
of c: c = 10 (crosses); c = 0 (stars); c = −2 (dots); c = −4 (circles); c = −5.95 (squares).

Figure 12. Structure factor S (q) for the system with a = d = 3 and different values of c:
c = 10 (crosses); c = 2 (solid line); c = 0 (stars); c = −2 (dots); c = −4 (circles); c = −5.95
(squares).
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the results depend also on the approximation used. For instance, with the simplest random phase
approximation (RPA), the structure factor reads [57]:

S RPA(q) =
S HS (q)

1 − ρclr(q)S HS (q)
, (69)

where S HS (q) is the hard-sphere structure factor whose the expression is known accurately under the
analytical form [111, 112]:

1
S HS (q)

= 1 + 24η
[
αJ1(qσ) + δJ2(qσ) + γJ3(qσ)

]
, (70)

with

η =
π

6
ρσ3; Q = qσ; α =

(1 + 2η)2

(1 − η)4 ; δ = −6η
(1 +

η

2 )2

(1 − η)4 ; γ =
η(1 + 2η)2

2(1 − η)4 , (71)

and

J1(qσ) =
1

(qσ)3 {sin(qσ) − (qσ) cos(qσ)} , (72)

J2(qσ) =
1

(qσ)4

{
2(qσ) sin(qσ) −

[
(qσ)2 − 2

]
cos(qσ) − 2

}
, (73)

J3(qσ) =
1

(qσ)6

{[
4(qσ)3 − 24(qσ)

]
sin(qσ) −

[
(qσ)4 − 12(qσ)2 + 24

]
cos(qσ) + 24

}
. (74)

The function ρclr(q) in Eq 69 is the FT of the direct correlation function ρclr(r) ' −ρβulr(r), (ulr(r)
being the long-range part of the potential), which is defined as:

ρclr(q) =
4π
q

∫ [
−ρβulr(r)

]
sin (qr) rdr . (75)

If u(r) is taken to be the temperature-independent double Yukawa potential (Eq 51), the FT of the direct
correlation function, ρclr(q), is expressed directly in terms of the model parameters under the analytical
form:

ρclr(q) = 24η
[
Ka exp(za)
(qσ)2 + z2

a
−

Kr exp(zr)
(qσ)2 + z2

r

]
. (76)

For mathematical convenience, clr(q) has been calculated analytically with the extension of u(r)
inside the core [87, 93]. However, in the RPA, clr(r) inside the core is sometimes taken to be
clr(r < σ) = λ (Ka − Kr), where λ is a fitting parameter. Different choices for clr(r < σ) are possible
by varying the parameter λ, among them λ = 0 or λ = 1 are often used. It should be noted that with an
appropriate polynomial for clr(r < σ) inside the core, whose parameters are chosen by determining
the free energy, the optimized random phase approximation (ORPA) brings an appreciable
improvement to the structure factor. As an example, the ORPA has been proven to be an efficient tool
to predict the particularities of the structure factor of the divalent liquid metals [113]. It should be
mentioned that the structure factor determined by RPA (with clr(r) rigorously equal to −βu(r) at large
distances) is not expected be as accurate as the predictions from simulation or from integral equations
calculations, because clr(r) in the hard core is not equal to that of the HS potential, which must be
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corrected by an additional contribution [114]. Recently, we have developed a semianalytical “reverse”
approach to link structure and microscopic interactions in two-Yukawa competing fluids [115].

Figure 13 displays the structure factor S (q) for the double Yukawa potential with za = 1, zr = 0.5
and different values of Ka, Kr and ρ. It can be seen that S (q) develops a pre-peak at qc when K−1

a

is small, indicating a propensity towards cluster formation in the liquid [92]. Simultaneously, in the
phase diagram K−1

a (ρ), we observe a curve, denoted λ-line by Archer et al. [17], that is generated by
the locus of points where S (qc) diverges. This curve marks the boundary between the homogeneous
phase (above) and the modulated phase (below). It may be compared with the binodal, for which
p(ρL) = p(ρG) at a given temperature, and the spinodal, for which the isothermal compressibility
diverges (χT = S (0)/ρkBT ). Both the binodal and spinodal lines have the vortex at the critical point C.
On the other hand, the λ-line intersects the binodal at two points A and B, indicating that the liquid–
vapor transition is preempted by a microphase separation in the range of densities between A and B.
This phenomenon happens for a particular choice of potential parameters giving rise to the competition
between the short-range attraction and long-range repulsion. It should be noted that the location of the
λ-line is very sensitive to the choice of the approximation used to calculate the structure factor.

Figure 13. (a) Structure factor S (q) calculated with the values za = 1, zr = 0.5, ρ∗ = 0.2457
and Kr = 0.08, within the double Yukawa potential. (b) Phase diagram K−1

s (ρ) determined
with the values za = 1, zr = 0.5 and Kr = 0.5.

For a pair potential of the van der Waals type, consisting of a short-range repulsion and a
long-range attraction, the theory predicts a first-order transition between vapor and liquid, at the
critical temperature. Different phase behaviors may exist when the ranges of the repulsive and
attractive interactions are interchanged, giving a small long-range repulsion beyond the attractive
well. The possibility that a delicate balance between the short-range attraction and the long-range
repulsion may stabilize equilibrium clusters has been discussed in numerous theoretical
works [116, 117]. At low densities, there are clear-cut evidences for the existence of a fluid phase of
clusters, whose size and shape are expected to be sensitive to the respective ranges and strengths of
the attractive and repulsive contributions to the pair potential. Upon increasing the density, the
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competition between the repulsive and attractive contributions may stabilize new particle
arrangements. In colloidal suspensions, the presence of long-range repulsive interactions strongly
alter the formation of clusters giving rise to stable chainlike clusters coalescing into elongated
structures, eventually forming a connected network at gelation [33, 98]. In other systems such as
aqueous surfactants and mixtures of block copolymers, competing interactions may lead to the
formation of modulated phases [39, 41, 118, 119].

It is frequently argued that the emergence of a pre-peak in S (q) indicates the presence of a generic
Intermediate Range Order (IRO) within the fluid. An IRO is defined by a locally inhomogeneous region
of a system characterized by the appearance of aggregates (not necessarily at equilibrium) with sizes
divided into dimers, trimers and so on, rather than clusters of preferred finite size. A cluster phase at
equilibrium refers to a stable situation where the system does not evolve towards either a homogeneous
fluid or a completely resolved phase separation, except in the case of a temperature or density change.

Much has been learned about the structural and thermodynamic properties in fluids with competitive
SALR interactions, both for disordered cluster fluid states and modulated (ordered) cluster phases, at
intermediate densities. But the origin and the formation of cluster fluid phases, at low density, are
much less well studied.

Many approaches have been used to examine the formation of cluster fluid phases by various
methods: molecular dynamics and Monte-Carlo simulations [78, 91], self-consistent integral equation
approach [19], density functional theory [17], molecular thermodynamic model [120]. Structural
criteria have been used [121–123] to identify the boundary between different regimes starting from a
homogeneous state fluid up to the IRO. Most of these calculations were carried out with the double
Yukawa potential. Besides, interesting calculations [96, 97] have been performed recently with a
potential modeled with a 100-50 Lennard-Jones potential plus a screened electrostatic repulsive
interaction of Yukawa’s type, for systems at low densities. With this particular pair potential, the
results yield promising information on the equilibrium cluster fluid phase.

12. Concluding remarks

In this article we consider soft materials in which the interactions at intermediate and large distances
are dominated by repulsive contributions. So, the long-range attraction favoring the aggregation is
frustrated by the long-range repulsion, which prohibits further growth and changes drastically the
phase diagram of purely attractive potentials. Insofar as the long-range interactions between colloids
are only attractive, it is well known that soft materials exhibit a conventional liquid–vapor transition;
however, in presence of a long-range repulsion, a metastable fluid–fluid transition [124,125] (above the
liquid–vapor transition) occurs that complicates the description of the thermodynamic phase transitions
[17, 22, 23]. Taking account of the variety of soft materials, this article is not intended to be complete.
It must be regarded as only an introduction to the study of the interactions in such materials.

In colloidal polymer mixtures, the long-range repulsion (LR) is usually attributed to the weak
screened charge carried by the colloids, while the long-range attraction (SA) arises from the depletion
forces generated by nonadsorbing polymers. The expression of the repulsive part of the interparticle
potential has been first determined by Verwey and Overbeek [50] but it has been shown, in Section 4,
that it can be derived [52] by an analogy between the colloidal suspensions and the metallic liquids.
Concerning the expression of the attractive part of the interparticle potential [61], presented in Section
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5, it is ascribed to the sum of van der Waals forces between atoms of the colloidal particles.
Notwithstanding its simplicity and its relevance, the interparticle (SALR) potential is often used under
an empirical form (Section 6), able to generate long-range attractive and long-range repulsive
contributions, such as the double Kac potential and the double Yukawa potential. These
one-component models for interactions between solute particles, in which the solvent degrees of
freedom are integrated implicitly, involve only spherically symmetric pair interactions and provide the
impetus to better understand their origin. The role of attractive and repulsive contributions to the
interparticle potential has been carefully investigated in globular protein solutions [14] and
star-polymer systems [126, 127], specially to describe the spontaneous microphase formation in
systems of spherical symmetric particles, where stable clusters of a specific aggregation number
develop in the solution of monomers [91, 120]. Clustering in these systems is important not only for
theoretical studies but also for developing new materials such as nanoparticles [128, 129], protein
solutions [14] and other in the process of biomineralisation [130] by which living organisms produce
minerals.

The phenomenon of microphase separation observed in microemulsions and diblock copolymers,
also described by SARL potentials, is common to other physical systems exhibiting diverse
microstructures at two and three dimensions, known as modulated phases. Most of the observed
phenomena and available experimental data (lamellar structures, diverse arrays of cylinders and
spheres...) have stimulated a strong theoretical effort [5, 98, 117]. The microscopic inhomogeneities in
microemulsions or diblock copolymers are related to the chemical constituents, the range of volume
fractions [110] and the temperature [108]. From phenomenological (Section 10) and microscopic
(Section 11) approaches, it is now understood that frustration, arising from competing interactions
over different distances, plays a crucial role in microphase separation. Another point we want to
address is an investigation of the features of the total correlation function h(r) and the structure factor
S (q) of the systems under study, for which the Ornstein–Zernicke picture is of limited use. In the
context of diblock copolymer blends, the disordered phase is characterized by the correlation length ξ
and the wavelength δ that give rise to the oscillations in the total correlation function h(r). As the
volume fraction increases and the temperature remains constant, one expects the wavelength δ to
decrease and to enforce the order over shorter distances. For larger copolymer content, the peak in the
structure factor S (q) at q = qc diverges. This divergence associated to the correlations of density
fluctuations means an instability of the homogeneous phase leading to microphase separation.

The present review provides ample evidence of the confidence of potential models with competing
attractive and repulsive interactions to describe a variety of structures in complex fluids of components
larger than molecules. In conjunction with appropriate potential models, real systems such as colloidal
dispersions, microemulsions, diblock copolymer blends and many others formed by self-assembly
provide interesting tools and potential exciting opportunities for studying intriguing phenomena in
generating nanostructures.
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