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Abstract: Light-driven functional coatings present an enabling technology of major importance in 

the successful, effective, and efficient exploitation of materials for energy and environmental-related 

problems of modern-day society. Photocatalyst coatings are traditionally obtained through 

physical/chemical vapor deposition or sol-gel related techniques. All these processes have certain 

disadvantages such as high environmental footprint, low adhesion to the substrate, poor mechanical 

properties, which makes them less suitable for upscaling to pilot and industrial applications. Thermal 

spraying is nowadays a well-established technique that offers all the prerequisites for obtaining 

mechanically-resistant and highly efficient photocatalytic coatings, on practically all types of 

substrates (metals, polymers, ceramics) bearing a wide area of geometries. Even if thick coatings are 

usually obtained through the thermal spraying method, the inherent nanopatterning of the surface 

generated through impact and plastic deformation of the feedstock material with the substrate 

generates the high surface area required for an efficient photocatalysis process. This mini-review 

presents some of the most important research results in the application of thermal spraying for 

achieving photocatalytic coatings. All the major techniques related to thermal spraying are 

considered, starting with flame spraying and moving on to newly developed techniques, such as high 

velocity oxy-fuel spraying, plasma spraying and cold gas spraying. 

Keywords: coatings; functional materials; photocatalysis; thermal spraying; flame spraying; HVOF 

spraying; plasma spraying; cold gas spraying; photodegradation 

 

1. Introduction  

Coatings represent complex structural interfaces, nowadays with practically unlimited 

possibilities of chemical speciation and structural architecture and with a wide application palette, 
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ranging in any proportion between purely decorative to functional, between nanoscale and 

macroscale level [1,2]. An insight into the application field of inorganic, organic and hybrid coatings 

obtained through complex criterial analysis of the information provided by the Web of Science 

platform (Clarivate Analytics, December 2018) has revealed that most of the research from the year 

1975 up to date is focused on obtaining coatings with improved tribomechanical properties and 

corrosion resistance [3–5] (Figure 1a), followed closely by the catalytic applications (which include 

various aspects of synthesis, energy storage, photocatalysis, etc.) [6–8], biocidal (i.e., antibacterial 

and antibiotic character) [9,10], bio(medical), thermal, radiation, electromagnetic-insulative 

applications [11,12], and so forth.  

For coatings of inorganic nature (which account for nearly 53% from the total, without 

considering composite-hybrid ones, based on the research data available from the Web of Science 

platform) several (electro)chemical or physical fabrication methods are available (Figure 1b) [13–18]. 

 

Figure 1. (a) coatings application domains and (b) frequently employed fabrication 

methods for inorganic coatings. 

Among the physical fabrication methods, thermal spraying (with its technological variants) has 

been traditionally employed since the 1920’s for achieving corrosion resistant hard coatings [19,20], 

reconditioning of worn metallic parts and tools [21], and more lately, to manufacture functional 

coating materials (thermal barriers [22,23], enhanced electrochemical response anodes [24], 

optically-active materials [25], semiconductors [26], biomaterials [27], solid fuel cells [28], and so 

forth). 

All technological variants of this technique imply spraying a combustion flame- or 

plasma-heated feedstock material (which may be in the form of powder, wire, rod, liquid, etc.) onto a 

desired substrate (usually metal or ceramic) [29,30]. The melted or partly-melted feedstock 

(colloquially called “splat”) is projected on the substrate with a high velocity, being deformed 
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(spread) onto the substrate surface on impact, generating a characteristic lamellar-layered coating 

upon its solidification [31]. Traditionally, coatings with thickness varying from 10 μm to a few mm 

can be obtained, but with the help of the high velocity oxy-fuel (HVOF) and plasma spraying 

techniques, the limit being lowered to 200–500 nm [32,33]. If the coatings are not nanometric, then 

nanopatterns can be exhibited on the surface in a highly reproducible manner [31,32]. 

This paper is focused on reviewing the current trends in photocatalytic coatings achievement 

through different thermal spraying techniques. Photocatalytic coatings represent the state-of-the-art 

in advanced oxidation processes for environmental and medical applications, in designing 

self-cleaning smart materials, converting raw materials into new useful products, in energy 

generating applications and so forth [30,34]. Traditionally, physical (PVD) and chemical (CVD) 

vapor deposition, along with the sol-gel (SG) process have been usually employed for most of the 

studies involving photocatalytic coatings achievement [35]. PVD and CVD have the advantage of 

obtaining photocatalytic coatings with tunable (and constant) chemical composition and thickness, 

avoiding the oxidation/chemical modification of the feedstock material during the deposition [30,36]. 

However, these are both energy-intensive and expensive processes, not currently upscalable to 

deposit coatings on large substrates. Sol-gel processes are instead more cost-effective, but also more 

time-consuming. Also, the chemical composition, morphology and the thickness of the SG coating is 

very difficult to be maintained, especially for large parts with complex geometry. Another issue that 

makes sol-gel processes less useful when considering upscaling to pilot or industrial-level 

applications is represented by the coatings low wear resistance, hardness and adhesion to the 

substrate. Also, as a trendline, there are comparatively fewer studies dealing with the obtaining of 

photocatalytic coatings on metal substrates (more relevant when considering the processes on a 

larger scale) with any of these techniques (PVD, CVD, SG), in comparison with ceramics, glass and 

organic substrates [37,38]. 

Even if thermal spraying can be currently considered as complete technique, it has all the 

requirements of being a successful candidate for photocatalytic coatings achievement: low 

equipment maintenance cost, lower environmental footprint (compared to CVD or PVD), versatility 

regarding the physical state and chemical composition of feedstock material (liquid precursors could 

be also sprayed, generating the photocatalytic coating on the substrate through the precursor 

decomposition; both metallic and high-refractory ceramic particles can be flame or HVOF-sprayed; 

even polymers can be successfully sprayed or employed as substrates for coatings with cold spraying 

technique), the possibility of application to large surfaces with complex geometry, the possibility of 

nanopatterning the surface, and so forth [38–41]. The disadvantages of thermal spraying reside 

mainly in unwanted oxidation of the feedstock material during spraying, which lowers the 

mechanical properties of the coatings and their adherence to the substrate which can be diminished 

by the adequate use of inert protection gases), and a more difficult control in the thermal sprayed 

coating thickness, which could be overcome by a careful controlling of the process operational 

parameters [42,43]. Another drawback could be constituted by higher deposition temperature (in 

flame spraying and plasma spraying technique) which affects the photocatalytic yield of the coating, 

due to allotrope/polymorph transformations of the material (e.g., in the case of TiO2, high 

temperatures promote the anatase to rutile transformation) [44–46]. 

There are currently relatively few researches involved in photocatalytic coatings achievement 

through thermal spraying, this application being at present time under continuous development. New 

sub techniques, such as liquid precursor spraying or powder composite-aggregate spraying have 
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permitted the achievement of coatings with improved nanopatterned structure and photocatalytic 

response. Based on the data from the Clarivate Analytics Web of Science platform, it can be 

concluded that roughly 74% of the coatings applied in photocatalysis are TiO2-based. Narrowing the 

domain of interest to photocatalytic coatings obtained by thermal spraying, TiO2 coatings account for 

84% of the total research. Based on criterial topic search algorithms, the majority of the 

thermally-sprayed photocatalyst coatings were deposited on glass and ceramic substrates. 

The current state-of-the-art (mini-review) is focused on presenting several important 

developments and trends in the photocatalytic coatings developing through thermal spraying and 

could serve as a starting point for crystalizing new ideas in this broad research domain. 

2. Methods of obtaining photocatalytic coatings 

2.1. Flame spraying 

Flame spraying represents the oldest thermal spraying technique. It implies the combustion of a 

fuel gas (typically acetylene) with oxygen to melt a feedstock material which is propelled on a 

substrate [47], as shown schematically in Figure 2.  

 

Figure 2. Schematic diagram of powder flame spraying. 1: fuel gas; 2: oxygen; 3: filler 

material (powder) and carrier gas; 4: spray deposit; 5: base material [48]. 

Flame spraying has been frequently used to generate high-quality wear- and corrosion-resistant 

coatings, or for reconditioning various metal parts, but to a lesser extent in the fabrication of 

photocatalytically-active coatings [30]. Flame spraying technique generates the second highest 

processing temperatures (typically in the range of 2500–3400 ℃) after plasma spraying [49]. With 

this thermal spraying technique, the oxidation of feedstock is to a considerable extent almost 

inevitable [50]. The so called “time of flight”, i.e., the time required for the feedstock to travel from 

the thermal spray nozzle to the substrate is a crucial parameter in the flame spraying technique. It 

needs to be carefully chosen, by tuning the distance between spraying gun and substrate     

material [30,50,51].  

Usually the feedstock is in powder form (metal or ceramic), but suspensions have also been 

recently used with high velocity suspension flame spraying (HVSFS) variant. In the HVSFS 

technique, the conventional gas-fueled torch is modified in order to process liquid feedstock. 
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Moreover, with this technique, organic solvents (i.e., aliphatic alcohols) injected into the HVOF 

flame undergo an exothermic combustion reaction, increasing the heat input conferred to the 

particles. The resulting combustion gasses add a supplementary drag to the particles exiting the 

spraying gun determining a more efficient packing of the sprayed material, i.e., higher density of the 

coating [52,53]. 

Various processes have been developed to obtain micro and nanoparticulate photocatalysts, 

employing the use of metal-organic precursors, or custom liquid fuels (aliphatic alcohols) instead of 

gaseous hydrocarbons [54,55] but photocatalytic coatings obtained by flame spraying have been 

relatively sparingly studied.  

Kavitha et al. have obtained titania films on silica substrates by flame spraying of a stabilized 

hydrous titanium oxide (Ti(OH)4) sol. The band gap of obtained films ranged from 3.11 to 3.16 eV. 

Remazol brilliant blue dye was successfully degraded by the films under UV light irradiation [56]. 

Similarly, Yang et al. have obtained rutile-rich nanostructured coatings starting from butyl titanate. 

They have proposed a mechanism for the nucleation of the rutile phase, starting from the surface of 

the initial anatase, resulting in a hybrid surface with a rutile outer layer and an anatase core [57].  

Liquid flame spraying could be considered a simple method to obtain doped photocatalyst 

coatings. Yang et al. have obtained Ag
+
-doped-nanostructured TiO2 photocatalytic coatings by using 

this approach. The phase structure of coatings was not significantly influenced by the silver ion 

doping, but the photocatalytic activity of doped coatings was higher than that of the reference TiO2 

coating, regardless of the dopant concentration [58]. In another study, the same group obtained 

Cu
2+

-doped TiO2 coatings. The enhancement of photocatalytic activity when adding the dopant could 

be attributed to the adsorption ability of oxygen and other reactants on the surface of the TiO2 

coatings [59]. 

Ctibor et al. have used a commercially-available anatase-rich TiO2 powder, a pre-reduced TiOx 

powder and a powder agglomerated from nanometric particles as feedstock for obtaining porous 

coatings photocatalytically-active in the UV domain, using acetone as degradation model compound. 

They have found that through flame spraying, the anatase phase is preserved in a higher amount in 

comparison with plasma spraying [60]. 

Huang et al. have obtained nanocomposite titania-hydroxyapatite-reduced graphene oxide 

coatings by liquid flame spray deposition. An aqueous suspension containing submicron particles of 

the components has been used as feedstock for spraying on stainless steel. Two variants of 

nanopatterned coatings have been obtained: with thickness of 120–150 μm and 20–30 μm. A 

maximum BET surface area of 0.8 m
2
/g was responsible for a good photocatalytic response 

regarding the UV degradation of methylene blue dye [61]. 

Roata et al. have used a different approach in designing thick photocatalytically-active coatings 

on copper substrates. They have employed an aluminum bronze powder (containing also small 

amounts of iron) as feedstock material and a conventional flame spraying torch. The photocatalytic 

response of the coatings was generated by the copper and iron oxides developed during the spraying 

of the metal powder. By varying the distance between the flame spraying torch and the substrate 

between 150 and 200 mm, coatings with different oxide contents and photocatalytic activities could 

be obtained. Moreover, the attained oxides present a nanopatterned texture, and the metal (mainly Al) 

acts as charge carrier separation means, contributing to the overall efficiency of the coatings for the 

UV-driven methylene blue degradation [30]. 

Navidpour et al. have obtained hematite coatings through plasma and flame spraying techniques 
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on 316 stainless steel plates, starting from pure hematite as the initial feedstock powder. The average 

size of the particles was around 5 μm. The thermal spraying distance greatly influences the 

hematite/magnetite ratio. In this respect, the weight percent of the hematite was decreased by 

increasing the distance of the spraying torch from the substrate, consequently with the visible 

light-mediated photodegradation efficiency against methylene blue aqueous solutions [62]. 

Flame-sprayed coatings were more photocatalytically efficient than plasma-sprayed coatings, due to 

their higher active surface and -Fe2O3 content.  

2.2. HVOF thermal spraying 

In the high velocity oxy-fuel (HVOF) variant of thermal spraying, the feedstock material is 

accelerated at supersonic velocity through a converging or converging/diverging nozzle by means of 

the rapidly expanding gases evolved in the chemical reactions between hydrogen and oxygen, or 

gaseous hydrocarbons and oxygen (Figure 3) [63,64]. This allows for lower temperatures (hence 

lower oxidation degrees and chemical degradation of the coated material) and better mechanical 

bonding of the coating with the substrate than in the case of conventional thermal spraying [65]. 

 

Figure 3. Principle of high velocity and fuel gas flame spraying. 1: filler material 

(powder) and carrier gas; 2: oxygen or air fuel; 3: cooling system (water or air); 4: spray 

deposit; 5: base material [48]. 

Up to date, there are only a few studies, regarding the application of HVOF to obtain TiO2 thick 

and hydrophilic coatings in order to remove organic pollutants in gaseous phase. Titania represents 

probably one of the most widely employed photocatalysts [66], due to the ability to function as a 

photocatalyst under UV irradiation and to easily tunable photocatalytic response through doping or 

mixing with species that facilitate charge carriers separation. High anatase/rutile ratios can be 

generally obtained through HVOF, with increased surface areas which is beneficial for  

photocatalysis [67,68]. 

Toma et al. have obtained 5–20 μm thick photocatalytic TiO2 coatings through HVOF spraying 

for photodegradation of NO and NOx nitrogen oxides [69]. The feedstock material comprised of 

anatase-rich and anatase-10 wt% Al micro-sized powders, or micro-agglomerated TiO2 (92% anatase) 

powders. It has been observed that after the HVOF process, anatase converts into the rutile 
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polymorph, which presents a lower photocatalytic efficiency than anatase (the anatase content was 

only ~12% after spraying). The Al provides a more efficient charge carrier separation during 

UV-light irradiation, leading to improved efficiencies. The values of the conversion ratio ranged 

between 30 and 32% for NO and 16–18% for NOx [70]. In another study, Toma et al. have obtained 

HVOF-sprayed coatings starting from aqueous suspensions containing 40 wt% rutile and anatase 

phases, using ethylene as fuel gas. The parameters of spraying process were chosen to obtain 

mechanically stable coatings and to preserve a high content of the initial crystalline phases of the 

powders [71]. 

Colmenares-Angulo et al. have performed a comparison between the photocatalytic activities of 

HVOF and plasma-sprayed TiO2 coatings. Partially reduced oxidic species were registered in all 

coatings, such as Ti8O15, which are detrimental for photocatalysis applications. As-prepared samples 

showed limited photocatalytic activity towards methylene blue degradation, but with the 

HVOF-generated coating being more efficient than the plasma-sprayed one. In contrast, 

post-deposition oxidation of the samples in air resulted in significantly improved catalytic 

performance of the coatings, due to the increase of the anatase content [72]. Detailed structural 

studies performed by Yang et al. have indicated that the rutile phase in plasma-sprayed TiO2 presents 

a more significant preferential orientation along the (101) atomic plane than the same material 

deposited through HVOF, due to the tensile stresses concentrated in the individual splats. The (101) 

diffraction planes may change their orientations parallel to the coating surface under tensile stress at 

high temperature during splat cooling. This preferential orientation has a negative influence on the 

efficiency of the photocatalysis process [73,74]. 

The comparative study on the microstructure and photocatalytic properties of titanium dioxide 

coatings obtained by different thermal spray methods: atmospheric plasma spraying, suspension 

plasma spraying, and HVOF using agglomerated and nonagglomerated TiO2 nanopowders as 

feedstock materials led by Toma et al. has indicated that the coatings elaborated by suspension 

plasma spraying presented a specific structure that depended on the nature of the solvent used in the 

preparation of the suspensions. The coatings obtained starting from aqueous suspensions were able to 

preserve a higher ratio of anatase than in the case of alcoholic feedstock powder suspensions, 

therefore showing remarkable photocatalytic efficiency that in some conditions was higher than that 

of the corresponding anatase powder [75].  

Similarly, Ctibor et al. obtained rutile-rich TiO2 coatings through HVOF, with band gap energies 

ranging from 2.17 to 3.15 eV, efficient for UV photodegradation of acetone [76]. Different 

researchers have obtained TiO2 coatings with higher anatase contents (35 to 55%) through modifying 

the geometry of the thermal spray nozzle, allowing lower temperatures, below that corresponding to 

the anatase-rutile polymorph transition at ~600 ℃ [77] Bozorgtabar et al. have obtained a coating 

containing 80% anatase by volume at 120 mL/min low fuel flow rates. The results show that the 

as-sprayed TiO2 HVOF coatings were highly photocatalytically reactive for the degradation of 

ethanol [78]. 

Studies led by Pala [79] have indicated that nanopatterned and anatase-rich (20.45–69.14%) 

coatings can be obtained by suspension high velocity oxy-fuel spraying approach (principle scheme 

shown in Figure 4), with potential photocatalytic and/or sonophotocatalytic applications. In their 

study they have used anatase nanoparticles (with diameters between 50 and 180 nm) 20 wt% 

suspensions in water, which they have directly injected into the center of the HVOF combustion 

chamber. 
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Figure 4. Principle of high velocity liquid/suspension fuel flame spraying. 1: combustion 

chamber; 2: liquid fuel; 3: oxygen/air; 4: suspension/solution and carrier gas; 5: 

deposit/coating; 6: base material [48]. 

Higher heat powers lead to the achievement of surfaces with higher roughness as well as to the 

presence of micro- and nanopatterned formations that could be beneficial for catalytic applications. 

2.3. Plasma spraying 

This variant of thermal spraying uses DC- or RF-generated plasma as a spraying heat source. 

Owing to high temperatures of the plasma, a wide range of refractory ceramics and alloys could be 

successfully sprayed at velocities of 200–300 m/s. With this thermal spraying technique, powders as 

well as liquid precursors and particle suspensions could be used as feedstock materials (Figure 5).  

 

Figure 5. Schematic diagram of air plasma jet spraying unit. 1: anode; 2: cathode 

(electrode); 3: plasma gas; 4: cooling system; 5: filler material (powder) and carrier gas; 

6: spray deposit; 7: base material [48]. 

As a general trendline, plasma spray ceramic coatings present an inherent connected-pores 

structure, which is beneficial for photocatalytic activity. Considering that usually splat size of 

micrometer scale into account, the surface area is not so high as other type of coatings (e.g., obtained 

by flame spraying) [80–82].  

In some cases where the high temperature of the plasma spray process promotes undesirable 
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changes in the coating structure, it has been found that spraying with suspensions and liquid 

precursors is more benefic in obtaining a higher photocatalytic yield of the coating [83]. During 

suspension/precursor droplets spraying, the liquid dispersing media/solvent is evaporated, resulting 

submicron-agglomerated particles, which are melted and accelerated to the substrate. 

Dosta et al. have obtained highly stable TiO2 coatings with a wide range of structural 

characteristics for their application as photoanodes, starting from conventional rutile and anatase 

powder aqueous suspensions as spraying materials. The solar-irradiated photoelectrocatalytic 

performance for degrading Acid Orange 7 dye was 70% [84]. An aqueous suspension of Degussa 

P25 TiO2 has been employed by Vu et al. to obtain UV-photocatalytic coatings by plasma spraying. 

They have found that the heating of the Degussa Powder at temperatures of 800 ℃ generates pure 

rutile of about 200 nm crystallite size in the coating [85].  

Solonenko et al. obtained titania coatings on stainless steel by plasma spraying of an ethanolic 

solution of titanium tetra iso-butoxide precursor, which decomposes thermally into TiO2. The novelty 

of the study consisted in using a specially-designed cascade plasma torch operating on argon-helium 

mixture which owed for an increased anatase content in the sprayed coatings. Good mineralization of 

the model dye compound has been achieved after 6 hours of UV-light irradiation [86]. Regarding 

TiO2 coatings, it has been found that a minimum 15–20% anatase content is required for efficient 

photocatalysis. Another issue related to spraying TiO2 is that fully-oxidized coatings are rarely 

obtained, with several other undesired phases being developed, such as Ti2O3 and TiO. A 

post-deposition heat treatment (650 ℃, 48 hours) ensures the complete oxidation of titanium to Ti
IV+

, 

subsequent with the anatase to rutile transformation [87].  

Ctibor et al. have proven that the initial morphology of the feedstock powder has a low 

influence on the microstructure of the plasma-sprayed coatings of titanium dioxide. This influence is 

more significant when discussing the photochemical response and respectively phase composition 

and crystallite size [76,88]. Since UV light generating is energy-intensive and it accounts for only  

~5% of the solar spectrum, intensive research has been focused on obtaining photocatalytic coatings 

that are able to harvest light in the visible domain of electromagnetic radiation [89]. In this respect, 

suspension plasma spraying has been applied by Zai et al. for obtaining composite Ti2O3–TiO2 

coatings with reduced band gap (2.71 eV). The sprayed aqueous suspension contained Degussa P25 

TiO2 nanoparticles and surfactant polymers. The coatings present fine nanometric and 

submicrometric grains, have a gray color, thus being more efficient in light absorption. The coatings 

present an efficiency of 89% for degradation of aqueous methylene blue dye [90]. 

In another study, Ctibor et al. have used gas-stabilized (GSP) and water-stabilized (WSP) 

plasma guns to obtain TiO2–Fe2O3 composite powders by atmospheric plasma spraying (APS). The 

novelty was to use a phase-controlling Na2SiO3 additive suitable for feeding into the plasma jet. The 

GSP coating has the best photocatalytic activity under both UV and VIS light irradiation. The 

coatings produced with the Na2SiO3 additive were dominatingly amorphous and more active in the 

UV domain [91].  

Through the solution precursor plasma-spray route (SPPS), ZnO films with nanostructured 

surface morphologies have been obtained by Yu et al. [92,93]. Zinc acetate has been chosen as 

precursor, being dissolved in a water-ethanol mixture at concentrations ranging from 0.2 to 0.4 mol/L. 

Needle and bud-like nanopatterns were formed on the surface of the coatings, which were 

responsible for degradation of Orange II dye in under 100 minutes, under UV irradiation conditions. 

The assemblies presented bandgap values of 3.02 eV. Zinc oxide coatings could be obtained also 
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through traditional plasma-spray routes. For example, Navidpour et al. have obtained coatings with 

specific surface areas of 25–45 m
2
/g starting from ZnO powder with an average diameter of 2 μm, 

with moderate efficiency in photodegrading methylene blue dye [94]. Through the same technique, 

Chen et al. have obtained highly porous titania surfaces using titanium isopropoxide in aqueous 

phase as precursor. The amount of anatase and rutile phases in the as-sprayed coatings can be 

adjusted by simply changing the plasma power. With the increase of plasma power, the coating 

anatase content decreases and the rutile content increases [95]. 

Coatings with a wide palette of chemical compositions can be obtained with plasma spraying 

technique. Doping the main photocatalytic-active feedstock material is facile, by mixing the 

appropriate amount of dopant with the liquid precursor, or through mixing powders with different 

chemistry in the desired ratios. For example, composite coatings have been obtained by Zeng et al. 

by powder plasma spraying of TiO2 and ZnFe2O4 powders under various mixing ratios. The 

maximum methylene blue decomposition efficiency was ~75% under UV (365 nm) irradiation [96,97]. 

Platinum-doped TiO2 coatings have been obtained by powder plasma spraying. The obtained 

coatings present ~70% photo-efficiency under light irradiation combined with a 15 V potential   

bias [98]. 

Composite TiO2–Fe3O4 coatings have been obtained by co-spraying powder mixtures with 

various compositions, namely TiO2–5 wt% Fe3O4, TiO2–10 wt% Fe3O4, TiO2–12.7 wt% Fe3O4, 

TiO2–22.5 wt% Fe3O4 and TiO2–32.6 wt% Fe3O4 powders. The coatings were able to completely 

degrade gaseous acetaldehyde in about 120 min [99]. 

Dom et al. have obtained ~25 μm-thick photocatalytic composite coatings starting from aqueous 

and organic (ethylene glycol) precursor solutions Zn
2+

 and Fe
2+

, complexed with citric acid. 

Preparation of a stable precursor by metal–citrate complexation has been found to inhibit the 

oxidation of individual metallic species during film deposition. The chemistry of the coatings was 

mainly ZnFe2O4. This phase exhibited a band gap of 1.9 eV. The highly porous nature of the film 

favored its photocatalytic performance as indicated by methylene blue discoloration under solar 

radiation (~30% degradation efficiency) [100]. 

Liu et al. have reported for the first time a hierarchical-nanostructured coating comprising of 

aluminum zinc oxide (AZO), deposited on a glass substrate through atmospheric plasma spraying. 

The coatings were of 60 μm thickness and porosity of 24%. The Eg value of the coating sample was 

3.24 eV. Related to the photodegradation efficiency of these coatings a decrease of 36% in methylene 

blue concentration has been observed after 72 hours of UV irradiation [101]. 

Recently, a new technique has been developed by Sulzer Metco AG (Switzerland), which 

combines the physical vapor deposition (PVD) method with the low-pressure plasma spraying (LPPS) 

or vacuum plasma spraying (VPS) variant of thermal spraying. The advantage of this technique is 

that it can deposit coatings out of the vapor phase. This process uses a high energy plasma gun 

operated at a reduced work pressure of 0.1 kPa (1 mbar) which accelerates and projects the vaporized 

feedstock material that impacts the cooled substrate, thus resulting unique coating microstructures [102]. 

Up to date it has been used only for obtaining ceramic thermal barriers and hard coatings, but its 

extension to the obtaining of photocatalytic surfaces would be very promising [103].  

2.4. Cold spraying 

This variant of thermal spraying has been implemented already for obtaining corrosion- and 



345 

AIMS Materials Science  Volume 6, Issue 3, 335–353. 

wear-resistant coatings or for electromagnetic interference shielding [18,104,105]. In cold spraying 

(CS) (also named cold gas spraying), the feedstock particles are accelerated to supersonic velocities, 

like in the HVOF variant, but in CS they are being maintained at temperatures significantly lower 

than their melting point for their entire time of flight. Inert carrier gasses can be used to minimize 

oxidation (Figure 6). Depending on the process parameters, the impact velocity with the substrate is 

in the 200–1500 m/s range. Interparticle or particle/substrate bonding is facilitated mainly by plastic 

deformation [106–109]. 

 

Figure 6. Principle of cold spraying. 1: filler material (powder) and carrier gas; 2: 

process gas; 3: Laval type nozzle; 4: thermal spray deposit; 5: base material [48]. 

Regarding photocatalytic coatings, most cold spraying applications resume to titania. Yang et al. 

have used TiO2 anatase powders (10–45 μm) to obtain nanopatterned coatings on stainless steel by 

cold gas spraying, using nitrogen as a driving/carrier gas with an inlet pressure of 2.0 MPa and 

temperature of 300 ℃. Higher anatase contents have been reported by comparing to the typical 

values obtained through plasma or HVOF spraying, owing to the lower deposition temperatures. The 

photocatalytic response of the coatings was evaluated against gaseous acetaldehyde under UV 

irradiation. Almost complete removal of this model pollutant as achieved after 30 minutes of 

irradiation [110]. 

Yamada et al. have concluded that cold spraying is an ideal process for fabricating anatase-rich 

TiO2 photocatalyst coating. The anatase structure could be preserved by carefully controlling the 

spraying parameters, mainly the processing gas temperatures (200–400 ℃), which are below the 

anatase to rutile transition temperature. The nature of the gas (nitrogen or helium) does not seem to 

have a significant influence on the performance of the coatings [111]. Cold spray was employed by 

Yang et al. for obtaining TiO2 photocatalytic films with thickness of ~15 μm. The photocatalytic 

performance was examined through acetaldehyde degradation under ultraviolet illumination. Results 

showed that no phase and particle size changes occurred to TiO2 during deposition, and the coating 

was efficient towards degradation of acetaldehyde [112]. The low deposition temperatures of the cold 

gas spraying process allow for deposition on polymer or glass substrates, otherwise unfeasible by 

traditional flame and plasma spraying methods [113]. Robotti et al. have obtained 200–400 μm-thick 

nanopatterned titania coatings on polymer substrates with good photodegradation yield against NOx 

(~20–80%) under UV irradiation [114]. Composite coatings with various surface chemistry have 

been obtained by Park et al. starting from ATO (Sb2O5:SnO2, 15:85 wt%, 13–22 nm) and titania   

(15 nm) nanopowders using FTO glass as substrate. The complete photocatalytic decolorization of 

methylene blue in an aqueous solution under UV light irradiation has been achieved after         

6 hours [115]. 
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A relatively new variant approach of this thermal spraying method is represented by vacuum 

cold spraying. Through this technique an optimum balance can be achieved between a high 

photocatalytic activity (fine structure and large surface area) and a good adhesion between coating 

and substrate surface [116]. For example, Yao et al. have demonstrated by molecular dynamic 

simulation that nano-scale feedstock powders are subjected to an increased localized plastic 

deformation during collision at low velocities, while at high velocities the intensive deformation 

promotes the nanoparticles adhesion rather than rebounding off [117].  

Yao et al. prepared a composite nano-TiO2/polyethyleneglycol (PEG) powder as feedstock 

material for vacuum cold spraying and the photocatalytic activity of the coatings was assessed 

through photodegradation of phenol in water. Results showed that post-deposition annealing of the 

coating between 450 and 500 ℃ yielded both higher activity and increased adhesion to the substrate. 

The TiO2 coating, resulting from the composite powder/PEG feedstock presented much higher 

activity than that deposited with the primary nanopowders, which can be attributed to its high 

porosity, which facilitates the contact of the reactant with the photocatalyst phases [118]. 

3. Conclusion 

The mechanisms underlying the photocatalytic response of thermal sprayed coatings reside in 

both the surface chemistry of the feedstock material or the in-situ generated material (i.e., its optical 

band gap) and the specific surface area of the coating. The latter is mainly influenced by the 

roughness and nanopatterning of the surface (obtaining of nano-aggregates). Thermal spraying offers 

the means to fine tune both the chemical composition of the coating (through choosing the 

appropriate feedstock material, spraying distance, gasses involved in combustion/transport, etc.) as 

well as the roughness and the degree of clustering of the aggregates on the surface of the material. 

Most of the research involving thermal spraying applied to photocatalytic coatings achievement 

deal with TiO2 powders, powder suspensions or organic precursors which can generate the titania 

in-situ (in the flame or plasma). These coatings are mainly active in the UV-part of the 

electromagnetic radiation domain. Composite coatings bearing titania or doped titania can also be 

obtained with the plasma and HVOF spraying techniques, which present moderate photocatalytic 

activity in the visible domain. The second most frequent system employed in thermal spraying is 

based on ZnO, which possesses a lower band gap than TiO2 and can harvest visible light more 

efficiently. 

High velocity oxy-fuel spraying and cold spraying have been generally found to be up to  

25–35% more efficient in the photodegradation of organic compounds compared with flame spraying 

or plasma spraying. For the latter techniques, polymorph structural conversions affect the 

photocatalytic yield, with unwanted material oxidation, substrate overheating and delamination from 

the substrate. Flame spraying, with its suspension flame spraying technological variant is a relatively 

simple method and the operational cost is significantly less than the other techniques, needing a 

careful choosing of the feedstock material and operational parameters. 
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