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Abstract: In this work, anisotropy is introduced in a peridynamic model. The spherical influence
function is replaced by an ellipsoidal influence function. The model is mathematically formulated
and implemented into the source files of LAMMPS, extending the program in a straight-forward
manner. The extension ca be applied to other peridynamic model and here it is introduced into elasto-
plastic peridynamic model in LAMMPS. The implemented model is tested through simulating beams
loaded in compression. The model is found to alter the material behavior in the simulations compared
to the original isotropic mode. A clear qualitative and quantitative difference in behavior is shown
independently of pre-existing simulation parameters. The model is shown to be internally consistent.
Finally we also demonstrated that the model can easily be extended to include several preferable
direction opening for application as modeling elasticplastic deformation of anisotropic heterogeneous
crystalline matter.
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1. Introduction

Material properties emerge from phenomena on scales ranging from angstroms to meters. A
multiscale treatment can provide a basis for an understanding of material behavior on different scales.
The traditional multiscale approach couples two models operating at different scales. Alternative
modeling strategy is called peridynamics, a novel non-local continuum model approach suggested by
Silling, see [1], that models materials on a per-particle basis. This approach continualize the discrete
models such as molecular dynamic models, by replacing inhomogeneities present on smaller length
scales by an enhanced continuum description on larger length scales. Peridynamic models converge to
the classical elastic material model, it can be used as an alternative approach for multiscale modeling
as a single multiscale model valid over wide range of length scales, see [2] and [3]. In that way
peridynamic can handle length scales beyond those typical for molecular dynamic models, opening
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for new possibilities for application to systems at mesoscale and macroscale. Later developments of
the original theory, called state based theory of peridynamics, see [4], showed that any constitutive
model from the classical continuum theory can be adapted to this state based theory of peridynamics.

The force interactions resulting from the discretized peridynamic equations are very similar to
traditional molecular dynamic formulations, and this suggests that peridynamics can be implemented
within a molecular dynamics framework code, see [5]. It was shown in [6] showed that peridynamics
can be considered as an upscaling of molecular dynamics. The molecular dynamics freeware
LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator), see [7], will be used for the
simulations since this code also supports the peridynamics framework, see [8]. LAMMPS is a
molecular dynamics simulator which is shipped with a peridynamics package PDLAMMPS,
developed by Sandia corporation, allowing it to take a peridynamic approach to materials analysis. In
addition to the bond based peridynamic model implemented as prototype microelastic brittle model
(PMB), see [4] and [5], there are models for the state-based peridynamic linearly elastic (LPS),
elastic-plastic (EPS) and viscoelastic (VES), see [5, 9] and [10] solids implemented. Details about the
implementation of the elastic-plastic and viscoelastic peridynamic models in PDLAMMPS can be
found [11–13].

The peridynamic package in PDLAMMPS allows for modelling material restricted to isotropic
behavior of material, limiting the application of the peridynamic theory. This creates a need for
extending the existing models to include such behavior. An anisotropy extension of the elasto-plastic
peridynamic model is presented in this work. The objective has been to develop anisotropic
peridynamic model that easily can be implemented into PDLAMMPS. This was achieved by
modifying the spherical influence function in the peridynamic models. A non-spherical influence
function was introduced and implemented, i.e., the forces are not modulated based on the internal
distance of the acting particles, but based on the direction of their relative position. This way,
anisotropic materials can be modeled by aligning the model with coordinate system and thereafter
instruct the influence function to modulate the forces differently depending on what direction they
have relative to this coordinate system.

The model is introduced into source files of LAMMPS itself, extending the program in a straight-
forward manner. The influence function being implemented takes internal forces of the object and
truncates their magnitudes according to their direction in the coordinate system. The capabilities to
represent directional dependent behavior are shown through simulating beams loaded in compression.
The model is shown to be internally consistent, i.e., returning the the same results for the elastic-plastic
(EPS) model as a spacial case of the newly implemented anisotropic elastic-plastic model (AEP). Clear
qualitative differences in behavior is shown independently of pre-existing simulation parameters.

2. Theory of peridynamics

In the peridynamic theory the interactions between material points are expressed in terms of bond
forces, permitting interaction between particles at a distance, in contrast to the classical continuum
mechanics, where interactions between material points are expressed in terms of traction vectors, i.e.,
we assume a local interaction. Peridynamics treats internal forces within a continuous solid as a
network of pair interactions, similar to springs. Each material point interacts with its neighborhood
within a sphere of radius δ, called the horizon, that serves as an internal length scale in the model.
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Let x be the position vector of the studied point and x′ the position vector of a point in its
neighborhood, see Figure 1. The relative position of the two particles in the reference configuration is
denoted by ξ and the relative displacement vector with η,

ξ = x′ − x , η = u′ − u (1)

where u′ and u are the displacement vectors of the two points. Hχ is a sphere whose center is the
studied point x. The radius δ is the horizon of x and its horizon is the distance limit across which a pair
of material points can interact, and δ can be interpreted as the length scale in the model, defined in the
reference configuration in contrast to the cut-off radius in molecular dynamics, which is defined in the
deformed configuration. The point x interacts directly with the points in the sphere. The interactions
with other points are considered negligible. In state-based peridynamics the equation of motion of a
material point at x then reads

ρ(x)ü(x, t) =

∫
Hx

{
T [x, t] 〈x′ − x〉 − T

[
x′, t

]
〈x − x′〉

}
dVx′ + b(x, t) (2)

Here, T [x, t] is a force vector state field, b(x, t) is the external body force density field, ρ(x) is the mass
density in the reference configuration and u(x, t) is the displacement field. To ensure consistency with
basic physical principles, it will be required that T [x, t] satisfy balance of linear momentum for any
bounded body. A limiting process δ → 0 produces a classical constitutive model for the Piola stress,
see [14]. The force vector state field T [x, t] contains entirety the constitutive model. The force vector
state T [x, t] = tM can be interpreted in term of mapping the bond between two point to a force per
volume, where t is the force scalar state and M is the deformed state.

Figure 1. Schematic description of peridynamic body and a force vector state field.

We introduce a nonnegative scalar state defined on Hχ by x〈ξ〉 = ‖ξ‖. The elastic-plastic force scalar
state t is split into two parts, the volumetric and deviatoric scalar force states

t = ti + td = −
3Kθ
m

ωx + αω(ed − edp) (3)

where K is the bulk modulus, α is material constants, ed, epd are the deviatoric and plastic extensions
of the material, respective, whereas ω is the influence function. The weighted volume m is defines as

m(x) =

∫
Hχ

ω〈ξ〉x〈ξ〉x〈ξ〉dVξ (4)

The dilation θ is
θ(x, t) =

3
m(x)

∫
Hχ

ω〈ξ〉x〈ξ〉e(x, t)dVξ (5)

e(x, t) is extension scalar field defined as e(x, t)〈ξ〉 = ‖ξ + η‖ − ‖ξ‖.
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3. Anisotropic influence function

The influence function ω in the peridynamic theory is used to weight the contribution of all the
bonds. It regulates how the particles interact with each other and was first presented as a boolean
function returning a value of either 0 or 1 for each bond, modulating the forces by simply setting
them to zero in certain instances and leaving them unchanged in others, and were first introduced in
the modern state-based formulation of peridynamics by. Different material behavior can be modeled
by letting the influence function modulate the forces acting on particles in the simulation based only
on their distance from each other. Such an influence function is called spherical, as forces have the
same magnitude in every direction from the particle. In [15], it was also demonstrated that influence
functions can be used to modulate nonlocal effects within a peridynamic model independently of the
peridynamic horizon. Details on spherical influence functions, can be found in [6] and [15].

In this work, a non-spherical influence function, see Figure 2, was implemented in a peridynamic
model—the forces are not modulated based on the internal distance of the acting particles, but based
on the direction of their relative position as seen relative to some coordinate system. This way,
anisotropic materials can be modeled by aligning the model with coordinate system and thereafter let
the influence function to modulate the forces differently depending on what direction they have
relative to this coordinate system. This isotropic model is modified to include anisotropy by
introducing the ellipsoidal influence function and the rest of the model is unchanged, i.e., the same
flow rule as in the original models is used.

Figure 2. Left: Isotropic influence function; Middle: Anisotropic influence function,
major axis of the ellipsoid oriented at a 45◦ angle relative to the loading direction; Right:
Anisotropic influence function, major axis perpendicular to the loading direction. Green
arrow indicates the proffered direction and red line indicate the loading direction.

The influence function being implemented takes internal forces of the object and truncates their
magnitudes according to their direction in the coordinate system as follows: if the force f is directed
exactly along a predetermined preferred direction u, then f will not be modulated at all. If the force is
instead directed along a second direction v, orthogonal to u, the force vector will be multiplied by a
predetermined scalar a < 1. If the force is directed along a third direction w, orthogonal to both u, v,
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then the force vector will be multiplied by a second predetermined scalar b < 1. If f instead points
in any other direction, then f will be modulated such that its magnitude will be the distance from the
center of an ellipsoid to its edge, said ellipsoid being defined as being centered in the origin, having
a major axis with length ‖f‖ pointing in the direction of the preferred direction u and semi-axes of
length a · ‖f‖, b · ‖f‖. Finally, the semi-axes are rotated about the vector u by some angle θ. Thus, the
only calculation to consider is that of finding the distance from the origin of a cartesian 3-d coordinate
system to any ellipsoid centered in said origin.

3.1. Algorithm Design

The approach taken is return the distance to the edge of an ellipsoid with the major semi-axis being
the length of the incoming force vector and having a predefined direction, the other semi-axes having
a lengths some fraction of the major semi-axis. The pre-defined direction of the major semi-axis we
call the preferred direction, and should correspond to the preferred direction of deformation of the
solid being modelled. The ellipsoids are defined by inputting the preferred direction along with real
numbers < 1 for the two minor semi-axes and a rotation about its own major semi-axis defined in
radians. The algorithm calculates extrinsic rotations to turn the ellipsoid so that its major semi-axis
points in the preferred direction of the solid, and then rotates it intrinsically (that is, rotates it around
its own major semi-axis) to match the input rotation. This results in a 3× 3 rotation matrix M. The LU
factorization of this matrix is then calculated, and the results stored in a single 3 × 6 matrix. It is this
LU factorization that is used in the calculations once the simulation is run. The distance from the center
of the ellipsis to its surface is then calculated as explained in the next section for each bond interaction
in the simulation. As the ellipsoid is scaled such that the longest such distance is along its major semi-
axis and is the exact length of the force vector f being subjected to the function, its is obvious that
the distance d ≤ ‖f‖ depends on the direction of f relative to the pre-defined preferred direction of
the material. This will lead to larger internal forces in the preferred direction of the material and thus
smaller deformations and stresses, along with larger deformations and stresses in other directions. A
material can have more than one preferred direction—the algorithm simulates this by storing several
ellipsoids, running the scaling routine on each one and then returning the largest value. An even more
useful algorithm would weight the ellipsoids somehow, and use a smarter selection of which ellipsoid
should be used to modulate the force vector.

3.2. Mathematics

The mathematical problem to be solved can be stated as follows: given an arbitrarily rotated
ellipsoid in euclidean 3d-space, with arbitrarily chosen semi-axes, find where an arbitrary vector v
intersects the surface of the ellipsoid if the length of v is also the length of the major semi-axis of the
ellipsoid, thus ensuring that it will always intersect the ellipsoid. The method to do this is comprises
two steps. First change basis so that the semi-axes of the ellipsoid becomes parallel with the basis
vectors of the new coordinate system. Then normalize v and then using the equation for an ellipsoid
find a scalar d such that d · v lies on the surface of the ellipsoid. More detail regarding the
mathematics can be found in [16].

The first step is accomplished as follows: let a = (xa, ya, za) be the vector that constitutes the major
semi-axis of the ellipsoid. Now, calculate how to rotate the basis vector ex so that (c · ex) = a for an
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arbitrary scalar c:

Y = arcsin(
ya

‖a‖
) , P = arcsin(

za

‖a‖
) (6)

where P is the “pitch” and Y is the “yaw” of a, ie the angles of a with respect to the basis of the
coordinate system (“pitch” is what angle an airplane flying along ex would have to have with the
ground and “yaw” what angle it would have to turn left-right to start flying along a). The ellipsoid is
also rotated along its own major semi-axis, that is, around a—this angle we call R for “roll”. These
are the so called Eulers angels. We can create a rotation matrix to perform a rotation corresponding to
each of these intrinsic rotations. These we call MP,MY ,MR. An arbitrary rotation M may be written as
a product of three simple rotations:

M = MY · MP · MR (7)

where M is then a rotation matrix such that M · ex = a. We have

MY =


cos(Y) − sin(Y) 0
sin(Y) cos(Y) 0

0 0 1

 (8)

MP =


cos(P) 0 sin(P)

0 1 0
− sin(P) 0 cos(P)

 (9)

MR =


1 0 0
0 cos(R) sin(R)
0 sin(R) cos(R

 (10)

To change v into the desired basis, we simply do v′ = M−1v. Observe that the rotation matrix only
rotates vectors, it cannot scale them. Thus, det(M) = 1.

For the second step of the calculation, we note the general equation for an origin-centred ellipsoid
with its semi-axes on the basis vectors:

x2

a2 +
y2

b2 +
z2

c2 = 1 (11)

where (x, y, z) is some point on the surface of the ellipsoid with major semi-axis a and the minor semi-
axes b and c. We have changed basis into one where our ellipsoid is oriented in this fashion and are
looking for the point where v intersects the ellipsoid to calculate the distance d to it from the origin.
Let w = v

‖v‖ = (wx,wy,wz). w is a vector pointing in the direction of v with length 1, and the sought
distance d is a scalar such that d · w is a point on the surface of the ellipsoid found by traveling the
direction of v, i.e., the intersection of v with the ellipsoid surface. Thus, d must be some multiple of
‖w‖ that satisfies the ellipsoid equation, so that

(d · wx)2

a2 +
(d · wy)2

b2 +
(d · wz)2

c2 = 1 (12)
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From the last equation the dustance d to the surface of the ellipsoid can be calculated as:

d =
1√

w2
x

a2 +
w2

y

b2 +
w2

z

c2

(13)

3.3. Implementation procedure

A c-style struct is created from user input and saved, comprising:

1. The preferred direction a = (ax, ay, az) for the modeled material as a vector of doubles. This is the
vector that points in the direction of the major semi-axis of the ellipsoid used in the calculations.

2. Two numbers b and c such that ‖b‖ = b · ‖a‖ and ‖c‖ = c · ‖a‖, if the other two semi-axes are
thought to point along vectors b and c, represented as doubles.

3. A number r representing the intrinsic rotation of the ellipsoid in radians.
4. A double called “weight”, intended to use if extending this modification to allow for more specific

handling of several ellipsoids.

This struct is then used to calculate the Euler angles Y, P,R as described in the section above. These
angles are used to construct the rotation matrices MY ,MP,MR. The total rotation matrix M = MY ·MP ·

MR is then constructed. The matrices L,U such that L · U = M are calculated and saved as a vector of
vectors of doubles in the struct. This struct is saved in a vector of similar structs. All of this is done
upon initialization of the simulation.

For every time step in the simulation, the influence function is called with a force vector v =

(x, vy, vz) as input. The vector of structs is iterated over, using each LU factorization to calculate the
distance from the center of the ellipsoid it represents to its edge in the direction of v. These distances
are temporarily saved in a vector of doubles. The largest number in this vector is then found and
returned. If no preferred directions are input the vector of structs will be empty, and the influence
function will instead return

√
v2

x + v2
y + v2

x = ‖v‖, indicating an isotropic material.

4. Results

To explore the performance of the anisotropic influence function being implemented is tested by
conducting a compression test on a beam. A beam with a cross-section of 11 × 11 particles and a
length of 100 particles was constructed in PDLAMMPS, aligned along the x axis. The length of the
beam is 30 cm and the cross section is 3 × 3 cm. The beam was loaded in compression by prescribing
the displacement at the two end surfaces. The ends of the beam were set to move toward the center of
the beam at 0.2 cm/s. The tests were run for a variable amount of time steps, enough for the beam to
buckle and crack. In all simulation the damage parameter was set to 0.1 and the horizon set to 1.0 cm.

As the beam is loaded during the simulation, the bonds between the particles may break when they
are stretched beyond a given limit. The damage associated with each particle can be computed in
LAMMPS and represented by taking value between 0 and 1. The upper limit correspond to a complete
broken bond that can never recover. In the results presented below the damage parameter and the stress
in axial direction are compared for different simulation.
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In the initial test simulation the major axes and the semi-axes were set to be equal, i.e., the model
should return the same result as the original isotropic influence function in PDLAMMPS. The
obtained stresses were accurate to six digits of precision when comparing the two models, the
anisotropic influence function with the initial isotropic influence function. The next step of testing the
internal consistency is to achieve identical results when given different ellipsoids with the same
proportions, i.e., doubling the major axis but proportioning the semi-axes in the same way. This is to
ensure that the non-spherical influence function modulates the force depending only on it direction.

The initiation of the slip band of peridynamic nanobeam with the original isotropic model and
anisotropic model with two preferable directions are seen in Figure 3. With the isotropic model necking
band is in the vertical direction, whereas when introducing anisotropic model with preferable direction,
this can be controlled in the desirable direction.

Figure 3. Deformation of the nanobeam using peridynamics, original isotropic model (left),
anisotropic model with preferable direction oriented 45 (middle) and anisotropic model with
preferable direction along the beam (right).

Figures 4–7 consists of a series of tests with ellipsoid influence functions, where the major axes of
the ellipsoids point in different directions in the x–y-plane of the simulation. Figure 4 shows result for
the damage parameter and the stress in the loading direction for simulations with spherical influence
functions, to use as a baseline to inspect the ellipsoid influence functions against and result with an
ellipsoid influence function, where the major axis of the ellipsoid is directed at a 45◦ angle from the
x-axis. With the isotropic model necking band is in the vertical direction, whereas when introducing
anisotropic model with preferable direction, this can be controlled in the desirable direction. The
beam acts qualitatively differently when there is an ellipsoid influence function present compared to
the spherical case. With all the ellipsoid influence functions the beam bends and cracks in the x–y-
plane rather than in the x–z-plane, most probably corresponding to the fact that all the ellipsoids are
oriented in, and thus give rise to anisotropy in, said x–y-plane. The approach taken here is replace the
sphere with an ellipsoid by setting the distance to the edge of the ellipsoid with the major semi-axis
being the length of the incoming force vector and having a predefined direction, the other semi-axes
having a lengths some fraction of the major semi-axis. The pre-defined direction of the major semi-axis
correspond to the preferred direction of deformation of the solid being modeled. Since the preferable
direction in Figure 4 is 45◦ angle from the x-axis, the maximum stress in the x-direction is lower
compared to the isotropic model.

Figure 5 shows results with an ellipsoid influence function, where the major axis of the ellipsoid
orthogonal and parallel to the loading direction along x-axis. The occurring slip bands are orthogonal
to the the loading direction leading to much higher damage value for the case when the major axis of
the ellipsoid orthogonal to the loading direction along x-axis. Comparing the axial stress it is clearly
seen that higher stress level is reached when the major axis of the ellipsoid is oriented along the loading
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direction. On Figure 6 results with the preferable direction of 45◦ angle from the x-axis in the x–y plane
is compared to simulation with ellipsoid directed at a 22.5◦ angle from the x-axis in the x–z plane. The
axial stress is as expected higher for the ellipsoid directed at a 22.5◦ angle from the x-axis. The fact
that the preferable direction lies in different effects the deformation pattern of the beam.

Figure 4. Left: Spherical influence function; Right: 45◦ angle influence function with 0.5 ×
0.25 semi-axes.
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Figure 5. Left: 45◦ Orthogonal influence function with 0.5 × 0.25 semi-axes; Right: Parallel
influence function with 0.5 × 0.25 semi-axes.
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Figure 6. Left: −23.68◦ angle influence function with 0.5 × 0.25 semi-axes; Right:
Orthogonal and 45◦ angle influence functions; Bottom: Parallel and 45◦ angle influence
functions.
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Figure 7. Left: −23.68◦ angle influence function with 0.5 × 0.25 semi-axes; Right:
Orthogonal and 45◦ angle influence functions with 0.5 × 0.25 semi-axes; Bottom: Parallel
and 45◦ angle influence functions.

The implemented model is equipped with probabilities to include several preferable direction. The
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model is implemented in a such way that generally any number of ellipsoids oriented arbitrary can be
included. Several influence functions oriented in a desirable direction allows this way to model material
behavior with preferable direction. Finally a simulation with two concurrent ellipsoids pointing in
different directions was conducted. This is illustrated in Figure 7. In the first simulations the model
is equipped with two ellipsoidal influence function, one with the preferable direction of 45◦ angle
from the x-axis in the x–y and the second orthogonal to the x-axes. second simulations the model is
equipped with one with the preferable direction of 45◦ angle from the x-axis in the x–y and the second
parallel to the x-axes. The orientation of the two ellipsoidal influence function can be seen on Figure 7.
The deformation pattern is similar but it difference of the values of the axial stress is clearly seen on
Figure 7. The algorithm simulates this by storing several ellipsoids, running the scaling routine on
each one and then returning the largest value. This leads to higher axial stress for the case when the
second ellipsoid is orthogonal to the loading direction. When putting two ellipsoids in the influence
function, a larger ellipsoid dominates a smaller one. This is working as expected—the associated
forces modulated by an ellipsoid that envelops another one will always be the largest, and as such will
always be selected. However, having only a part of the smaller ellipsoid extend out of the larger one
will give rise to measurable differences. With a weighted approach, rather than selecting the largest
force always, this could probably be made to be much more convincing.

5. Conclusions

An anisotropic peridynamic model has been formulated and implemented in PDLAMMPS. The
anisotropy have been introduced by a non-spherical influence function replacing the original spherical
influence function. To explore the effects of anisotropic influence function within the peridynamic
theory, simulation of a beam loaded on compression have been performed. The suggested
non-spherical influence function is not restricted to a specific peridynamic model and can in general
be applied to extend any isotropic peridynamic model.

The model shows good consistency when simulations with equal major axes and the semi-axes are
performed, i.e., the model return the same result as the original isotropic influence function
implemented in PDLAMMPS. The model also shows good internal consistency by reproducing
results accurately when given different ellipsoids with the same proportions. Doubling the major axis
but proportioning the semi-axes in the same way is accurate to six digits of precision, which is as high
as the visualizing software will display.

The beam acts qualitatively and quantitatively differently when there is an ellipsoid influence
function present compared to the spherical case. With all the ellipsoid influence functions the beam
bends and cracks in the x–y-plane rather than in the x–z-plane, due to the fact that all the ellipsoids
are oriented in, and thus give rise to anisotropy in, said x–y-plane. The different orientations of the
ellipsoids also give rise to different orientation of the slip bands of the buckling beams. The axial
stress is affected in the preferable direction of the ellipsoidal influence function.

Finally we have demonstrated that two or more preferable direction can be introduced in the model
and the influence functions can be used to control that. In that way the model can easily be extended to
include several preferable direction to model elastic-plastic deformation of anisotropic heterogeneous
crystalline matter.
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