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Abstract: There have been many extensive studies on the prediction of the residual strength of 

corroded reinforced concrete beams from experimental and theoretical perspectives in the past. This 

article corroborated the findings of Azad et al. (2010) pertaining to the residual strength and safety of 

the corroded beams and an insight to develop an improved regression model to obtain more practical 

outcomes. The proposed model has further been verified with the past research data to obtain a 

validation error to its minimum count. The study is also followed by the use of soft computing 

technique like Artificial Neural Networks (ANN) to establish a method with substantial improvement 

in the prediction results of residual strength. One ANN model is proposed to predict the residual 

capacity of corroded reinforced concrete beams using the same data from Azad et al. (2010). The 

effects of fixed data stratification on the performance of the models have been studied. The results of 

the ANN model were found to be in good agreement with experimental values. When compared with 

the results of Azad et al. (2010), the ANN model with fixed data stratification gave a better 

prediction for residual strength with reference to correlation coefficient and error reduction. Hence, 

the reliability of ANN model is assured with the prediction work followed in this study. 

Keywords: corrosion; reinforced concrete beam; flexural residual strength; load carrying capacity; 

artificial neural networks (ANN) 

 

1. Introduction  

Cement concrete has clearly emerged as the material of choice for the construction of a large 

number and variety of structures in the world today. This is attributed mainly to low cost of materials 
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and construction for concrete structures as well as low cost of maintenance. Use of high water 

cement ratio (w/c) in a high early strength cement led to serious problems with durability of 

structures, especially those subjected to severe environmental exposures [1]. 

Corrosion of reinforcing steel bars (rebars) in reinforced concrete (RC) structures is a major 

reason for structural durability degradation. When the carbonation or the concentration of chloride 

ion on steel surface reaches a critical value the oxide film can be depassivated and corrosion can be 

initiated. It has been well established that the corrosion products formed on the concrete-steel 

interface can lead to volume expansion and eventually cracking of concrete cover. Corrosion can also 

cause reduction of the cross sectional area of rebars and significantly affect their mechanical 

properties, including the yield and ultimate strengths and ductility [2]. 

Intensive research has been carried out on the influence of rebar corrosion on the structural 

performance of RC structures, especially the reduction of the load carrying capacity of corroded RC 

beams, over the recent decades. It was found that the obtained amount of reduction from these 

research activities varied largely. For example, Torres-Acosta et al. [3] observed a 60% reduction in 

the flexural load carrying capacity at about 0.19 of section loss ratio while Mangat and Elgarf [4] 

found a 24% reduction at almost the same corrosion degree. Amongst the three effects caused by 

rebar corrosion, namely the reduction of rebar-sectional area, degradation of mechanical properties 

of rebar, and loss of rebar-concrete bond, no consensus has been reached on which one is the primary 

reason for the reduction of the load carrying capacity of RC members and structures [4,5,6]. It was 

also found that the accelerated corrosion process, as used in most of the investigations, has quite 

different effects from the natural corrosion process on the structural behavior of the RC members and 

structures [7]. 

A review on the mechanism of reinforcement corrosion, its initiation, progress and factors that 

expedite the process of reinforcement corrosion, techniques utilized to monitor reinforcement 

corrosion and methodologies that are utilized for the prediction of remaining service life of structures 

are also presented [8,9]. Wang and Liu [10] proposed a simplified methodology for the evaluation of 

the residual strength of corroded reinforced concrete beams. Wang et al. [11] revealed a significant 

reduction in the bending strength when the corrosion rate was increased. Torres-Acosta et al. [12] 

concluded that the flexure load capacity diminished mainly due to the formation of pits on rebar 

surface, which were as deep as 73% of the original reinforcement diameter. Xia et al. [13] studied the 

effect of chloride-induced reinforcing steel corrosion on the flexural strength of reinforced concrete 

beams. Wang and Chen [14] developed a finite element model to further investigate the behavior of 

corroded reinforced concrete beams. Tachibana et al. [15] observed different types of failure 

including flexure, shear-compression and bond-shear and also reported a significant reduction in the 

flexure strength of corroded beams. Imam and Azad [16] conducted a test on corroded and un-

corroded beams to find the shear capacity and behavior of corroded reinforced concrete beams based 

on which strength prediction model has been developed. Cairns et al. [17] investigated the specific 

aspects of structural performance including stiffness and deflection under service loads, ultimate 

flexural and shear strengths and deformation capacity at failure, when the beam were subjected to 

reinforcement corrosion. Ahmad [18] reported a detailed study on the effect of corrosion on flexural 

strength of reinforced concrete beams supported by comprehensive experimental observations. 

Ortega and Robles [19] measured crack widths and vibration natural frequencies with a stimulating 

effect of the corrosion mechanism on the structural reinforcement. Shannag and Al-Ateek [20] 

observed a significant reduction in flexural strength of high performance fiber reinforced concrete 
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beams when subjected to different degrees of corrosion. Hawileh et al. [21] investigated specifically 

the effect of corrosion rate on the degradation of monotonic mechanical properties and low-cycle 

fatigue life of BS4449/2005 Grade B500B steel reinforcing bars. Three different corrosion levels 

were selected in their studies, mainly 9–10%, 13–15%, and 19–20% measured as mass loss of un-

corroded bar specimens. The authors observed that the material’s yield and ultimate tensile strengths 

and ductility, in addition to the fatigue life and the total dissipated energy of the steel bars, were 

reduced with increasing corrosion damage levels. 

Several researchers have focused towards developing empirical correlations in view of 

predicting the service life of corroded structures [4,18,19,22–25]. Torres-Acosta et al. [26] developed 

an empirical relationship between the residual load capacity of a reinforced-concrete element and the 

degree of reinforcement radius loss by corrosion was estimated, and a second empirical relationship 

between the surface crack width and the reinforcement radius loss based on available experimental 

data. 

In recent time, several researches illustrating the prediction work using an empirical method 

does not give much confidence to the researchers to check its applicability contradicting towards 

producing a more generalised solution. However, the studies are being carried out towards predicting 

the residual strength parameters using soft computing techniques (ANN, GA, Fuzzy Logic, SVM, 

etc.) which depicted a substantial enhancement in the predicted outcome and has proved to be a more 

reliable approach.  

With the limitations in the experimental and theoretical methods, the quest for cost-effective, 

easy to use and adaptive models that offer scalability and efficient generalization capability to new 

cases continues. With the huge amount of data generated from various experiments over the years, 

robust data mining techniques that are based on computational intelligence (CI) and machine 

learning paradigms are hypothesized to be capable of overcoming the limitations of the conventional 

methods [27]. Artificial neural networks (ANN) are well established technologies being adopted in a 

variety of application ranging from pattern recognition to optimization. One of the attractive features 

of ANN is their ability to perform non linear, multi dimensional interpolations. This feature of ANNs 

makes it possible to capture the existing non linear relationships between input and output 

parameters [11]. ANN is the most commonly used of the CI techniques in various engineering 

application areas [28,29]. Since the performance of a model is determined by the nature of the 

problem (represented by data), there is no guarantee that using a more sophisticated algorithm will 

perform better [30]. Though ANN has been applied in modeling other civil engineering problems, 

they have not been adequately applied to the problem of estimating the residual flexural strength of 

corrosion-damaged RC beams, which is the focus of this paper. Considering the capability of ANN 

to handle more complex and non linear behavior in natural circumstances like corrosion etc, the 

present study is focused towards predicting the residual flexural strength of corroded reinforced 

concrete beams using Artificial Neural Network (ANN) tool with the aim of obtaining a generalised 

and optimized model.  

A set of pragmatic guidelines for designing ANN for engineering applications were proposed by 

Rafiq et al. [31]. Nowadays, several researches are being focused towards using ANN as an efficient 

technique towards ensuring its applicability in civil engineering sections. Bai et al. [32] presented a 

neural network model that predicts the workability of concrete with cement replacement materials. 

The results of their neural network model were comparable to experimental results and illustrated 

how neural networks can be used to accurately predict the workability parameters.  
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Moreover, Oreta et al. [33] studied the application of artificial neural networks (ANN) to predict 

the confined compressive strength and corresponding strain of circular concrete columns. Erdem [34] 

investigated the application of artificial neural networks (ANN) to predict the ultimate moment 

capacity of reinforced concrete (RC) slabs in fire. An ANN model was built, trained and tested using 

294 data sets for slabs exposed to fire. It was shown that ANN model predicted the ultimate moment 

capacity (Mu) of RC slabs in fire with high degree of accuracy within the range of input parameters 

considered. The moment capacities predicted by ANN were in line with the results provided by the 

ultimate moment capacity equation.  

Tsai and Hsu [35] evolved a model of damage diagnosing for RC structures using the ANN 

technique. The network learning procedure showed that the rate and the accuracy of the convergence 

are acceptable while the test results showed that the technique is efficient for the problem. ANN has 

been used to predict the shear strength [36], deformation capacity [37] and shear resistance [28] of 

various shapes of RC beams. Adhikary and Mutsuyoshi [38] also developed artificial neural network 

models (2 Models) for predicting the ultimate shear strength of steel fiber reinforced concrete (SFRC) 

beams using the experimental data from the literature. Sharifi and Tohidi [39] have used ANN 

method to predict the load carrying capacity of deteriorated steel beam under the effect of pitting and 

uniform corrosion. On the other hand, Abdalla and Hawileh [40] presented a model for predicting the 

low-cycle fatigue life of steel reinforcing bars using Artificial Neural Network (ANN). Following 

which, a parametric study had also been carried out to investigate the effect of maximum strain and 

strain ratio on the fatigue life of steel reinforcing bars. They concluded that both the strain ratio and 

the maximum strain have significant effect on the low-cycle fatigue life of such bars, especially at 

low values of maximum strain and their effect should be considered in both analysis and design. 

Naser et al. [41] presented an alternative approach to predict fire resistance of CFRP strengthened T-

beams. Based on the experimental and Finite Element studies, ANN models were developed to 

predict the fire endurance of RC T-beams strengthened with CFRP laminates when subjected to 

elevated temperatures. The predicted fire endurance and time to failure were compared with obtained 

experimental and validated FE simulation results. Strong correlation between the predicted ANN, 

experimental, and FE results was obtained. Design charts were also developed to be used as 

preliminary guidelines to aid designers in selecting the required insulation thickness for specific 

insulation systems and fire exposure scenarios. It was concluded that the developed and validated 

ANN could be used as a computational tool in the analysis and design of RC beams strengthened 

with CFRP plates and subjected to thermal fire loadings.  

On a similar note, Abdalla and Hawileh [42] developed seven artificial neural network (ANN) 

models to predict the fatigue life of steel bars based on the concept of energy dissipation. Since, the 

fatigue life of steel reinforcing bars depends on the energy dissipated during cyclic loading. Steel 

bars play a major role in energy dissipation in reinforced concrete structures under low-cycle fatigue 

loading during earthquakes. They concluded that the developed ANN models can be used to reliably 

predict fatigue life of steel reinforcing bars based on energy as input parameters. Moreover, Abdalla 

et al. [43] also employed Artificial Neural Network (ANN) to predict the optimum design parameters 

for wall systems while avoiding the demanding iterative process. The developed ANN model were 

found to be very accurate in predicting the non-dimensional optimum design parameters related to 

post-tensioning reinforcement area, yield force of shear connectors and ratio of moment resisted by 

shear connectors to the design moment. It was observed that the design moment and the concrete 
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strength had the most influence on the wall behaviour as compared to other parameters. Several 

design examples were presented to demonstrate the accuracy and effectiveness of the ANN model. 

Moreover, Alqedra and Ashour [44] proposed a neural network model for predicting the shear 

capacity of anchor bolts located near a concrete edge. In the developed neural network, the neurons 

of the input layer represented the anchor outside diameter, concrete compressive strength, anchor 

embedment depth and the edge distance from the anchor bolt to the edge of concrete in the direction 

of the shear force. Predictions of the concrete shear capacity of anchors using the trained neural 

network were in good agreement with experimental results and those calculated from the concrete 

capacity design method.  

Minuscule of research illustrates the application of various CI techniques towards predicting the 

residual flexural strength of corroded reinforced concrete beams. The present study is intended to fill 

this research gap by proposing an optimized ANN model for this problem. Some of the findings are 

mentioned here as well. Likewise, Imam et al. [27] proposed four artificial neural networks (ANN) 

models to predict the residual flexural strength of corroded RC beams. The models showed a 

considerable improvement of up to 49% in correlation coefficient and 92% reduction in error. 

Moreover, Sakthivel et al. [45] used Artificial Neural Network (ANN) to predict the equivalent 

flexural strength of hybrid mesh and fiber reinforced cement-based composites (HMFRCBC). Three 

ANN models (Models 1, 2 and 3) were developed for predicting the flexural strength of cement-

based composites. As a result, all the three ANN models were found to be in good agreement with 

actual results, and they concluded that these three ANN models can serve as simple but reliable 

predictive tools in determination of flexural strength of HMFRCBC. 

2. Background of the Study Area 

2.1. Artificial Neural Network 

Artificial neural networks (ANNs) are mathematical or computational models that are inspired 

by a human’s central nervous system (in particular the brain) which is capable of machine learning as 

well as pattern recognition. Artificial neural networks are generally presented as systems of highly 

interconnected “neurons” which can compute values from inputs [46]. 

 

Figure 1. A Simple Neural Network [46]. 
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In Figure 1, each circular node represents an artificial neuron and the arrow represents the 

connection from the output of one neuron to the input of another. 

2.1.1. Artificial Neural Networks—Basic Concepts 

The artificial neural network together with the fuzzy logic and genetic algorithms, belong to the 

group of symbolic methods of intelligent calculations and data processing that operate according to 

the principles of soft computing. Neural networks are developed as a result of the positive features of 

a few different research directions: data processing, neuro-biology and physics. They are a typical 

example of one modern interdisciplinary field which gives the basic knowledge principles that are 

used for solving many different and complex engineering problems that could not be solved 

otherwise (using the traditional modelling and statistical methods) [47,48,49]. 

The inspiration for foundation, development and application of artificial neural networks came 

out of the attempt of understanding the work of human brain and from the aspiration of creating an 

artificial “intelligent” system for data calculation and processing that are typical for human brain. 

Mainly because of that the artificial neural networks are very similar to the biological neural 

networks. Both networks have similar structure, function, and technique of data processing and 

methodology of calculation. Artificial neural networks are presented as a simplified mathematical 

model, a model that is similar and analogous to the biological neural networks. They can easily 

simulate the basic characteristics of the biological nerve system. The networks are capable of 

gathering, memorizing and processing numerous experimental data. Some of their basic 

characteristics are the following: they can analyse large number of data, they can learn from the past 

data and they can solve problems that are complex, not clear and problems that do not have only one 

solution. Because of that, the artificial neural networks are often a better calculation and prediction 

method compared to the classic and traditional calculation methods [47,48,49]. Researches made 

around the world showed that neural networks have an excellent success in prediction of data series 

and that is why they can be used for creating prognostic models that could solve different problems 

and tasks [46,47,48]. 

This technique has caught the interest of most researchers and has today become an essential 

part of the technology industry, providing a good ground for solving many of the most difficult 

prediction problems in various areas of engineering applications [37,50–54]. ANN has also gained 

vast popularity in solving various Civil Engineering problems [47,50,55,56]. 

2.2. Summary of Azad et al. (2010) [57] 

Azad et al. (2010) [57] focused on the analytical prediction of residual flexural strength of 

corroded beams in the context of relatively larger size beams reinforced with larger diameter tension 

bars to exclude the size-effect of beams in the proposed modeling and to improve further the 

accuracy of the analytical method. They planned an experimental programme to be undertaken using 

48 beams of width 200 mm and depth varying from 215 to 315 mm, reinforced with tension bars of 

16 and 18 mm in diameter. The beams were subjected to a varying degree of corrosion damage using 

accelerated corrosion and then they were tested in a four-point bending test to determine their 

residual flexure capacity, (The details of the experimental observations and testing can be found from 

Azad et al. (2010) [57]). 
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Following which the authors [57] proposed two-step procedure to predict the residual flexural 

strength of corroded beams for which the cross-sectional details, material strengths, corrosion 

activity index IcorrT, and diameter of rebar D were known. The procedure used is: 

1. First, the moment capacity (Mthc) was calculated using reduced cross-sectional area of tensile 

reinforcement, As’, in the conventional manner. 

2. The computed value of Mthc was then multiplied by a correction factor (Cf) to obtain the predicted 

residual flexural strength of the beam Mres using this relation:  

                                                                                                                                       (1) 

where, Cf was assumed to represent the combined effect of bond loss and factors pertaining to loss of 

flexural strength other than the reduction of the metal area. The values of Cf were taken as a function 

of the two important variables, namely IcorrT and D. An experimental programme was undertaken 

using 48 beams of width 200 mm and depth varying from 215 to 315 mm, reinforced with tension 

bars of 16 and 18 mm in diameter. The beams were subjected to a varying degree of corrosion 

damage using accelerated corrosion and then they were tested in a four-point bending test to 

determine their residual flexure capacity. Using a multilevel regression of the data used by Azad  

et al. [23], a new formulation of the correction factor was formed which showed better results than 

the previous model. The new correction factor is shown below: 

                                                        
 

              
    
                                        (2) 

where, D is the diameter of rebar in mm, Icorr is the corrosion current density in mA/cm
2
, T is the 

duration of corrosion in days.  

The limitation of the above equations is that they were based on the assumption that IcorrT and D 

are linearly related to the residual flexural strength. In such a natural phenomenon as corrosion, this 

will not give an optimal solution to the estimation problem. Construction projects based on the 

results of this equation may result in suboptimal life spans and increase maintenance costs. In order 

to overcome this limitation, ANN models, with their capability to utilize the non-linear relationship 

of the variables and their ability to extract hidden patterns from datasets, are proposed. The search 

for a more compliant prediction method has been accomplished by proposing a new correction factor 

that replaces the previous one by correctly taking into account the size-effect of the tension bars. In 

order to show the accuracy of the proposed method, the test data published by other researchers have 

been compared with the values predicted by the proposed method. The comparisons clearly show 

that the proposed method yields values which are in good agreement with the test data from this and 

other experiments, lending confidence to the proposed method to serve as a reliable analytical tool to 

predict the flexural capacity of a corroded concrete beam. 

3. Research Methodology 

3.1. Establishment of a Modified Regression Model 

The residual strength of a corroded beam can be calculated in two steps: First, the moment 

capacity of the corroded beam is calculated using the conventional theory based on the reduced cross 
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sectional area of the steel in the corroded beam. Second, a correction factor is applied to the 

previously calculated theoretical moment capacity of the corroded beam. 

                                                                            (3) 

The value of Cf-new reflects the reduction due to the bond effect. It also reflects the necessary 

correlation between Mres (Residual moment capacity of the corroded beam) and Mthc (theoretical 

moment capacity of the corroded beam). The value of Cf-new is taken as a nonlinear function of two 

important variables. Those two variables are corrosion activity index IcorrT and bar diameter (ϕ). 

Based on the experimental observations and several trials, Cf-new is taken in the following empirical 

form: 

                                                                
          

  
                                          (4) 

where a, b and c are all constants to be determined through a multi-level regression of test data for 

Cf-new. 

To find the values of the constants a, b and c, a regression analysis has been done with respect 

to the following criterion:  

1. The best fitting relationship will yield predicted values lower than the actual experimental data in 

over 85% of the cases (safe prediction) and;  

2. In other cases the predicted values should not exceed 10% of the actual strength. The 

enforcement of this criterion leads to a prediction that can be relied upon.  

The values obtained from Cf-new are further inserted in Eq. (3) to obtain the predicted moment 

(Mpred). 

Regression analysis of all data yields:  a = 3.110 

 b = 0.708 

 c = 1.082 

Thus, the proposed equation for Cf-new is: 

                                                                   
                   

      
                                       (5) 

where: ϕ is the diameter of rebar in mm; Icorr is the corrosion current density in mA/cm
2
; T is the 

duration of corrosion in days; A is the cross-sectional area of beam in mm
2
. 

3.2. Comparison of the Predicted Moment with the Experimental Data Obtained from Azad et al. 

(2010) [57] 

The comparison of the experimental residual flexural strength, Mexc, and the predicted residual 

flexural strength, Mpred, computed as                      using Cf-new values from Equation (3) 

as shown in Figure 2 for all test beams. As seen from Table 1, almost 70% of the data points are 

within an acceptable error range of 20%. Almost thirteen numbers of beams showed a high range of 

variations. Two of the beams like B4-5 and B4-6 showed a large variation in the prediction of 

residual strength. However, the difference in the values of Mpred and Mexc is less than 25% of Mexc 

values. While Figure 2 shows the scatter of data with a promising value of Coefficient of 
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Determination (R
2
) as 0.8981 which is considerably a good sign for the reliability of the proposed 

model (Eq. (3)) as well as it demonstrated a higher degree of correlation with the experimental data 

as when compared to the previous model developed by Azad et al. (2010) [57]. The proposed model 

(Eq. (3)) has also been designed with the view to attain a more realistic and generalized scenario by 

considering several factors responsible for the reduction of flexural capacity which actually is not 

seen in the model given by Azad et al. (2010) [57]. As a result of which the proposed model can be 

trusted upon its applicability in the field demanding for several variations in the input parameters. 

However, the results shown a certain degree of variation in the predicted values which may be 

accounted to several factors lies with the experimental activities. It should be noted that while 

uniform corrosion of a rebar along its length is assumed in theoretical calculation but in reality non-

uniform or pitting corrosion does exist. This is one of the several other factors that may contribute 

towards such degree of variability. The predicted values of moment using Eq. (3) along with the 

experimental data are demonstrated in Table 1. 

Figure 2 depicts the coefficient of determination, i.e., R
2
 value of 0.9 which has been plotted 

between the experimental moment Mexc (obtained from Azad et al. (2010) [57]) and the predicted 

moment Mpred using Eq. (3), giving information about the goodness of fit of the model. However this 

higher degree of R
2
 shows a substantial improvisation in the proposed model as when it is compared 

with the R
2
 value of the existing model developed by Azad et al. (2010) [57] which was obtained as 

0.862. The value of R
2
 ranges from 0 to 1. Higher the value of R

2
 will demonstrate a better 

relationship between the two variables. On the other hand, root mean square error (RMSE) was also 

found to be 6.9 which is almost equal to the RMSE value of 6.811 obtained from Azad et al.  

(2010) [57]. These similar values may be attributed to a least variation in the predicted values when 

compared with the previous one.  

 

Figure 2. Comparison of experimental Moment (Mexc) and the predicted moment (Mpred) 

using Eq. (3). 
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Table 1. Mexc and Mpred values of test beams. 

Beam 

Designation 

IcorrT 

(mA·days/cm2) 

Mthc 

(kN·mm) 

Mexc 

(kN·mm) 

Cf-new 

(Eq. (5)) 

Mpred (kN·mm) 

(Eq. (3)) 
% Error 

B1-1 4.26 31090.00 31500.00 0.85 26416.49 16.14 

B1-2 7.30 30490.00 28180.00 0.78 23778.95 15.62 

B1-3 5.04 30940.00 29400.00 0.83 25701.08 12.58 

B1-4 19.32 28100.00 22400.00 0.56 15780.31 29.55 

B1-5 3.60 31230.00 30980.00 0.87 27062.90 12.64 

B1-6 19.32 28100.00 17330.00 0.56 15780.31 8.94 

B2-1 14.40 39670.00 36580.00 0.72 28405.04 22.35 

B2-2 12.00 40360.00 40950.00 0.75 30287.02 26.04 

B2-3 22.80 37250.00 24330.00 0.61 22604.95 7.09 

B2-4 21.30 37670.00 26950.00 0.63 23556.49 12.59 

B2-5 31.20 34920.00 26600.00 0.51 17777.18 33.17 

B2-6 31.40 34820.00 20480.00 0.51 17648.76 13.82 

B3-1 16.30 49570.00 37630.00 0.74 36823.99 2.14 

B3-2 21.75 47510.00 37050.00 0.68 32525.82 12.21 

B3-3 7.35 52960.00 52500.00 0.85 45211.71 13.88 

B3-4 7.12 53040.00 55300.00 0.86 45452.72 17.81 

B3-5 32.00 43740.00 35700.00 0.59 25607.75 28.27 

B3-6 5.64 53610.00 57580.00 0.88 47107.53 18.19 

B4-1 7.20 35880.00 33600.00 0.69 24599.50 26.79 

B4-2 12.90 34790.00 22230.00 0.52 18261.38 17.85 

B4-3 15.36 34290.00 22750.00 0.46 15856.11 30.30 

B4-4 16.77 34030.00 23100.00 0.43 14562.24 36.96 

B4-5 27.40 31940.00 18730.00 0.19 6072.95 67.58 

B4-6 28.80 31680.00 16100.00 0.16 5102.16 68.31 

B5-1 12.40 48250.00 31150.00 0.63 30472.49 2.17 

B5-2 13.00 48080.00 38150.00 0.62 29762.45 21.99 

B5-3 13.05 48080.00 29750.00 0.62 29712.60 0.13 

B5-4 7.90 49590.00 40950.00 0.73 36311.62 11.33 

B5-5 19.40 49590.00 25550.00 0.49 24506.47 4.08 

B5-6 24.40 44780.00 25200.00 0.41 18136.76 28.03 

B6-1 7.74 63480.00 58980.00 0.78 49584.42 15.93 

B6-2 1.90 65800.00 65980.00 0.92 60471.63 8.35 

B6-3 6.40 64010.00 57400.00 0.81 51762.87 9.82 

B6-4 13.80 61110.00 36930.00 0.67 40965.44 −10.93 

B6-5 4.60 64730.00 48480.00 0.85 54927.22 −13.30 

B6-6 27.40 55850.00 35000.00 0.46 25930.00 25.91 
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In order to predict the residual strength of any structural element, the main parameters 

considered for the studies are corrosion intensity and duration of corrosion (i.e., Icorr and T). Today, 

several methods (like half cell potential method or LPR method)/measurements (equipments like 

corrosion meter) are available in the field with the help of which corrosion intensity can easily be 

monitored and the time to initiation and crack propagation can be estimated by using several 

empirical models predicted for durability designs in the past researches. Practically, the proposed 

strength prediction model can be utilized either to find the residual flexure capacity of a beam that 

has suffered corrosion damage or to find the maximum corrosion period for a given level of Icorr that 

can be permitted for a beam at the lowest level of compromised safety. As the empirical method is 

developed from experimental correlation, it should be recognized that the accuracy of the estimation 

needs testing in a wider range of IcorrT values. For lower corrosion damage, the method is expected to 

show reasonable accuracy in prediction. 

3.3. Validation of the Proposed Model in Relation to Past Research Data 

The proposed model (Eq. (3)) is supposed to be validated by using the past research data of 

several other researchers so that its applicability can be justified in a more general order. Hence, the 

model has been compared with the data reported by Ahmad [18] and Azad et al. [23] subject to the 

availability of the required information.  

The proposed model has been developed by using Eq. (3) where a new correction factor has 

been incorporated with the theoretical moment of corroded beams so that the consideration of several 

factors responsible for the cause of strength reduction because of corrosion activity can be taken into 

account. Due to corrosion, loss in bar diameter can be attributed to a major cause of reduction in the 

load bearing capacity, the effect of which was considered while calculating the theoretical moment of 

corroded beams. However, it was observed that, along with the diametric loss, there were certain 

other factors which also accounted for the strength reduction in reinforced concrete structures due to 

corrosion. Therefore, a new correction factor has been multiplied with the theoretical moment to 

adjudge with the realistic data. A similar kind of approach can also be identified in the  

studies [23,57]. 

On a similar note [18], proposed a direct approach to predict the residual strength (in %), R of 

corroded beams, rather than calculating for the theoretical moment first and then working for the 

correction factor. Ahmad [18] proposed the percentage reduction in strength by considering the 

effects of rebar diameter, cover thickness and degree of corrosion. Keeping in view of the above 

explanation, an analogy can be established between Muc (Ultimate Moment capacity for un-corroded 

beams) and Mthc (Theoretical Moment capacity for corroded beams) in order to make a comparison 

between the experimental and predicted results (Table 2). The error obtained in Table 2 clearly 

shows a significant correlation of the experimental data with the proposed data. The variation in error 

seems to be within an acceptable range, where more than 80% of the data establishes a good 

agreement with experimental records. However, the R
2
 value has also been obtained in Figure 3 

which is equal to 0.754, which is somewhat lesser but the correlation can easily be established based 

on the variation in errors. This value of R
2
 which is somewhat on the lower side may be attributed to 

the rule of analogy.  
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Table 2. Comparison of the proposed model with the experimental observations of Ref [18]. 

Beam 

Number 

L 

(mm) 

B 

(mm) 

Area 

(mm2) 

Diameter 

(ϕ) (mm) 

IcorrT 

(mA·days

/cm2) 

Muc as an 

analogous 

to Mthc 

Mexc [18] 

(kN·mm) 

Cf-new 

(Eq. (5)) 

Mpred 

(Eq. (3)) 

(kN·mm) 

% Error 

1 150 150 22500 10 4.12 11640.00 10675.00 0.93 10841.56 −1.56 

2 150 150 22500 10 10.88 11640.00 10150.00 0.86 10052.09 0.96 

3 150 150 22500 10 11.82 11640.00 10463.00 0.86 9956.15 4.84 

4 150 150 22500 10 16.44 11640.00 9152.00 0.82 9513.09 −3.95 

5 150 150 22500 10 17.44 11640.00 7823.00 0.81 9422.28 −20.44 

6 150 150 22500 10 23.92 11640.00 6478.00 0.76 8866.33 −36.87 

7 150 150 22500 12 5.00 14795.00 12762.00 0.86 12742.99 0.15 

8 150 150 22500 12 7.84 14795.00 11968.00 0.81 11973.48 −0.05 

9 150 150 22500 12 17.94 14795.00 10433.00 0.66 9724.94 6.79 

10 150 150 22500 12 12.54 14795.00 10549.00 0.73 10860.38 −2.95 

11 150 150 22500 12 20.64 14795.00 8883.00 0.62 9195.86 −3.52 

12 150 150 22500 12 20.96 14795.00 8489.00 0.62 9134.53 −7.60 

13 150 150 22500 10 6.08 11760.00 10923.00 0.91 10697.44 2.06 

14 150 150 22500 10 6.92 11760.00 10192.00 0.90 10595.49 −3.96 

15 150 150 22500 10 7.68 11760.00 9875.00 0.89 10506.33 −6.39 

16 150 150 22500 10 13.26 11760.00 9284.00 0.84 9914.53 −6.79 

17 150 150 22500 10 16.16 11760.00 9118.00 0.82 9637.14 −5.69 

18 150 150 22500 10 25.04 11760.00 6598.00 0.75 8865.46 −34.37 

19 150 150 22500 12 6.96 13125.00 12030.00 0.82 10824.30 10.02 

20 150 150 22500 12 9.96 13125.00 10932.00 0.77 10159.76 7.06 

21 150 150 22500 12 12.18 13125.00 10021.00 0.74 9705.76 3.15 

22 150 150 22500 12 16.80 13125.00 8978.00 0.67 8831.51 1.63 

23 150 150 22500 12 16.64 13125.00 8997.00 0.68 8860.50 1.52 

24 150 150 22500 12 18.96 13125.00 7567.00 0.64 8447.64 −11.64 

A similar correction factor obtained by Azad et al. [23], where a factor β was proposed, defined 

as a function of the corrosion activity index IcorrT and diameter of the steel bar D, which was further 

multiplied with theoretical moment to predict the residual capacity of beams. The combined effect of 

bond loss and factors pertaining to loss of flexural strength is represented by the value of β. A 

comparative study with Azad et al. [23] has also been added here in this study to ascertain the 

reliability of the proposed model (using Eq. (3)). The detailed results are depicted in Table 3, 

illustrating the least randomness obtained in the predicted moment values which can be clearly 

identified by the %error. The data predicted for reduced strength using the model (Eq. (3)) shows a 

considerable agreement with the experimental results with an acceptable R
2
 value of 0.8219 as 

shown in Figure 4.  
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Figure 3. Comparison of proposed data (Mpred) using Eq. (3) with the experimental 

Moment (Mexc) obtained from [18]. 

 

Figure 4. Comparison of proposed data (Mpred) using Eq. (3) with the experimental 

Moment (Mexc) obtained from [23]. 
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Table 3. Comparison of the proposed model with the experimental observations of Ref [23]. 

Beam 

Designation 

Depth 

(mm) 

Width 

(mm) 

Area 

(mm2) 

Diameter 

(ϕ) (mm) 

IcorrT 

(mA·days 

/cm2) 

Mthc 

(kN·mm) 

Mexc [23] 

(kN·mm) 

Cf-new 

(Eq. (5)) 

Mpred 

(kN·mm) 

(Eq. (3)) 

% Error 

BT1-2-4 150 150 22500 10 4.12 9690.00 10680.00 0.93 9025.33 15.49 

BT1-3-4 150 150 22500 10 10.88 8950.00 10150.00 0.86 7729.06 23.85 

BT1-2-6 150 150 22500 10 11.82 9400.00 10460.00 0.86 8040.19 23.13 

BT1-3-6 150 150 22500 10 16.44 9000.00 9150.00 0.82 7355.48 19.61 

BT1-2-8 150 150 22500 10 17.44 8170.00 7820.00 0.81 6613.41 15.43 

BT1-3-8 150 150 22500 10 23.92 8350.00 6480.00 0.76 6360.30 1.85 

BT2-2-4 150 150 22500 12 5.00 13650.00 12760.00 0.86 11756.80 7.86 

BT2-3-4 150 150 22500 12 7.84 13040.00 11970.00 0.81 10553.17 11.84 

BT2-2-6 150 150 22500 12 17.94 12400.00 10430.00 0.66 8150.67 21.85 

BT2-3-6 150 150 22500 12 12.54 13020.00 10550.00 0.73 9557.44 9.41 

BT2-2-8 150 150 22500 12 20.64 12130.00 8880.00 0.62 7539.42 15.10 

BT2-3-8 150 150 22500 12 20.96 11690.00 8490.00 0.62 7217.49 14.99 

BT3-2-4 150 150 22500 10 6.08 9320.00 10920.00 0.91 8477.91 22.36 

BT3-3-4 150 150 22500 10 6.92 8830.00 10190.00 0.90 7955.63 21.93 

BT3-2-6 150 150 22500 10 7.68 8540.00 9880.00 0.89 7629.60 22.78 

BT3-3-6 150 150 22500 10 13.26 8960.00 9280.00 0.84 7553.93 18.60 

BT3-2-8 150 150 22500 10 16.16 8040.00 9120.00 0.82 6588.65 27.76 

BT3-3-8 150 150 22500 10 25.04 7550.00 6600.00 0.75 5691.69 13.76 

BT4-2-4 150 150 22500 12 6.96 11920.00 12030.00 0.82 9830.53 18.28 

BT4-3-4 150 150 22500 12 9.96 12540.00 10930.00 0.77 9706.93 11.19 

BT4-2-6 150 150 22500 12 12.18 12330.00 10020.00 0.74 9117.87 9.00 

BT4-3-6 150 150 22500 12 16.80 11460.00 8980.00 0.67 7711.17 14.13 

BT4-2-8 150 150 22500 12 16.64 11480.00 9000.00 0.68 7749.99 13.89 

BT4-3-8 150 150 22500 12 18.96 10980.00 7570.00 0.64 7067.05 6.64 

3.4. Prediction Using Artificial Neural Network 

ANN is used to investigate the flexure strength of reinforced concrete beams. The configuration 

and training of neural networks is a trail-and-error process due to such undetermined parameters as 

the number of nodes in the hidden layer, and the number of training patterns. ANN application is an 

inbuilt software or tool in MATLAB software. The version of MATLAB used in this study was 

R2010a. 

In the developed ANN, there is an input layer, where input data are presented to network and an 

output layer, with one neuron representing flexure strength of reinforced concrete beams. One hidden 

layer as an intermediate layer is also included. The network with one hidden layer and four nodes in 

the hidden layer gave the optimal configuration with minimum mean square error (MSE).  
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Two input variables are: Diameter of reinforcing steel (D), and corrosion activity index (      ) 

and the target variable is taken as Experimental Moment of corroded beams (Mexc) by Azad et al. 

(2010) [57]. 

The back-propagation neural network model used for this study is trained by feeding a set of 

mapping data with input and target variables. The main objective of training the neural network is to 

assign the connection weights by reducing the errors between the predicted and actual target values 

to a satisfactory level. This process is carried out through the minimization of the defined error 

function by updating the connection weights. Also, the number of hidden layers, number of hidden 

nodes, transfer functions, and normalization of data are chosen to get the best performance of the 

model. After the errors are minimized, the model with all the parameters including the connection 

weights is tested with a separate set of testing data that is not used in the training phase. At the end of 

the training, the neural network represents a model that should be able to predict the target value.  

For ease of comparison and due to their common use in predictive modeling literature, the 

comparative coefficient of determination (R
2
) and root mean square error (RMSE) to evaluate the 

comparative performance of the ANN models and the empirical equation of Azad et al. (2010) [57] 

were used. The R
2
 measures the statistical correlation between the predicted (y) and actual values (x). 

Following the assumption that no problem would require an ANN model with more than  

50 neurons in each hidden layer [58], the optimal number of hidden neurons was investigated from 1 

through 50 while trying different learning algorithms and activation functions for the hidden and 

output layers. This procedure to search for optimal parameters is necessary since each problem 

requires different values of these parameters for optimal performance. Choosing the appropriate 

number of hidden neurons is essential for the ultimate performance of ANN models. If the number is 

too small, the model will not adequately capture the pattern that is hidden in the data. This leads to 

under-fitting, which is characterized by a generally poor performance in both training and  

testing [59]. If the number is too large, the model will exert too much energy than necessary to solve 

the problem. This leads to over-fitting characterized by a model performing excellently well in 

training but poor in generalization on new cases [59]. In order to avoid cases of under-fitting and 

over-fitting, the assumptions made for ANN are presented below:  

 Number of training epochs = 100; 

 Error goal = 0.001; 

 Training algorithm = Levenberg–Marquardt 

 Error criterion = Mean squared error 

 Transfer function in the hidden layer = Sigmoidal 

 Transfer function in the output layer = Purelin 

The network has trained continually through updating of the weights until error goal of  

15.1 × 10
−4

 is achieved. Figure 5 shows the performance for training and generalization (testing). A 

resilient back propagation training algorithm is used to train the network, for 800 epochs to check if 

the performance (MSE) for either training or testing sets might diverge. 

Basically, fixed type of stratification for training and testing of data are considered. Fixed 

stratification is that where the percentage of data for training and testing sets are fixed based on 

which the prediction of residual strength is obtained.  

ANN model was developed directly to predict the residual flexural strength (Mres) with the 

defined set of input variables. Since fixed stratification type has been adopted, so the first 70% of the 

data were used for training an ANN model while the last 30% was used for testing and validation. 
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The result of the search for the optimal number of neurons in the hidden layer is shown in Figure 6. 

From the plot, the optimal number of hidden neurons for this model is 11. This corresponds to the 

minimum number (x-axis) that gave the highest testing accuracy (y-axis) with the least over fitting. 

The least over fitting is determined by the least separation between the training and testing points. 

Although, several points qualify for this criteria but the most optimal was chosen. 

 

Figure 5. Convergence of the ANN for training and testing sets.  

 

Figure 6. Determining optimal numbers of hidden neurons for fixed stratification. 
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Figure 7 shows how the minimum error (hence the optimal model) was attained with respect to 

the validation and testing during the training process. Out of the 100 pre-defined for the model, the 

minimum error was attained within 4 epochs after which the validation error continued to increase. 

Hence, the best validation error attained so far at the four epochs was chosen. It could be seen that 

the errors decreased sharply at the beginning. However, after the fourth epoch, while training error 

continues to decrease, the test and validation errors could not converge in the same manner. Hence, 

the model decided to stop the training process and selected the best validation error attained so far. 

 

Figure 7. The best error obtained for Model with fixed stratification. 

Results of Evaluation Criteria with fixed stratification: Correlation Coefficient for the ANN 

(Training): 0.673315; Root Mean Square Errors for the ANN (Training): 8.24120; Correlation 

Coefficient for the ANN (Testing): 0.916168; Root Mean Square Errors for the ANN (Testing): 

7.23772; Optimal Number of Hidden Neurons: 11. 

4. Results and Discussion 

Based on the methodology described above, the comparative correlation coefficient, root mean 

square error and mean absolute error results obtained from the prediction of flexural strength are 

shown are shown in Table 4 and 5.   

Table 4. Comparative correlation coefficient results for M-residual prediction. 

Model Training R2 Testing R2 

Predicted Model (Eq. (3)) 0.90 

Azad et al. (2010) [57] 0.86 

ANN Model (with Fixed Stratification) 0.67 0.92 
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Table 5. Comparative root mean square error results for residual prediction of Moment. 

Model Training RMSE Testing RMSE 

Proposed Model (Eq. (3)) 6.90 

Azad et al. (2010) [57] 6.81 

ANN Model (with Fixed stratification) 8.24 7.23 

Figure 8 shows the coefficient of determination, R
2
 value between the proposed model (Eq. (3)), 

Azad et al. (2010) [57] and ANN model giving information about the goodness of fit of the model. 

The proposed model as well as the ANN model have higher R
2
 value (i.e., 0.9 and 0.92 respectively) 

than the model developed by Azad et al. (2010) [57] (as R
2
 is 0.862). These higher values clearly 

indicates the superiority of the proposed and ANN model over Azad et al. (2010) [57] model. The 

data correlation is established with high acceptance criteria proving to be the most reliable approach 

than the previously proposed method. The detailed data for training and testing set is also represented 

in Table 4.  

 

Figure 8. R
2
 comparison of proposed regression and ANN models with Azad et al.  

(2010) [57] model. 

The RMSE values is a good measure of how accurately the model predicts the response and is 

the most important criterion for fit if the main purpose of the model is prediction. Figure 9 shows the 
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different models. Despite the better performance of ANN in terms of R
2
 values, the ANN models had 

higher errors associated with their better predictions. The detailed data for training and testing set is 

also represented in Table 5.  

It is clear from the results that the correlation coefficient of the ANN model and the proposed 

model (Eq. (3)) with M-residual prediction of 0.92 and 0.9 (Table 4) is better than those of the 

empirical model proposed by Azad et al. (2010) [57]. The result from the ANN can be attributed to 
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its superior generalization capability over the empirical or regression model. In terms of root mean 

square errors (Table 5), the ANN model also showed superior performance than the empirical model.  

 

Figure 9. RMSE
 
comparison of proposed regression and ANN models with Azad et al. 

(2010) [57] model. 

For the prediction of Mres, Figures 10 and 11 indicate the performance of the model while 

training and testing of the data set.  

 

Figure 10. Experimental and ANN prediction of Mres for training data set with fixed 
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Figure 11. Experimental and ANN prediction of Mres for testing data set with fixed 

stratification. 
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 From literature review, it has been found in most cases that the stiffness of the beam 

progressively degrades as the corrosion phenomena increases as well as the corrosion damage is 

mostly affected by the size of the bars and by the amount of tension reinforcement. 

 This study affirms that the model for prediction of residual strength of corroded beams, proposed 

by Azad et al. (2010) [57] was quite conservative and underestimates the residual flexural 

capacity of corroded beams. This leads to the necessity of modifying their model, to make it 

more accurate and reliable in predicting the reduced strength of the corroded beams. 

 This study also suggest that the two-step approaches proposed by Azad et al. (2010) [57] could 

be used as the time dependent strength prediction model. The proposed correction factor, Cf-new is 

appropriate as it yields predicted values with acceptable accuracy. 

 The ANN predictions agreed much better with the experimental values than those obtained from 

the prediction by Azad et al. (2010) [57]. 

 ANN provides a much more reliable tool towards predicting the residual strength of corroded 

reinforced concrete beams. Moreover, it is also established that ANN model have more 

generalization capability than the empirical model of Azad et al. (2010) [57]. 

 It is affirmed from the result, that fixed stratification may give a better correlation but 

underestimates in terms of error performance. The reason may be attributed to certain degree of 

bias in the selection of data set for training the model. However, more studies are still needed to 

reach to a logical conclusion. 

Although a limited amount of test data forms the basis of the proposed approach for estimation 

of residual strength, which perhaps can be improved with additional test data, this work highlights 

the need of such a simplistic approach that can be used in practice. Since the main objective of this 

work is to investigate the capability of ANN model to predict the flexural strength of reinforced 

concrete, the focus is to keep the algorithm design and implementation simple. Investigating the 

effect of various parameters (such as the effect of data normalization, activation function, different 

learning algorithms and different layers) on the performance of the ANN models will be carried out 

in the future work. For practical cases, comprehensive studies with a large set of data needs to be 

carried forward to use an adaptive tool like Artificial Neural Network (ANN) which can be employed 

to predict the results with higher degree of accuracy. This can only be achieved with a large number 

of dataset in order to better recognize the randomness pattern in the dataset. The authors plan to 

confirm the consistency of the results of this study in the continued and future work by using more 

experimental data from various types of concrete samples and published datasets from previous 

studies. In the continued search for better predictive tools, it is planned to implement other types of 

ANN such as, and Functional Networks. With the success of this study, a motivation to further 

explore the applicability of more advanced Artificial Intelligence (AI) techniques like Generalized 

Regression Neural Networks, Radial Basis Functional Networks, Type-2 Fuzzy Logic, Support 

Vector Machines and Extreme Learning Machines is enhanced. This study is a contribution to an 

ongoing effort to develop the application of Artificial Intelligence in solving civil engineering 

problems.  
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