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Abstract: Sensors are prone to malfunction, leading to blank or erroneous measurements that cannot 

be ignored in most practical applications. Therefore, data users are always looking for efficient 

methods to substitute missing values with accurate estimations. Traditionally, empirical methods have 

been used for this purpose, but with the increasing accessibility and effectiveness of Machine Learning 

(ML) methods, it is plausible that the former will be replaced by the latter. In this study, we aimed to 

provide some insights on the state of this question using the network of meteorological stations 

installed and operated by the GIS Research Unit of the Agricultural University of Athens in Nemea, 

Greece as a test site for the estimation of daily average solar radiation. Routine weather parameters 

from ten stations in a period spanning 1,548 days were collected, curated, and used for the training, 

calibration, and validation of different iterations of two empirical equations and three iterations each 

of Random Forest (RF) and Recurrent Neural Networks (RNN). The results indicated that while ML 

methods, and especially RNNs, are in general more accurate than their empirical counterparts, the 

investment in technical knowledge, time, and processing capacity they require for their implementation 

cannot constitute them as a panacea, as such selection for the best method is case-sensitive. Future 

research directions could include the examination of more location-specific models or the integration 

of readily available spatiotemporal indicators to increase model generalization. 
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1. Introduction 

Solar radiation is the energy source of the planet, and knowledge of its magnitude on any given 

spatiotemporal frame is necessary for a multitude of applications, from power generation [1] to 

irrigation planning [2]. Focusing on its agricultural applications, and with the advent of smart 

agriculture, weather stations connected to the Internet are often used to supply these important 

measurements directly to a monitoring team tens or hundreds of kilometers away. However, an 

uncommon but persistent issue of operating a meteorological station at a remote location is the loss of 

data pertaining to malfunctioning sensors. Due to the difficulty of coordination and access, it could 

take days for a maintenance team to fix the problem after it is first detected, wasting precious data and 

poking holes in otherwise complete datasets. This issue requires an accurate yet easy to implement 

solution, as complex methodologies may be unappealing or wasteful for tackling such a mundane issue. 

A similar problem is the absence of solar radiation measurements in general meteorological 

observation stations observed in studies like those of Zang et al. [3,4], Ağbulut et al. [5], and Soulis et 

al. [6]. The absence of solar radiation measurements is even more pronounced in the case of historical 

data [6]. In all these cases, estimation of the solar radiation values through the more readily available 

data for other meteorological parameters such as air temperature and air relative humidity was necessary 

in some capacity, either through empirical functions as proposed by Hargreaves and Samani [7] or Meza 

and Yebra [8], or, more recently, through Machine Learning (ML) algorithms [3,5]. 

The studies presented in Table 1 offer a review of previous studies presenting robust 

methodologies for predicting daily average global solar radiation based on other meteorological 

variables. These studies incorporate ML methods, either as individual models [9–11] or hybrid ML-

empirical models [4], reporting promising results. Some researchers [5,12,13] have even performed 

comparisons of different ML methods to discern the best one to use for tackling this problem. However, 

literature pertaining to comparing the performance of traditional empirical methods and the relatively 

new ML methods, taking into account the availability of the required variables, the methods’ simplicity, 

and the computational requirements in this setting, seems scarce. Such an evaluation is a worthwhile 

endeavor since ML methods are inherently less accessible compared to the well-established and 

intensely calibrated traditional methods, with many researchers opting to use the latter over the former 

for the sake of convenience. 
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Table 1. Selection of studies using Machine Learning methods for the estimation of solar radiation. 

Publication Machine Learning Methods Used 

[4] Artificial Neural Networks 

[5] Support Vector Machines, Artificial Neural Networks, Kernel Nearest Neighbor 

[9] Genetic Programming 

[10] Random Forest 

[11] Random Forest 

[12] Support Vector Machines, Artificial Neural Networks, Adaptive Network-based Fuzzy 

Inference System, Multiple Linear Regression 

[13] Support Vector Machines, Artificial Neural Networks, Kernel Nearest Neighbor, Gaussian 

Process Regression, Extreme Learning Machines 

We aim to compare the accuracy of different methods for the estimation of daily global solar 

radiation using other routine meteorological variables for the purposes of filling in missing 

measurements while considering the differences in availability of measured parameters for any given 

station, simplicity, and computational requirements. Considering the focus on simplicity and speed of 

this analysis, the methods selected for this comparison were the well-established empirical equation 

proposed by Hargreaves and Samani [7] and the modified version of the same equation proposed by 

Valiantzas [14]. These traditional methods were compared with various implementations of two ML 

models. These models were the Random Forest, which was selected for its relatively simpler 

implementation without sacrificing accuracy [15], and the Recurrent Neural Networks, which was 

selected for its specialization in handling sequential data [16]. 

2. Materials and methods 

2.1. Study area, data sourcing and processing 

The data used in this paper came from the meteorological station network operated by the GIS 

Research Unit of the Agricultural University of Athens in the area of Nemea, comprising ten (10) 

stations (Figure 1) that record data on precipitation, temperature, wind speed, relative humidity, and 

solar radiation on a 15-minute time step, which were drawn from the period from 1/10/2019 to 

27/12/2023.  

This data was then used to calculate daily sums for precipitation and daily average, maximum, 

and minimum values for temperature, relative humidity, wind speed, and solar radiation. The 

aforementioned process was completed using a semi-automatic algorithm developed in MS Excel 

VBA to reduce processing time. Time steps that had missing or evidently erroneous measurement 

values based on simple criteria considering the acceptable value range for each parameter were entirely 

omitted from the procedure. 
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Figure 1. The study area (Nemea) and the locations of the meteorological stations within it. 

Daily extraterrestrial radiation is a very important variable in estimating average daily solar 

radiation [7,14], and its values were calculated in MS Excel VBA for each of the stations’ locations 

for all selected dates using the following equation [2]:  

 
𝑅𝑎 =

24(60)

𝜋
 𝐺𝑠𝑐 𝑑𝑟 [𝜔𝑠 𝑠𝑖𝑛(𝜑) 𝑠𝑖𝑛(𝛿) +  𝑐𝑜𝑠(𝜑) 𝑐𝑜𝑠(𝛿) 𝑠𝑖𝑛(𝜔𝑠)] (1) 

where 𝑅𝑎 is the extraterrestrial radiation in MJ m-2 day, 𝐺𝑠𝑐  is the solar constant 0.0820 MJ m-2 day, 

𝑑𝑟 is the inverse relative distance Earth-Sun, 𝜔𝑠 is the sunset hour angle in radians, 𝜑 is the latitude in 

radians, and 𝛿 is the solar declination angle in radians. 

All the variables were then investigated for correlation with average solar radiation using IBM 

SPSS Statistics 25. Τhe correlation coefficients used were Pearson’s and Spearman’s ranks to capture 

both linear and non-linear relationships, and the results are presented in Table 2. The variables that 

showed a significantly high correlation with average solar radiation with both coefficients across all 
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ten locations were extraterrestrial radiation, average relative humidity, maximum, minimum, and 

average temperature; average wind speed showed a high significance level for some stations, but gave 

significance values over but very close to 0.05 for others and it was decided that it would not be omitted. 

Furthermore, the same parameters are used in existing empirical methods [7,14]. Consequently, these 

were the characteristics that could potentially be used for the interpolation of average solar radiation 

by the ML algorithms used in this paper. 

Table 2. Correlation coefficients and significance for daily average solar radiation. 

Variable Pearson’s Spearman’s 

Maximum Temperature Coefficient 0.7420 0.7705 

Significance ≈0 ≈0 

Minimum Temperature Coefficient 0.5556 0.5627 

Significance ≈0 ≈0 

Average Temperature Coefficient 0.7184 0.7165 

Significance ≈0 ≈0 

Average Wind Speed Coefficient 0.1885 0.3234 

Significance 0.0465 0.0586 

Average Relative Humidity Coefficient −0.7926 −0.7960 

Significance ≈0 ≈0 

Extraterrestrial Solar Radiation Coefficient 0.8306 0.8245 

Significance ≈0 ≈0 

Another piece of data that was needed and had to be calculated was the dew point temperature, 

which was calculated in daily temporal step in MS Excel using the formula by Allen et. al (1998) [2]: 

 
𝑇𝑑𝑒𝑤 =

116.91 + 237.3 ln(𝑒𝑎)

16.78 −  ln(𝑒𝑎)
  (2) 

where 𝑒𝑎 is the actual vapor pressure in kPa and was calculated by the following formula: 

 
𝑒𝑎 = 0.6108 × exp (

17.27 𝑇 

𝑇 + 237.3
)

×
𝑅𝐻

100
 

(3) 

where 𝑅𝐻 is the relative humidity as %, 𝑇 is the average daily temperature in oC. 

The data was then split in two datasets, the data from 1/10/2019 to 30/9/2022 was used for the 

training and calibration of the machine learning models and relevant empirical equations versions, 

while the data from 1/10/2022 to 27/12/2023 was used for the calibration of the relevant equation 

versions and for validation and comparison of both the equations and machine learning models. Given 

ten locations, the training dataset comprised of a total of 10,970 data points and the validation and 

comparison dataset was comprised of 4,499 data points. 
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2.2. Empirical equations methods 

Some of the equations traditionally used in the estimation of missing solar radiation values and 

which will be examined in this paper are the equation proposed by Hargreaves and Samani (Eq. 4) [7] 

and the modified version of the same equation proposed by Valiantzas (Eq. 5) [14], which uses dew 

point temperature in place of minimum temperature. 

 𝑅𝑠 = 𝑘𝑅𝑠  ×  𝑅𝑎 (𝑇𝑚𝑎𝑥 −  𝑇𝑚𝑖𝑛)0.5 (4) 

 𝑅𝑠 = 𝑘𝑅𝑠  ×  𝑅𝑎 (𝑇𝑚𝑎𝑥 − 𝑇𝑑𝑒𝑤)0.5  (5) 

where 𝑅𝑠 is the solar radiation in Wm-2, 𝑅𝑎  is the extraterrestrial radiation in Wm-2, 𝑇𝑚𝑎𝑥 is the 

maximum daily temperature in oC, 𝑇𝑚𝑖𝑛 is the minimum daily temperature in oC, 𝑇𝑑𝑒𝑤 is the calculated 

dew point temperature in oC, and 𝑘𝑅𝑠 is an empirical solar radiation adjustment coefficient that 

generally varies from 0.12 to 0.25. 

Both equations were examined and split in three use cases each. The first use case dubbed “non-

calibrated” was adopting the conventional kRs value of 0.17 for all stations, the second use case dubbed 

“local” was calibration of the kRs values [17] for each of the ten locations separately using the data 

from the training dataset and the third dubbed “total” was calibrated simultaneously using the data of 

all ten locations. The calibration was done up to the third decimal digit of kRs and was performed by 

slightly adjusting the value until the corresponding equation’s result gave the lowest Root Mean Square 

Error (RMSE) value when compared to the ground truth data of the training dataset. RMSE is 

calculated as follows [4]: 

 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖 − 𝑦𝑝𝑖)2𝑛

𝑖=1

𝑛
 (6) 

where 𝑦𝑖 is the observed value of the i-th time step, 𝑦𝑝𝑖 is the predicted value of the i-th timestep, and 

𝑛 is the number of time steps. 

2.3. Random forest 

Out of many possible options, the Random Forest (RF) algorithm was chosen for its robustness 

in dealing with regression problems and its relative ease of development and use. Using RStudio, three 

RF models were constructed, each using a diminishing number of input variables. The first iteration, 

dubbed “RFcomplete”, used all the variables found to have a significant correlation with average solar 

radiation, as explained in section 2.1, namely maximum temperature, minimum temperature, average 

temperature, average wind speed, average relative humidity, and extraterrestrial solar radiation. The 

second model, dubbed “RFhalf”, did away with average wind speed and temperature to be comparable 

to Equation 5 in terms of prerequisite data. The final, dubbed “RFminimal”, would use only 

extraterrestrial solar radiation and maximum and minimum temperature to be in direct juxtaposition to 

Equation 4 and its minimal need for data. 

Using the grid search method, different models with different combinations of hyperparameters 

were trained for each iteration in order to discern the best performing combination in terms of R2 on 
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the independent validation dataset. The coefficient of determination (R2) is defined as the variability 

explained by the regression model and is calculated by the following formula [18]: 

 
𝑅2 = 1 −  

∑ (𝑦𝑖 − 𝑦𝑝𝑖)
2𝑛

𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 
   (7) 

where 𝑦𝑖 is the observed value of the i-th time step, 𝑦𝑝𝑖 is the predicted value of the i-th timestep, and 

�̅� is the average of all observed values. 

The hyperparameters in question were the number of trees, the minimum terminal node size, the 

sample size for each tree, the depth of the decision trees, and the number of variables available for 

splitting at each tree node. The hyperparameters chosen for each model are presented in Table 3. 

Table 3. Final Random Forest model hyperparameters. 

Model Number of Trees Minimum 

Node Size 

 Sample Size Maximum Tree 

Depth 

Variable Number 

for Splitting 

RFcomplete 400 2 0.6 10 4 

RFhalf 400 4 0.6 10 3 

RFminimal 600 2 0.2 10 3 

Available 

options 

200, 400, 600, 

800, 1000 

2, 4 ,6 0.2, 0.4, 0.6, 0.8 5, 10, 15, 30 2, 3, 4, 5 ,6 

 

The first two models favored less random trees but less dense forests, while the RFminimal model 

was most effective with a denser but more random forest. This could potentially be explained by the 

number and importance of the variables fed to each model, as shown in Figure 2. With a higher number 

of more important input variables, the average tree in the former models is more robust as a predictor 

than their RFminimal counterparts [19]; thus, fewer trees are needed to get an accurate prediction, and 

a median degree of randomness is required as to not compromise that robustness while allowing for 

variability [20,21]. Inversely, a more randomized forest with higher density makes sense if each single 

decision tree is relatively weaker. This interpretation is supported by comparing the importance of 

each feature for its respective model, as average relative humidity was identified as the second most 

important feature in both models, where it is used as a predictor. 

Additionally, all of the models were most effective when choosing a number of trees in the 

middle-lower part of the range of available options (200 to 1000 trees). This is an extension of the 

previous observation, suggesting that given a high number of trees with medium or low randomness, 

the model overfits the training dataset without adding substantially to the accuracy [22], while highly 

random trees are either too inefficient as learners or require a forest density beyond the range allowed 

in our training to reach comparable accuracy levels [23]. 
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Figure 2. Mean Decrease in Impurity graphs for the visualization of the importance of 

each feature in each respective Random Forest model iteration. 

2.4. Recurrent neural networks 

Artificial Neural Networks are computational models that simulate the workings of the human 

brain to make decisions [16] and are often portrayed as one of the most accurate machine learning 

methods available [24]. There are various ANN architectures that specialize in different applications, 

specifically for regression problems dealing in temporal sequences, and Recurrent Neural Networks 

(RNNs) appear to be the most fitting choice [25]. This RNN used a Long Short Term Memory 

(LSTM) layer as the recipient of the input, followed by a dropout layer and a number of hidden 

layers, comprised of one dense layer followed by a dropout layer each. To avoid features with more 

massive numerical values having an inordinate effect on the learning process, Z-score normalization 
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is performed on each feature of the data [26] before it is fed into the LSTM layer using the following 

equation: 

 
𝑍𝑖 =

𝑋𝑖 − �̅�

𝑆
 (8) 

where 𝑍𝑖 is the normalized value of the i-th observation, 𝑋𝑖 is the original value of the i-th observation, 

�̅� is the mean value of all observations, and 𝑆 is the standard deviation of all observations. 

Three RNN iterations were developed using RStudio, dubbed “ANNcomplete”, “ANNhalf”, and 

“ANNminimal”, categorized with respect to the features used in accordance with their respective RF 

counterparts, as explained in the previous section. Similarly, different models with different 

combinations of hyperparameters were trained for each respective iteration using grid search, selecting 

the best-performing combination in terms of R2 on the independent validation dataset. These 

hyperparameters were the number of neurons for each layer, the number of hidden layers, the dropout 

rate, and the number of epochs as, shown in Table 4. 

Table 4. Final Recurrent Neural Network model hyperparameters. 

Model Number of Layers and Neurons of Each Layer Dropout Rate Epochs 

ANNcomplete LSTM: 64 

2 Hidden: 32 and 64 

0.5 200 

ANNhalf LSTM: 32 

2 Hidden: 32 and 64 

0.2 200 

ANNminimal LSTM: 64 

2 Hidden: 16 and 32 

0.2 200 

Available options LSTM: 32, 64, 128 

2 or 3 Hidden: (32, 64), (16, 32),  

(64, 128), (16, 32, 64) 

0.2, 0.5, 0.8 200, 350, 500 

Foregoing the inclusion of time steps in the hyperparametrization process appears like an odd 

choice for the training of RNNs. However, to allow for maximum flexibility in the application of the 

model to temporal datasets of wildly different lengths, the time step hyperparameter was set to 1 [27], 

as the LSTM layer should be capable of capturing long-term temporal dependencies on its own [28]. 

Additionally, it is important to mention that the layer architecture for each RNN model is identical, as 

shown in Figure 3. 

The final hyperparameters seem to suggest a relatively simple relationship between the selected 

features and solar radiation, as all models performed best on the lowest available number of epochs 

and hidden layers. Furthermore, the “ANNcomplete” model favored a higher dropout rate than its 

counterparts using a smaller number of predictor features, possibly because the additional features, 

which were explained to be less significant in the preceding section, led to misestimating connection 

weights, and thus a higher deactivation rate allows for consistent use of the more robust nodal 

connections [29]. However, it could also be explained by the comparatively lower number of total 

neurons in the other two models, though marginally, as it could afford to deactivate more neurons [30]. 
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Figure 3. Recurrent Neural Network models architecture. 

Speaking of neurons, no model achieved better accuracy with the highest possible number of 

neurons, which would suggest that noise within the dataset is quite prevalent [30]. Furthermore, as 

expected, the model with the lowest number of predictor variables also has the lowest available number 

of neurons for its hidden layers, though the highest number was picked for the LSTM layer. The 

“ANNhalf” model has a lower number of neurons in the LSTM layer, and given that relative humidity 

is a major predictor in this model but missing in the “ANNmin” model, it would be fair to assume that 

the relationship between relative humidity and average daily solar radiation isn’t particularly 

dependent on long-term interactions [28].  

2.5. Metrics for comparison 

Different metrics were used to judge the performance of the final models from different 

perspectives [4], as, for example, RMSE penalizes errors of greater magnitude more severely than 

Mean Absolute Error (MAE), which could be misleading [31] but could also potentially reveal model 

differences more clearly [32]. In addition to R2 and RMSE, which were discussed above and 

calculated using Eq.7 and Eq.6, respectively, additional metrics were used to compare the results. 

These are as follows:  
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Relative Root Mean Square (rRMSE) which was calculated as [4,33]: 

 

𝑟𝑅𝑀𝑆𝐸 = 100 
√

∑ (𝑦𝑖 − 𝑦𝑝𝑖)2𝑛
𝑖=1

𝑛
�̅�

 
(9) 

Mean Absolute Error (MAE) which was calculated as [32]: 

 
𝑀𝐴𝐸 =  

∑ |𝑦𝑖 − 𝑦𝑝𝑖|
𝑛
𝑖=1

𝑛
 (10) 

Mean Bias Error (MBE) which was calculated as [31]: 

 
𝑀𝐵𝐸 =  

∑ (𝑦𝑖 − 𝑦𝑝𝑖)
𝑛
𝑖=1

�̅�
 (11) 

where 𝑦𝑖 is the observed value of the i-th time step, 𝑦𝑝𝑖 is the predicted value of the i-th timestep, 𝑛 is 

the number of time steps, and �̅� is the average of all observed values. 

For RMSE, rRMSE and MAE, values closer to 0 denote a better performance, for R2 this is 

reversed with values closer to 1 denoting higher accuracy. MBE values are indicative of positive or 

negative bias, with values closer to 0 denoting a more equal distribution of overestimations and 

underestimations and not necessarily higher model accuracy. 

3. Results and Discussion 

On the totality of the validation dataset, the ANNcomplete model (RMSE = 41.25, R2 = 0.810) 

showed the best results in all metrics, followed by the ANNhalf model (RMSE = 43.52, R2 = 0.789). 

The ANNminimal model (RMSE = 48.20, R2 = 0.740) had a marginally worse performance than the 

RFcomplete model (RMSE = 47.39, R2 = 0.746) and performed almost equally to the RFhalf model 

(RMSE = 47.93, R2 = 0.740). The non-calibrated equation using Tdew [14] (RMSE = 48.75, R2 = 

0.736performed similarly to the aforementioned, scoring marginally worse in all metrics except for 

MAE, where it had a slight edge. The next cluster of comparable performers (in order of descending 

accuracy) was comprised of the calibrated by location Tdew equation (RMSE = 50.85, R2 = 0.713), the 

calibrated by location Tmin equation (RMSE = 51.10, R2 = 0.710), and the RFminimal model (RMSE = 

51.71, R2 = 0.697). Finally, the worst performers were the non-calibrated Tmin equation (RMSE = 53.18, 

R2 = 0.686), and the Tdew (RMSE = 53.00, R2 = 0.687) and Tmin (RMSE = 54.12, R2 = 0.674) equations 

calibrated on the totality of locations. All the corresponding results are presented in Table 5. 

As for bias, all three ANN models were geared towards minor underestimation, with the 

ANNcomplete iteration having an almost equal distribution of over and underestimations. The Random 

Forest models, on the other hand, consistently underestimated average solar radiation, with all but the 

RFminimal model holding the lowest negative MBE scores (Table 5). The calibrated variations of the 

equations using Tmin were almost equally as prone to underestimation as the RFcomplete and RFhalf 

models, with the respective Tdew equations also gearing towards underestimation but of a smaller 

magnitude. Finally, both non-calibrated equations were the only methods to have positive MBE scores, 

though the magnitude of overestimation was on par with the middle-higher part of the spectrum of 

underestimation values. 
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Table 5. Comparison of metrics for all models on the totality of the validation dataset. The 

scores were obtained from the combination of all 4,499 time steps of the validation dataset. 

 RMSE R2 rRMSE MAE MBE 

Local Equation 

Tmin 

51.10 0.710 28.58% 40.67 −15.17 

Local Equation 

Tdew 

50.85 0.713 28.45% 41.37 −22.06 

Total Equation 

Tmin 
54.12 0.674 30.30% 42.02 −14.62 

Total Equation 

Tdew 
53.00 0.687 29.67% 42.14 −22.28 

Non-calibrated 

Equation Tmin 
53.18 0.686 29.75% 40.44 15.89 

Non-calibrated 

EquationTdew 
48.75 0.736 27.26% 36.51 14.94 

RFcomplete 47.39 0.746 26.42% 37.96 −22.64 

RFhalf 47.86 0.740 26.73% 38.39 −22.88 

RFminimal 51.71 0.697 28.84% 41.30 −17.84 

ANNcomplete 41.25 0.810 22.84% 31.05 −1.19 

ANNhalf 43.52 0.789 24.10% 33.55 −6.28 

ANNminimal 47.86 0.740 26.73% 37.03 −7.04 

Legend Best Performance Worst Performance 

Legend 

High 

Negative 

Bias          

High 

Positive 

Bias 

 



951 

 

AIMS Geosciences                                                                Volume 10, Issue 4, 939–964. 

 

Figure 4. Observed vs estimated values. Scatter plots for the Machine Learning models 

on the totality of the validation dataset. The red line represents a perfect prediction, where 

at every point on the line, Estimated y equals Observed x, and the green line is the scatter 

trendline. 
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Figure 5. Observed vs estimated values scatter plots for the iterations of Eq.3 and Eq.4 

for the totality of the validation dataset. The red line represents a perfect prediction, 

where at every point on the line, Estimated y equals Observed x, and the green line is the 

scatter trendline. 
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Taking a deeper look at the results (Table 5), it is apparent that the RNN models consistently 

outperformed the RF models using the same or even more predictor variables, with the expected 

“weakest” RNN model having an almost equal performance to the middle RF model in all metrics but 

MAE where the RNN performed better, which could be explained by the inherent limitations of RF 

algorithms versus RNNs in handling regression tasks. Due to the inner workings of RF models, 

predictions tend to form clusters in a stepwise fashion [34], essentially creating biases against 

predicting values between these clusters, which could contribute to a significant loss of accuracy on 

the total dataset. This behavior is evident in Figure 4, where, in the respective plots, areas of lower 

point density can be observed between areas of higher point density more frequently than in their RNN 

counterparts. For comparison, the respective scatterplots for the equation methods (Figure 5) show 

continuous scatter clouds with no evident stepwise clustering. 

Furthermore, as Random Forest relies on averaging the predictions of multiple decision trees, the 

final predictions tend to be stabilized closer to the expected values reducing variability [19], which on 

one hand reduces the risk of overfitting, but on the other, it creates a relative weakness in predicting 

extreme or rare values [35]. Figure 4 again seems to support this idea, as the plots for the RF models’ 

scatters seem to present a steeper incline with the perfect prediction line towards the higher end of 

values compared to their RNN counterparts. That is not to say that RNNs are not subject to the 

aforementioned observations, as both a degree of stepwise changes of prediction and a drop off of 

accuracy at the extremes are visible. In fact, the latter is much more pronounced on the lower end of 

values on RNNs compared to the RFs, with a handful of predictions even being negative values, which 

is a potential sign that some of the weights leading to the reduction of the value of the final prediction 

were overestimated leading to unrealistic results. Given that the number of negative values was 

negligible compared to the total sample size, this does not appear to be a cause for major concern, 

especially since they seem to be restricted to dates and locations that measured surprisingly low daily 

average solar radiation values. However, this should be further studied in future research. 

However, the discrepancy in accuracy could be explained better, not by the RF’s shortcomings, 

as they seem to be shared between the two techniques to some degree, but by the RNNs’ ability to 

recognize long-term dependencies, which, given that the structure of the input data is that of continuous 

temporal sequences, gives them a distinct advantage. Though temporal sequentiality is implicitly taken 

into account by both ML techniques through extraterrestrial solar radiation, only the RNNs have an 

explicit perception of it [22,24], and thus they can capture complex temporal dependencies that the RF 

models cannot.  

As for the equation methods, the Tdew iterations fared better than their Tmin counterparts in every 

iteration and almost every metric, indicating that Valiantzas’s [14] method is a better alternative to the 

Hargreaves and Samani [7] method. The iterations where kRs was calibrated on the totality of the 

dataset performed significantly worse than the other two use cases, and the non-calibrated iteration of 

the Tdew equation was the top performer among the equation methods, even against its locally calibrated 

counterpart. This could be explained by the fact that by performing the same calibration procedures on 

the validation dataset, the discovered “optimal” kRs values for the Tdew iterations in this specific 

timeframe were generally numerically closer to the commonly accepted 0.17 than the values derived 

from calibrating kRs on the training dataset (Table 6). The locally calibrated Tmin equation, however, 

was the top performer among the Tmin iterations, suggesting that calibration based on location-specific 

historical data can be a viable approach, though its accuracy seems to involve a degree of randomness.  
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Table 6. Calibrated kRs values for all stations. 

Station Local kRs Eq.4 Total kRs Eq. 4 Local kRs Eq.5 Total kRs Eq. 5 

AUA 01 0.155 

0.143 

0.154 

0.137 

AUA 02 0.152 0.148 

AUA 03 0.150 0.138 

AUA 04 0.135 0.129 

AUA 05 0.127 0.135 

AUA 06 0.130 0.135 

AUA 07 0.133 0.121 

AUA 08 0.170 0.145 

AUA 09 0.120 0.120 

AUA 10 0.168 0.151 

Table 7. Root Mean Square Error values (in Wm-2) for each station and total. 

 AUA

01 

AUA

02 

AUA

03 

AUA

04 

AUA

05 

AUA

06 

AUA

07 

AUA

08 

AUA

09 

AUA

10 
Total 

Local Equation 

Tmin 

54.27 46.29 48.50 43.83 44.62 45.20 39.50 47.37 76.26 65.39 51.10 

Local Equation 

Tdew 

54.68 43.92 48.11 44.87 45.98 46.12 38.81 47.33 76.92 60.73 50.85 

Total Equation 

Tmin 
58.67 49.30 51.07 40.51 43.41 41.94 36.65 61.36 50.68 90.56 54.12 

Total Equation 

Tdew 
61.33 49.74 48.63 40.25 44.96 44.96 32.83 53.17 54.63 84.38 53.00 

Non-calibrated 

Equation Tmin 
54.11 47.97 48.33 47.00 63.86 55.95 46.65 47.37 50.65 64.20 53.18 

Non-calibrated 

Equation Tdew 
55.45 43.91 47.10 47.27 49.65 46.07 52.96 47.48 44.89 49.65 48.75 

RFcomplete 56.65 45.40 43.97 38.98 43.15 40.91 31.33 47.42 50.86 65.41 47.39 

RFhalf 57.40 46.07 44.64 38.60 43.78 41.66 31.69 48.53 51.08 66.08 47.93 

RFminimal 60.65 49.63 48.82 42.19 49.01 46.33 35.78 51.74 51.33 72.21 51.71 

ANNcomplete 46.69 33.98 36.59 32.99 35.90 33.18 36.83 39.86 53.67 51.95 41.25 

ANNhalf 49.50 37.23 37.87 34.97 38.26 35.90 35.28 43.90 53.31 57.75 43.52 

ANNminimal 52.62 43.76 45.71 36.40 41.71 38.28 37.67 44.58 68.41 58.50 48.20 

Legend Best Performance Worst Performance 
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A closer look at the models’ performance for each station (Table 7) provides some interesting 

insights. The ANNcomplete model was the top performer for 7 out of 10 locations, in addition to 

being the best performer on the total dataset and the second best performer on AUA10. However, 

for the two remaining stations it ranked on the lower half of performers with significantly lower 

scores than the top performers; the ANNhalf model performed slightly better. This could potentially 

arise from the relationships between the selected variables in the majority of stations being roughly 

equivalent but significantly different than those same relationships in the remaining stations, creating 

bias [36]. Thus, an interesting venue for the future would be the comparison of equivalent ML 

models with the integration of explicit spatial awareness features and ML models trained exclusively 

in and for each location.  

The three stations where the ANNcomplete model didn’t rank at the top were AUA07, AUA09, and 

AUA10. The former was dominated by the RFcomplete model, closely followed by the RFhalf model, 

and with RFminimal also ranking within the top half of performers.  As for the latter two locations, the 

non-calibrated Tdew equations achieved the highest accuracy in AUA09, specifically by a significant 

margin. As mentioned before, in AUA10, the ANNcomplete model ranked second, but it is important to 

mention that ANNhalf and ANNminimal ranked third and fourth best in terms of accuracy. 

Invariably, the worst performer spot in every location was held by some iteration of the equation 

methods. Somewhat unsurprisingly, the totally calibrated Tmin equation ranked as the worst performer 

in three locations, and its Tdew counterpart in two locations. The locally calibrated Tdew equation was 

the worst performer in AUA09, closely following its Tmin counterpart, both having a significant 

difference from the third worst rank held by ANNminimal. Last, despite the non-calibrated Tdew 

equation being the top performer in two locations, it ranked as the worst performer in the other two 

stations, mirroring its Tmin counterpart. The aforementioned observations seem to imply that 

simultaneous calibration for multiple locations within an area as large and as geomorphologically 

diverse as Nemea is ill-advised. Furthermore, it seems to vindicate Samani’s recommendation of 

calibrating kRs based on monthly temperature ranges for each specific location [17] as opposed to 

calibrations based on historical site-specific data. 

Regarding site-specific bias (Table 8), there seems to be a stable scale between the sites for the 

relative MBE values for each method. Methods that consistently overestimate will have comparatively 

higher values to other methods even if their scores are negative for that specific location, and vice 

versa. Expectedly, this does not hold true for the locally calibrated equations, as they were 

independently calibrated for each station, as opposed to the other methods that were invariably 

optimized for the totality of locations. This sliding scale of bias further supports the idea of 

incorporating explicit spatial awareness for potential follow-up ML models. Additional information 

on all statistical measures is provided in the Appendix Table A1 to A3. 
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Table 8. Mean Bias Error values (in Wm-2) for each station and total. 

 AUA01 AUA02 AUA03 AUA04 AUA05 AUA06 AUA07 AUA08 AUA09 AUA10 Total 

Local Equation Tmin −13.23 −7.52 −13.11 −13.87 −10.80 −11.82 −9.60 −5.06 −39.94 −26.76 −15.17 

Local Equation Tdew −14.17 −14.42 −22.77 −21.35 −17.58 −18.98 −16.20 −17.76 −47.27 −30.54 −22.06 

Total Equation Tmin −26.63 −17.60 −20.47 −4.58 10.31 4.37 1.31 −31.85 −12.42 −52.97 0.19 

Total Equation Tdew −33.17 −26.56 −23.84 −12.09 −15.20 −16.69 2.11 −24.42 −27.96 −46.49 −0.95 

Non-calibrated Equation 

Tmin 

3.51 12.64 7.92 26.76 45.94 38.22 30.76 −5.06 19.77 −24.68 15.89 

Non-calibrated Equation 

Tdew 

3.71 9.87 11.57 26.08 24.11 21.37 39.88 11.29 9.32 −9.04 14.94 

RFcomplete −32.22 −27.46 −24.70 −15.02 −18.97 −15.70 4.56 −25.28 −25.70 −48.23 −22.64 

RFhalf −33.01 −27.99 −24.56 −14.17 −18.88 −15.69 4.16 −26.20 −26.02 −48.85 −22.88 

RFminimal −29.47 −21.18 −19.75 −6.13 −5.67 −5.23 4.14 −27.51 −18.52 −52.83 −17.84 

ANNcomplete −11.43 −3.71 3.93 6.80 −5.26 0.07 20.51 −9.93 12.13 −28.00 −1.19 

ANNhalf −16.22 −7.84 0.47 2.15 −9.68 −3.92 17.73 −13.38 −2.33 −32.61 −6.28 

ANNminimal −15.03 −7.27 5.15 2.68 −12.41 −5.57 19.58 −9.78 −18.47 −31.54 −7.04 

Legend Relative 

High Bias 

Score 

         Relative 

Low 

Bias 

Score 
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4. Conclusions 

Our aim of this paper was to examine various methods for the purposes of filling in blank or 

erroneous solar radiation readings in the event of sensor malfunction and in different regimes of 

substitute weather parameters availability. Considering only sheer accuracy with a generalized 

approach, the ANNcomplete model is evidently the best pick, with the equation methods showing, on 

average, worse performance compared to the average performance of the ML models. However, to 

properly select the most appropriate of the examined methods for a given application, they should be 

compared in groups based on required input parameters. The “complete” ML models are only 

comparable to one another since they both use the totality of available routine meteorological data and 

in that regard, the ANNcomplete model is a better option with the exception of one single location. 

The “half” ML models are directly comparable to Eq.5, as they both utilize the same set of predictor 

variables, though in different forms. In most cases, again, the RNNs seem to be the best pick, though 

they lose out against RF in the same location as their “complete” counterparts. In two locations, the 

non-calibrated Tdew performed better than the respective ML methods. Finally, the “minimal” variants 

are comparable to the Tmin equations, as all require the absolute minimum amount of necessary 

predictor variables. In this category, the picture painted is almost identical to the aforementioned 

category, albeit with absolutely lower performance. 

Additionally, the relative difficulty of development and implementation of each method should be 

taken into account. The equation methods are the most readily available to implement, requiring no 

specialized software or hardware to utilize and directly offering results of acceptable accuracy without 

requiring a massive preparation timespan. The ML methods, on the other hand, require specialized 

software, a moderate degree of technical knowledge, and relatively robust machines to both develop and 

implement, making them less accessible. Once developed, however, any given ML model can be 

deployed for any relevant application with ease, requiring roughly equivalent preparation effort and time 

to the empirical methods. Between them, RNNs required the largest amount of development time and 

processing power by a non-negligible margin. In our experience during this application, given the same 

number of input variables, time steps, and tunable hyperparameter combinations, RNN models would 

take about 70–150% longer to train than their equivalent RF models, not to mention that they are also 

considerably less straightforward to implement and significantly harder to interpret [37].  

Given our findings, the selection of the most appropriate method is a multifaceted process with 

no concrete universal answer. Given sufficient resources and granted a focus on sheer accuracy, RNNs 

are the best choice, but they are also the most demanding of the methods examined. Random Forest’s 

performance did not constitute a significant enough improvement to the equations’ to be considered a 

viable option in most cases. The empirical methods proved competitive against the ML models, and 

their deficiencies in accuracy compared to the equivalent ML models can be made up for by their 

relative ease of use. It is also important to mention that the equations examined are spatially 

generalized in their function, while the trained ML models are locally restricted to the study area and 

are expected to underperform in different locations; even within this one study area, their performance 

varied significantly across sites. It is our hope that this study will serve as a useful resource to inform 

interested parties in deciding the most cost-effective methods to solve the problem of invalid solar 

radiation measurements according to their needs and capabilities. 

Researchers could focus on examining the viability of location-specific ML models for the 

express purpose of filling in data gaps in known station locations or the possibility of creating more 

generalized models through the integration of explicit spatial and temporal parameters, which, in 
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addition to being used for the aforementioned purpose, they could find applications in regressing solar 

radiation values for stations that do not normally record them. 
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Appendix 

Additional Metric Tables 

Table A1. R2 for each station and total. 

 AUA0

1 

AUA0

2 

AUA0

3 

AUA0

4 

AUA0

5 

AUA0

6 

AUA0

7 

AUA0

8 

AUA0

9 

AUA1

0 

Total 

Local  

Equation 

Tmin 

0.617 0.735 0.671 0.774 0.755 0.760 0.794 0.766 0.552 0.673 0.710 

Local 

Equation 

Tdew 

0.612 0.761 0.676 0.763 0.740 0.750 0.801 0.766 0.521 0.718 0.713 

Total 

Equation 

Tmin 

0.553 0.700 0.635 0.807 0.768 0.793 0.823 0.618 0.745 0.374 0.674 

Total   

Equation 

Tdew 

0.511 0.694 0.669 0.809 0.751 0.762 0.858 0.713 0.704 0.457 0.687 

Non-

calibrated 

Equation 

Tmin 

0.620 0.716 0.673 0.740 0.498 0.632 0.713 0.766 0.745 0.685 0.686 

Non-

calibrated 

Equation 

Tdew 

0.600 0.762 0.690 0.737 0.697 0.750 0.630 0.765 0.800 0.812 0.736 

RFcomplete 0.583 0.745 0.730 0.821 0.771 0.803 0.871 0.744 0.742 0.618 0.746 

RFhalf 0.572 0.738 0.721 0.825 0.764 0.796 0.868 0.732 0.739 0.610 0.740 

RFminimal 0.522 0.695 0.667 0.791 0.704 0.747 0.831 0.695 0.737 0.534 0.697 

ANNcompl

ete 

0.717 0.857 0.813 0.872 0.841 0.870 0.821 0.819 0.712 0.759 0.810 

ANNhalf 0.682 0.829 0.799 0.856 0.820 0.848 0.836 0.780 0.716 0.702 0.789 

ANNminim

al 

0.640 0.763 0.708 0.844 0.786 0.828 0.813 0.774 0.533 0.694 0.740 

Legend Best Performance Worst Performance 
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Table A2. relative Root Mean Square Error for each station and total. 

 AUA

01 

AUA

02 

AUA

03 

AUA

04 

AUA

05 

AUA

06 

AUA

07 

AUA

08 

AUA

09 

AUA

10 

Total 

Local 

Equation 

Tmin 

29.14

% 

26.04

% 

28.39

% 

25.70

% 

25.01

% 

26.02

% 

25.54

% 

25.44

% 

36.61

% 

32.47

% 

28.58

% 

Local 

Equation 

Tdew 

29.36

% 

24.71

% 

28.16

% 

26.31

% 

25.78

% 

26.55

% 

25.09

% 

25.41

% 

37.84

% 

30.15

% 

28.45

% 

Total 

Equation 

Tmin 

31.50

% 

27.73

% 

29.89

% 

23.75

% 

24.34

% 

24.15

% 

23.69

% 

32.00

% 

27.62

% 

44.84

% 

30.30

% 

Total 

Equation 

Tdew 

32.93

% 

27.98

% 

28.47

% 

23.60

% 

25.21

% 

25.89

% 

21.22

% 

27.73

% 

29.77

% 

41.78

% 

29.67

% 

Non-

calibrated 

Equation 

Tmin 

29.05

% 

26.98

% 

28.29

% 

27.56

% 

35.80

% 

32.21

% 

30.16

% 

25.44

% 

27.62

% 

31.88

% 

29.75

% 

Non-

calibrated 

Equation 

Tdew 

29.77

% 

24.70

% 

27.57

% 

27.71

% 

27.83

% 

26.52

% 

34.23

% 

25.50

% 

24.47

% 

24.65

% 

27.26

% 

RFcomplete 30.41

% 

25.54

% 

25.74

% 

22.85

% 

24.19

% 

23.55

% 

20.25

% 

26.60

% 

27.91

% 

30.66

% 

26.42

% 

RFhalf 30.82

% 

25.92

% 

26.13

% 

22.63

% 

24.54

% 

23.98

% 

20.49

% 

27.23

% 

28.03

% 

30.97

% 

26.73

% 

RFminimal 32.56

% 

27.92

% 

28.58

% 

24.73

% 

27.48

% 

26.67

% 

23.13

% 

29.03

% 

28.17

% 

33.84

% 

28.84

% 

ANNcompl

ete 

25.07

% 

19.12

% 

21.42

% 

19.34

% 

20.13

% 

19.10

% 

23.81

% 

22.36

% 

29.45

% 

24.35

% 

22.84

% 

ANNhalf 26.58

% 

20.94

% 

22.17

% 

20.50

% 

21.45

% 

20.67

% 

22.80

% 

24.63

% 

29.25

% 

27.06

% 

24.10

% 

ANNminim

al 

28.25

% 

24.62

% 

26.76

% 

21.34

% 

23.39

% 

22.04

% 

24.35

% 

25.01

% 

37.54

% 

27.42

% 

26.73

% 

Legend Best Performance Worst Performance 
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Table A3. Mean Absolute Error for each station and total. 

 AUA0

1 

AUA0

2 

AUA0

3 

AUA0

4 

AUA0

5 

AUA0

6 

AUA0

7 

AUA0

8 

AUA0

9 

AUA1

0 

Tota

l 

Local 

Equation 

Tmin 

45.53 37.13 40.34 35.22 36.05 36.04 31.35 38.45 52.42 54.71 40.6

7 

Local 

Equation 

Tdew 

45.15 36.54 40.19 37.00 37.99 38.48 31.61 39.59 56.05 51.61 41.3

7 

Total 

Equation 

Tmin 

50.02 40.08 42.74 31.89 32.03 31.56 28.43 52.10 37.90 76.49 42.0

2 

Total 

 Equation 

Tdew 

51.66 41.45 40.66 32.59 37.01 37.38 25.17 45.04 42.63 69.45 42.1

4 

Non-

calibrated 

Equation 

Tmin 

43.46 35.97 37.83 34.02 48.80 41.93 35.24 38.45 35.39 53.58 40.4

4 

Non-

calibrated 

Equation 

Tdew 

44.09 33.47 36.74 33.60 35.88 32.17 41.16 36.23 31.08 40.68 36.5

1 

RFcomplete 46.95 38.10 36.51 31.53 35.87 33.35 23.02 41.37 39.28 55.38 37.9

6 

RFhalf 47.68 38.59 37.16 31.02 36.34 33.87 23.26 42.26 39.65 55.84 38.3

9 

RFminimal 51.17 40.72 40.24 33.99 39.25 36.80 26.15 45.63 39.76 61.30 41.3

0 

ANNcompl

ete 

37.59 27.26 29.24 24.62 26.40 24.38 27.41 33.56 39.14 42.06 31.0

5 

ANNhalf 40.68 30.48 30.90 27.18 29.75 27.33 26.50 37.79 39.17 47.24 33.5

5 

ANNminim

al 

44.22 35.22 36.62 28.00 33.16 29.27 27.57 38.89 50.13 48.33 37.0

3 

Legend Best Performance Worst Performance 
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