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Abstract: The need for accurate solar energy forecasting is paramount as the global push towards
renewable energy intensifies. We aimed to provide a comprehensive analysis of the latest
advancements in solar energy forecasting, focusing on Machine Learning (ML) and Deep Learning
(DL) techniques. The novelty of this review lies in its detailed examination of ML and DL models,
highlighting their ability to handle complex and nonlinear patterns in Solar Irradiance (SI) data. We
systematically explored the evolution from traditional empirical, including machine learning (ML),
and physical approaches to these advanced models, and delved into their real-world applications,
discussing economic and policy implications. Additionally, we covered a variety of forecasting models,
including empirical, image-based, statistical, ML, DL, foundation, and hybrid models. Our analysis
revealed that ML and DL models significantly enhance forecasting accuracy, operational efficiency,
and grid reliability, contributing to economic benefits and supporting sustainable energy policies. By
addressing challenges related to data quality and model interpretability, this review underscores the
importance of continuous innovation in solar forecasting techniques to fully realize their potential. The
findings suggest that integrating these advanced models with traditional approaches offers the most
promising path forward for improving solar energy forecasting.
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1. Introduction

In recent years, the urgency of combating global warming has driven countries worldwide to
prioritize the development of renewable energy sources. Among these, photovoltaic (PV) energy has
gained significant attention due to its environmental benefits, inexhaustible nature, and cost-
effectiveness [1]. As a result, PV energy is expanding rapidly and is expected to play a central role in
future energy systems. However, the variable nature of PV power generation, caused by factors such
as weather conditions, cloud cover, and diurnal cycles, and the associated forecasting uncertainties
present challenges for maintaining the stability of power systems. Accurate forecasting of PV output
is essential to ensure power system security and operational efficiency [2].

Despite significant advancements, traditional empirical and physical models often struggle with
capturing the complex, nonlinear patterns inherent in solar irradiance (SI) data. These methods can be
limited by data quality, model interpretability, and the need for extensive computational resources.
Furthermore, the integration of cloud cover data, a major source of solar variability, is a significant gap
in improving forecasting accuracy. There is a pressing need for models that can handle these complexities
and provide reliable forecasts across different geographical regions and varying weather conditions.

Recent advancements in predictive modeling have shown significant improvements in various
fields. Efficient parameter flexible fire prediction algorithms based on machine learning and reduced
order modeling techniques, deep-learning-based digital twins, and novel data-model integration
schemes have significantly enhanced wildfire forecasting accuracy [3—5]. These innovations highlight
the transformative potential of machine learning and deep learning techniques in addressing complex
and nonlinear patterns in data.

Energy storage systems, while capable of storing excess energy, are often prohibitively expensive
for widespread use. Therefore, precise PV power forecasting is critical for optimizing industry
applications and grid management. Forecasting methods can be broadly categorized into physical,
statistical, and ML-based approaches. Physical methods rely on atmospheric parameters like
temperature, pressure, and wind, utilizing Numerical Weather Prediction (NWP) models to generate
forecasts. While ML methods have demonstrated significant improvements in forecasting accuracy,
they remain limited when cloud cover observations, a major source of solar variability, are not included
in the models. This limitation highlights the importance of integrating cloud cover data to enhance the
performance of ML-based forecasting models [6]. Data preprocessing and post-processing are essential
in these methods to extract relevant features and filter out noise, thereby enhancing forecasting
performance. Techniques such as classification, regression, clustering, and dimension reduction are
commonly employed in the preprocessing stage [7].

The evolution of PV power forecasting has seen significant advancements transitioning from
traditional empirical models to advanced empirical models, including ML and DL models. Empirical
models, which include methods based on historical time series and statistical relationships, laid the
foundation for early forecasting techniques. These models typically used simple linear regressions and
Autoregressive Integrated Moving Average (ARIMA) methods to predict SI based on past data. While
effective for basic forecasting tasks, empirical models often struggled with capturing the complex,
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nonlinear patterns inherent in solar energy data [8,9].

The advent of ML models marked a significant shift in PV power forecasting. ML techniques,
such as Artificial Neural Networks (ANN) [10], Support Vector Machines (SVM), Decision Trees, and
Random Forests (RF), utilize historical data to learn patterns and make predictions [11]. These models
offer improved accuracy over empirical methods by better handling the nonlinearities and interactions
within the data. SVMs, for instance, are particularly effective in identifying the optimal hyperplane
that separates different classes in the data, enhancing prediction accuracy [12].

DL models represent the latest advancement in PV power forecasting. These models, including
Deep ANNSs, Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN), such as
Long Short-term Memory (LSTM) networks, have revolutionized the field by leveraging their ability
to learn from large datasets and capture complex patterns. ANNs, inspired by the human brain's neural
architecture, consist of interconnected neurons that process data through multiple layers, enabling the
extraction of high-level features from raw input [7]. CNNs are particularly adept at processing grid-
like data, such as images or spatial data, making them suitable for applications that require detailed
spatial analysis. RNNs, and LSTMs in particular, excel in modeling temporal dependencies, making
them ideal for time-series forecasting tasks like predicting SI over time [13].

These DL models have demonstrated superior performance in PV power forecasting due to their
ability to automatically learn relevant features from data, reducing the need for extensive manual
feature engineering [14]. Furthermore, the adaptability and scalability of DL models allow them to
handle large and complex datasets, providing more accurate and reliable forecasts [15].

As the field of solar forecasting evolves, integrating DL models with traditional forecasting
approaches has become increasingly prominent. The adaptability of ML and DL models, combined
with their ability to update predictions based on new data inputs, offers a significant advantage over
traditional methods. This integration has led to improved forecasting accuracy, better handling of
uncertainties, and more efficient grid management [16].

In this review, we aim to provide a comprehensive analysis of the latest advancements in solar
energy forecasting, with a particular focus on ML and DL techniques. We systematically explore how
these models have evolved from traditional empirical and physical approaches, demonstrating their
ability to handle complex and nonlinear patterns in SI data. The novelty of this review lies in its in-
depth examination of ML and DL models, highlighting their transformative impact on forecasting
accuracy and reliability. Additionally, we highlight real-world applications and discuss the economic
and policy implications of enhanced forecasting accuracy, emphasizing the critical role of precise solar
energy predictions in optimizing energy production, reducing operational costs, and promoting
sustainable energy practices.

The review is structured (as depicted in Figure 1) as follows: In Section 2, we distinguish ML-
based solar forecasts from traditional weather models, highlighting the methodological differences and
advancements. In Section 3, we focus on the real-world applications of advanced solar forecasting,
emphasizing their economic benefits and policy implications. In Section 4, we provide a
comprehensive overview of various models in solar energy forecasting, including empirical models,
image-based models, statistical models, ML models, DL models, foundation models, and hybrid
models. In Section 5, we present a detailed discussion and analysis of the findings, addressing the
challenges and limitations of current forecasting techniques, particularly concerning data quality and
model interpretability.

AIMS Geosciences Volume 10, Issue 4, 684-734.



687

Distinguishing ML Solar Real-World | Models in Solar |

|
Forecasts from Applications of | Energy Forecastin
s y
Traditional Weather Advanced Solar |
Models Forecasting < »
| * Methodology and Economic Implications of |zl
. S N ) | . .
Computational Focus " Enhanced F or[:: G i 1 * Image-Based Models B Dlscussmn‘ and
* Adaptability and Efficiency Accuracy 15 Statlst.lcal Modéls | Analysis
* Accuracy and Uncertainty * Reduction in Operational o i ezt Wlsdlss
Modeling Costs and Increased Grid * Deep Le-arnmg Models
| » Challenges and Limitations Reliability * Foundation Models
* Integration of ML in * Real-World Implementation (Tran'sformcrs)
Traditional Forecasting of Solar Forecasting J ‘ * Hybrid Models )
- 1 ’V’/(./ = e ' /

Figure 1. The framework of this review.

2.  From physics to patterns: Distinguishing ML solar forecasts from traditional weather
models

Integrating ML into solar forecasting significantly diverges from traditional weather forecasting
methodologies due to their foundational principles, computational strategies, and applications. While
traditional weather models rely on physical laws to predict weather conditions, ML-based solar
forecasting models use historical data to learn and predict future SI or power generation. This section
delves into a detailed comparison, emphasizing the methodologies, adaptability, accuracy, and
challenges of both approaches, augmented with relevant research references.

2.1. Methodology and computational focus

Traditional weather forecasting models are grounded in the NWP approach, which solves the
fundamental equations of atmospheric dynamics and thermodynamics (e.g., Navier-Stokes equations
for fluid motion, thermodynamic energy equation, mass continuity equation) on a three-dimensional
grid over time [14]. These models require substantial computational resources and sophisticated
algorithms to approximate solutions for these equations, making them computationally intensive and
time-consuming.

Conversely, ML-based solar forecasting models, including ANN, RF, Gradient Boosting (GB),
and Transformers, leverage statistical learning approaches to identify patterns within historical data.
These models predict solar output or irradiance by understanding the relationship between input
features (e.g., temperature, humidity, time of day) and solar energy production without explicitly
simulating atmospheric physics [15].

2.2. Adaptability and efficiency

ML models are notably adaptable and capable of updating their predictions based on new data
inputs. Domain adaptive learning models, for instance, dynamically adjust to new weather conditions,
significantly improving prediction reliability without the need for constant retraining [16]. This
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adaptability is juxtaposed with the static nature of NWP models, which require manual updates to
incorporate new data or changing atmospheric conditions.

2.3. Accuracy and uncertainty modeling

The accuracy of ML models in solar forecasting is often higher for specific applications, such
as solar power generation prediction. Techniques like diffusion models, which generate probabilistic
forecasts, offer insights into prediction uncertainty, a critical aspect for grid integration of solar
power [17]. However, traditional NWP models, despite their computational demand, provide
comprehensive atmospheric forecasts that are essential for broad meteorological applications.

2.4. Challenges and limitations

ML models are highly dependent on the availability and quality of training data, which can limit
their accuracy and applicability in regions with insufficient historical data. Additionally, these models
may overfit to specific patterns within the training dataset, potentially reducing their generalizability
to new conditions. Another notable challenge is the interpretability of ML models, which can obscure
the physical reasoning behind their predictions.

2.5. Integration of ML in traditional forecasting

A promising approach to leveraging the strengths of both methodologies is the integration of ML
models with traditional NWP outputs. For instance, ML models can be used to correct biases in SI
estimates from NWP models or to enhance the spatial resolution of forecasts. This hybrid approach
combines the physical rigor of NWP models with the computational efficiency and adaptability of ML
techniques [18].

Machine learning (ML) models excel in adaptability due to their capacity to update predictions
based on new data inputs, dynamically adjusting to varying conditions without the need for constant
retraining. This characteristic is juxtaposed with the static nature of numerical weather prediction
(NWP) models, which require manual updates to incorporate new data or changing atmospheric
conditions. However, it is important to note that while ML models are highly adaptable, overfitting can
potentially reduce their generalizability to new conditions. This happens when models learn the
training data too well, capturing noise that does not generalize well to unseen data. Therefore, it is
crucial to employ techniques such as cross-validation and regularization to enhance the generalizability
of ML models across geographical regions and varying conditions.

3. Real-world applications of advanced solar forecasting

Exploring the real-world applications of advanced solar forecasting, this part delves into the
economic benefits of enhanced forecasting accuracy, the policy implications of accurate solar forecasts,
and the integration of artificial intelligence in forecasting systems. It highlights how precise solar
energy predictions can improve economic efficiency, influence energy policies, and leverage
technological advancements in the sector. The development and utilization of hybrid models in solar
forecasting have demonstrated significant improvements in the accuracy and reliability of solar energy
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predictions, which are crucial for the efficient management and utilization of solar resources. Enhanced
prediction models, like the hybrid adaptive neuro-fuzzy inference systems, have shown a strong
correlation between improved prediction accuracy and the efficiency of solar energy systems, allowing
for better system design and optimization of energy output [17]. Similarly, accurate forecasts are
essential for large-scale solar installations, such as data centers powered by solar energy, where they
contribute to reducing operational costs and enhancing system reliability [18]. Technological
advancements in forecasting models, particularly those incorporating ML techniques, have
significantly improved the trade-off between accuracy and complexity, aiding in precise energy yield
forecasts critical for energy-efficient building operations [19]. Furthermore, the economic and
operational efficiency improvements noted from more accurate solar radiation prediction models
underscore their value in enhancing the operational efficiency of solar PV systems and their integration
into the power grid [20].

3.1. Economic implications of enhanced forecasting accuracy
3.1.1. Economic implications

Advanced solar forecasting significantly impacts the economic aspects of solar energy by
enhancing the predictability of solar output, which is crucial for both energy producers and consumers.
Improved forecasting accuracy reduces the operational and capital costs associated with solar energy
production. For instance, better forecasting can decrease the reliance on expensive peak-time energy
reserves and reduce the charges related to imbalance penalties from unforeseen production variances.
Economically, this translates into lower kWh costs, making solar energy more competitive against
traditional energy sources.

Martinez-Anido et al. found that improvements in solar power forecasting could significantly
reduce operational electricity generation costs by decreasing fuel and variable operation and
maintenance costs, alongside reducing the start and shutdown costs of fossil-fueled generators by
approximately 10-20% [21]. Furthermore, accurate forecasting has been shown to lower the need for
reserve capacity by 15-30%, leading to substantial cost savings [21].

Statistically, integrating advanced forecasting tools can lead to a reduction in balance costs by up
to 30%, depending on the region and grid requirements. For example, improved solar forecasting in
the California Independent System Operator (CAISO) region has led to annual savings of
approximately $20 million by reducing the need for ancillary services and reserve requirements [22].
Moreover, increased forecasting accuracy enhances the potential for solar to participate in electricity
markets, potentially increasing revenue for solar producers by allowing more precise and competitive
bidding in energy markets.

Kaur et al. quantified the benefits of solar forecasting in energy imbalance markets, showing that
state-of-the-art forecasts can reduce flexibility reserves required and decrease the probability of
imbalances, thus enhancing economic outcomes for solar energy stakeholders. They demonstrated that
accurate solar forecasts could increase market revenues by up to 5% and reduce imbalance penalties
by 10-15% [23].

These quantitative results underscore the significant economic benefits of advanced solar
forecasting, highlighting its critical role in optimizing the financial performance of solar energy
systems and enhancing their competitiveness in the energy market.
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3.1.2.  Policy implications

Accurate solar forecasts are crucial for shaping effective renewable energy policies. They enable
governments to establish incentives for solar adoption, adjust tariffs to reflect solar energy's value, and
create subsidies for expanding solar capacity. These forecasts aid in long-term energy planning and
setting ambitious renewable energy targets. For instance, Shi et al. [24] highlight the importance of
forecasting in planning power systems, noting that accurate forecasts reduce the unpredictability of
solar energy and help maintain grid stability.

Moreover, policymakers use these forecasts to justify and plan the expansion of grid infrastructure,
such as energy storage systems, essential for managing solar power’s intermittency. Improved
forecasting accuracy has led to significant investments in battery storage systems in regions like
California, stabilizing the grid during peak demand. Furthermore, Mohanty et al. discuss how
developing economies like India leverage solar forecasting to integrate solar energy more effectively
into their national grids, thereby supporting economic development and energy security [25].

3.1.3. Global impact and sustainability goals

Enhanced solar forecasting aligns with global sustainability goals by facilitating larger renewable
energy shares in the grid, thus reducing carbon emissions and fossil fuel dependency. Accurate
forecasts improve solar resource utilization, minimizing waste and maximizing energy utilization per
installed capacity. Enhanced accuracy in solar forecasts could help reduce CO; emissions by up to 6%
annually, supporting environmental goals while fostering economic resilience by diversifying energy
sources and mitigating the impacts of volatile fossil fuel markets.

Researchers suggest that improving solar forecasting could significantly impact the efficiency of
integrating solar energy into energy systems. For example, Sweeney et al. discuss the advances in
forecasting that potentially enhance the economic and environmental benefits, underscoring the role
of accurate solar forecasting in enabling the effective integration of renewables into the energy market
and contributing to sustainability efforts [26].

3.2. Reduction in operational costs and increased grid reliability through improved solar forecasting
accuracy

3.2.1. Reduction in operational costs

Improving the accuracy of solar forecasting significantly impacts the operational costs and
efficiency of energy production and grid management. Enhanced forecasting allows utility operators
to better manage the necessary power inputs from renewable sources like solar. This reduces reliance
on costly and less efficient fast-ramping or Peaker power plants, which are typically used to manage
unexpected changes in energy supply and demand [27].

Quantitatively, each percentage point improvement in forecasting accuracy substantially
diminishes the use of these costly backup systems. For example, improving solar forecast accuracy by
10% could potentially reduce the operational costs associated with maintaining and operating these
Peaker plants by approximately 10-20%. This is primarily because less reserve power is needed to
compensate for uncertainties in solar output, leading directly to reductions in fuel usage and
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maintenance costs for these facilities [27].

Furthermore, more accurate forecasting can decrease penalties associated with deviations from
scheduled generation in electricity markets. These penalties occur when the actual power generation
does not match the forecasts submitted to electricity market operators, leading to inefficiencies in grid
management [22]. Enhanced accuracy in solar power forecasts helps minimize these discrepancies and
the associated financial penalties.

3.2.2. Increased grid reliability

Grid reliability, crucial for a consistent and stable energy supply, is significantly enhanced by
accurate solar power forecasts. Solar energy is inherently intermittent, influenced by weather
conditions such as cloud cover, humidity, and temperature. By improving the accuracy of these
forecasts, grid operators can better anticipate fluctuations in solar output and adjust grid operations to
maintain a stable energy supply [22].

Enhanced forecasting facilitates more precise scheduling of energy production from various
sources, optimizing the use of renewable energy and reducing reliance on fossil fuel-based backup
generation. It also supports integrating higher levels of solar power into the grid without compromising
grid reliability or stability. For instance, better solar forecasting can lead to reduced reserve margins,
which are buffers against unexpected changes in power supply, thus enhancing overall grid efficiency
and stability [28].

Furthermore, accurate solar forecasts are vital for managing energy storage systems, which are
key in balancing supply and demand. These systems store excess solar energy generated during peak
sunlight hours and release it during periods of low solar output or high demand. Effective use of these
storage systems, guided by accurate forecasts, can further stabilize the grid and reduce operational
strain on conventional power plants [29].

3.3. Real-world implementation of solar forecasting through advanced Al applications
3.3.1. True mapping paradigm

Advanced numerical modeling methods, including ML and DL, are used to establish a more
accurate mapping between input data, such as SI, and output predictions, like solar energy output.
These “true mapping” techniques aim to capture the complex relationships and dynamics inherent in
the physical processes governing SI, thus enhancing the reliability and accuracy of solar energy
forecasts. DL, in particular, has shown promise in discovering inherent nonlinear features and high-
level invariant structures in data, which are crucial for improving forecasting accuracy [30].

3.3.2. Impact of data uncertainty

The accuracy of predictive models heavily depends on the quality and reliability of the input data.
Uncertainties in the data set, such as measurement errors, incomplete data coverage, and temporal-
spatial variations, significantly affect the performance of models. Addressing these uncertainties is
crucial for improving the fidelity of predictions and making the forecasts more robust and dependable
for practical use. ML models, including LSTM and Facebook Prophet, have been used to quantify and
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mitigate the impact of data uncertainty, showing improvements in forecast accuracy by effectively
managing data uncertainties [31].

3.3.3.  Practical implications

In the real-world application of solar forecasting, improvements in modeling have direct
implications for grid management, economic planning, and policy formulation. Better predictive
models enable more efficient integration of solar energy into power grids, reduce the need for costly
backup power solutions, and support the creation of more informed and effective energy policies.
Enhanced forecasting models, particularly those utilizing DL approaches, have been shown to
significantly reduce the operational and economic challenges associated with integrating renewable
energy sources into the grid [32].

3.3.4. SETO 2020

The Solar Energy Technologies Office Fiscal Year 2020 (SETO 2020) funding program by the
U.S. Department of Energy has significantly emphasized the integration of artificial intelligence (Al)
into solar energy advancements. With a substantial allocation of $130 million distributed among 55—
80 projects, the initiative underscores a serious commitment to enhancing the efficiency, reliability,
and grid integration of solar technologies [33].

e Investment in Al for solar technologies

A specific portion of this funding, about $7.3 million, is dedicated to ten projects focusing on ML
and other Al applications. These projects aim to leverage Al to advance early-stage PV, concentrating
solar-thermal power (CSP), and systems integration technologies. This strategic funding is expected
to spearhead innovations that could transform the operational aspects of solar energy systems.

e Enhancing predictive maintenance and reliability

Among the funded initiatives, one notable project at Arizona State University is pioneering the
development of Al-driven algorithms for predictive maintenance in PV power plants. By employing
real-time data analytics, these algorithms anticipate potential system failures and schedule maintenance
proactively. This capability not only reduces downtime but also extends the lifespan of solar power
installations, thus maintaining optimal financial performance.

e Improving grid situational awareness

Further, the program supports projects aimed at enhancing the accuracy of solar energy output
predictions and grid situational awareness. Improved predictive capabilities are crucial for the efficient
integration of solar power into the national grid, enhancing grid reliability, and reducing operational
costs. These projects explore how Al can manage and synthesize data from diverse sources to provide
accurate, real-time analyses of the grid state.
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e Advancing solar forecasting capabilities

The integration of Al into solar forecasting involves developing sophisticated models that can
accurately predict solar energy output. This forecasting is vital for grid operators, allowing for better
resource planning and energy distribution. It ensures that solar integration does not compromise the
stability of the grid and optimizes the use of renewable resources.

The SETO 2020 initiative illustrates the potential of Al to revolutionize solar energy forecasting
and management. By harnessing the capabilities of Al, these projects aim to address some of the most
pressing challenges in the solar industry, including variability in energy production, grid integration,
and operational efficiency. The ongoing advancement in Al applications within the solar sector not
only enhances the technical operations of solar systems but also supports broader energy policy
objectives aimed at sustainable and reliable energy solutions.

4. Data types, procurement and preprocessing for solar forecasting models
4.1. Data types for solar forecasting in machine learning
4.1.1. Time series data

In solar energy forecasting, historical solar irradiance data forms a fundamental component. This
type of data is often collected in detailed time series formats, such as Excel spreadsheets, which record
solar radiation levels over specific periods and locations. Time series data enables the analysis of trends
and patterns, which is critical for the accurate prediction of solar energy output [34,35].

4.1.2. Image data

Images, especially those captured using infrared technology, are pivotal in solar forecasting.
Infrared images provide thermal data that can predict solar irradiance based on heat patterns. Full-sky
images capture comprehensive atmospheric conditions, offering insights into cloud cover and other
factors influencing solar radiation. These images are crucial for deep learning and hybrid deep learning
models [36,37].

4.2. Data procurement
The data required for ML models can be procured through various sources. Table 1. provides an
overview of various data types and their sources with links. By integrating these diverse data types

from multiple sources, solar forecasting models achieve high accuracy and reliability, ensuring
efficient integration of solar energy into the power grid.

AIMS Geosciences Volume 10, Issue 4, 684-734.



694

Table 1. Database Table for Data Procurement.

Data Type  Source Description References Link
Solar SoDa Service Historical solar radiation data, Freitas et al., [34], https://www.soda-
Irradiance crucial for model training and Gaye et al., [36] pro.com/
validation
National Renewable  Solar resource data and tools, Natei et al., [38] https://data.nrel.gov/
Energy Laboratory including the National Solar Lietal., [39],
(NREL) Radiation Database (NSRDB) Long et al., [40]
European Solar radiation and photovoltaic ~ Freitas et al., [34], https://joint-research-
Commission’s JRC- performance data for Europe, Gaye et al., [36] centre.ec.europa.eu/p
Photovoltaic Africa, and Asia hotovoltaic-
Geographical geographical-
Information System information-system-
(PVGIS) pvgis_en
HelioClim Database  Satellite-derived solar radiation ~ Jayalakshmi et al., https://www.soda-
data [37], pro.com/help/heliocli
Jeblietal., [41] m/helioclim-3-
overview
Copernicus Solar radiation data derived Khandakar et al., https://atmosphere.co
Atmosphere from satellite observations and [42], pernicus.eu/
Monitoring Service atmospheric models Jayalakshmi et al.,
(CAMS) [37]
Geographi  PVGIS Latitude, longitude, altitude, and Jebli et al., [41], Kim  https://joint-research-
cal slope data for specific locations  etal., [43] centre.ec.europa.eu/p
hotovoltaic-
geographical-
information-system-
pvgis_en
Calendar NASA POWER Time zone, hour of the day, Jayalakshmi et al., https://power.larc.nas
month, and day of the year data  [37], a.gov/
capturing seasonal and diurnal Natei et al., [38]
variations
Astronomi  National Renewable Solar elevation angle, hour Lietal., [39], Long et https://data.nrel.gov/
cal Energy Laboratory angle, and solar zenith angle for  al., [40]
(NREL) modeling sun’s position
Satellite- MODIS Provides consistent spatial Khandakar et al., https://modis.gsfc.nas
Based Data coverage, crucial for global [42], a.gov/data/
meteorological monitoring Jayalakshmi et al.,
[37]
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Data Type Source Description References Link
Meteorological ~ World Radiation  Solar radiation data from Natei et al., [38]; http://wrdc.mgo.rssi.r
Data Centre ground-based observation Khandakar et al., [42] u/
(WRDC) stations around the world
Meteonorm Solar and meteorological data Freitas et al., [34]; https://www.pvsyst.c
for various locations, using Jayalakshmi et al., om/help/meteo_sourc
ground-based measurements [37] e_meteonorm.htm
and satellite data
Korea Atmospheric parameters like Natei et al., [38], https://www.kma.go.
Meteorological ~ temperature, humidity, and Gutiérez et al., [44] kr/neng/index.do

Administration sunshine duration
(KMA)

4.2.1. Solar radiation data

Solar irradiance data is typically sourced from the Solar Radiation Data website, renowned for its
extensive and accurate datasets. This platform offers historical solar radiation data, which is essential
for training and validating forecasting models.

4.2.2. Geographical, calendar, and astronomical data

Geographical parameters such as latitude, longitude, altitude, and slope are vital for estimating
solar radiation at specific locations. Calendar parameters, including the time zone, hour of the day,
month, and day of the year, capture seasonal and diurnal variations. Astronomical parameters, such as
the solar elevation angle, hour angle, and solar zenith angle, are calculated based on geographical data
and are crucial for modeling the sun’s position [41.43].

4.2.3. Meteorological Data

Ground-based meteorological observation stations provide high-precision data necessary for solar
irradiance prediction. These stations measure atmospheric parameters like temperature, humidity, and
sunshine duration. For example, the Korea Meteorological Administration's station in Yuseong-gu,
Daejeon, provides valuable data for research studies [38].

4.2.4. Satellite-based data

Moderate Resolution Imaging Spectroradiometer (MODIS) data serves as an alternative to
ground-based measurements, especially in remote areas. While slightly less accurate, satellite data
offers consistent spatial coverage, making it essential for global meteorological monitoring [42,44].

4.3. Data pre-processing techniques in solar forecasting models

In solar forecasting, effectively pre-processing historical data is crucial due to common issues
like outliers, noise, or incomplete data. This input data significantly impacts the forecasting results;
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thus, pre-processing is a vital step to enhance model performance. The major methods of data pre-
processing include:

4.3.1. Data cleaning

This process addresses abnormal data that could lead to deviations in prediction results. The goal
is to fill in gaps or remove unnecessary data from the dataset. If the data has a high rate of missing
information and low importance, it can be omitted. Techniques like the linear internal difference
method or averaging are typically used to manage missing values, as referenced in [45].

4.3.2. Normalization

This method involves scaling the original data to a range of [0, 1] without altering its distribution,
as noted in [46]. The advantage of normalization in data processing is that it removes the limitations
imposed by data units on the model, accelerates convergence, and shortens training time.

4.3.3. Z-Score standardization

This standardization process transforms the data into a normal distribution with an average value
of zero and a standard deviation of one, as detailed in [47]. It is beneficial in improving the convergence
speed and forecasting accuracy. However, if the data distribution is not close to normal, the standard
deviation can cause deviations in standardization. Z-score normalization also helps to reduce the
influence of outliers when the extremes cannot be determined.

4.3.4. Wavelet transform (WT)

WT is a technique used to convert data into time domain and frequency domain features and is
forwarded to the mother wavelet, as described in [48]. This method can identify existing frequencies
with their corresponding occurrence. Although outliers have little effect on forecasting results using
WT, the lack of adaptability is a drawback once the basis function is chosen. Zolfaghari et al. [49]
demonstrated that WT could decompose input data into high-frequency and low-frequency sequences,
improving prediction performance.

4.3.5. Empirical mode decomposition (EMD)

EMD, based on time-domain processing [50], differs from WT as it doesn't require selecting a
mother wavelet and is not replaceable. EMD directly decomposes the original time series into intrinsic
mode functions (IMFs) and a residual, with the IMFs representing frequency components ordered from
high to low frequency. Despite its self-adaptive nature for decomposing non-linear and non-stationary
signals, EMD faces challenges with mixed modes in IMF components. Wang et al. [51] utilized EMD
to decompose wind speeds into IMFs of varying proportions for subsequent prediction modeling.
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4.3.6. Singular spectrum analysis (SSA)

SSA deals with nonlinear time series and is applied in various fields, including climate and
finance [52]. It embeds, decomposes, groups, and reconstructs time series data, identifying long-
term trends, periodic signals, and noise. The process involves arranging time series into a trajectory
matrix, decomposing them using singular value decomposition (SVD), and then reconstructing each
component group into a new time series. Zhang et al. [53] used SSA to extract hidden features of
wind power generation, showcasing its application in renewable energy forecasting.

5. Models in solar energy forecasting

Solar energy, increasingly recognized as a viable alternative to fossil fuels, introduces significant
challenges in its integration into the power grid. The key to a successful power plant operation lies in
balancing energy demand and supply. This balance is crucial, especially in markets where energy
procurement is influenced by competitive bidding. Errors in forecasting can lead to increased costs,
making precision in solar energy forecasting a vital aspect of grid management and economic
efficiency [54,55]. This need for precision directly ties into the expanding role of solar photovoltaics,
where the burgeoning capacity of solar energy necessitates refined forecasting methods to ensure
optimal grid integration and reliability.

The inherently volatile and intermittent nature of solar energy poses a significant challenge to its
market penetration. As a result, there is a pressing need for meticulous forecasting of solar energy
availability, which is paramount for a range of applications from plant operation to energy trading [56].
Unfortunately, due to stringent data privacy policies, historical PV data critical for prediction are often
unavailable. Instead, forecasts frequently rely on global horizontal irradiance (GHI), a key determinant
of solar power generation. Although GHI data is a cornerstone for numerous solar energy operations,
its acquisition is often hindered by the prohibitive costs of measurement equipment, leading to a
scarcity of data, particularly in densely populated regions like China and India [57].

GHI forecasts are tailored to diverse applications, each requiring different forecasting horizons,
ranging from immediate, very short-term predictions for system monitoring to long-term projections
for site selection and plant installation [58]. The field has attracted considerable attention from both
industry and academia, inspiring extensive research and the development of various forecasting models.
These models span several categories, including traditional empirical models that leverage
geographical and meteorological data, image-based models that utilize visual sky data, statistical
models that analyze historical time series, and empirical ML models that employ advanced algorithms
to detect complex patterns [59].

The advent of DL has marked a significant milestone in the forecasting landscape. These
sophisticated models excel in feature extraction and pattern recognition, even from vast and complex
datasets. DL’s ability to autonomously learn from data and its robustness in generalization make it
particularly suited for predicting SI with greater accuracy [60]. As we continue to harness the full
potential of solar energy, DL stands as a beacon of innovation, guiding us toward more reliable and
efficient forecasting methods that can adapt to the evolving dynamics of climate and weather patterns,
ultimately supporting the sustainable advancement of solar energy within the global energy matrix. An
overview of the solar forecasting method is presented in Figure 2, covering major steps like data
collection/preparation, model coding/training/optimization, and model evaluation.
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Figure 2. Major components of Solar forecasting Models.
5.1. Empirical models

Empirical models, utilizing geographical and meteorological data, have been integral in modeling
SI over the past few decades. These models, which range from temperature-based to hybrid
meteorological-based, leveraging multiple weather parameters, have been extensively applied in
estimating GHI [61]. The first empirical model for GHI estimation, based on sunshine duration, was
developed by Angstrom et al. [62] in 1924 and has since been refined by various researchers, including
Samuel et al. [63], Ogelman et al. [64], Badescu et al. [65], and Mecibah et al. [66]. Studies indicate
that sunshine-based models are particularly effective due to the strong correlation between sunshine
duration and data.

However, the availability of sunshine data is not consistent worldwide, leading researchers to
explore temperature-based empirical models as an alternative. These models have seen widespread
application due to the relative ease of obtaining temperature data. Notably, Hargreaves et al. [67] were
among the first to propose a temperature-based model using minimum and maximum temperatures to
estimate GHI. This was followed by an advanced model by Bristow et al. [68], which modeled SI as
an exponential function of diurnal temperature changes. Despite the popularity of temperature-based
models, they often yield less accurate results. To enhance accuracy, hybrid models incorporating
additional meteorological parameters like rainfall, relative humidity, and pressure were developed.
However, the complexity of these models due to the inclusion of multiple parameters sometimes limits
their applicability.

Researchers have reviewed various empirical models and recommended that they are most
suitable for long-term forecasting horizons, such as 6 to 72 hours ahead [69]. However, these models
are not as effective for short-term horizon GHI prediction due to high computational demands and their
inability to accurately capture real-time environmental changes, such as cloud movements. This
limitation is particularly pronounced in environments with high variability and noise, restricting the
preciseness of the GHI predictions [70]. As the solar energy sector continues to evolve, these
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challenges in forecasting highlight the need for ongoing innovation and development in the techniques
used for SI estimation.

5.2. Image-based models

Image-based models, utilizing sky cameras or satellite imagery, represent a significant advancement
in GHI prediction. This method has demonstrated promising results, especially in forecasting solar
irradiance (SI) over large areas. One of the key strengths of this approach lies in its ability to capture
cloud motion, thanks to the high temporal and spatial resolution of the images used. This feature is a
notable improvement over empirical models, as image-based models can directly incorporate cloud
information from the sky image dataset, leading to more accurate GHI forecasts [71].

Despite its effectiveness, the image-based method for GHI prediction faces several challenges.
The availability of image datasets is one such hurdle, often compounded by the high costs associated
with image-capturing instruments. Even if the cost is relatively high, it has been divided by a factor of
approximately 10 over the past 10 years, and this cost needs to be put in perspective with the added
value of more accurate solar forecasts based on sky images. Additionally, the process of image
processing itself can be complex and resource-intensive. These factors contribute to making image-
based techniques less favored in certain contexts of GHI prediction, despite their inherent advantages
in accuracy and detail. A major challenge is the lack of large quantities of sky image data encompassing
diverse sky conditions for model training. However, recent studies have identified 72 open-source sky
image datasets globally that satisfy the needs of deep learning-based method development, including
cloud segmentation, classification, and motion prediction. This extensive survey provides a database
with information about various aspects of these datasets and a multi-criteria ranking system to evaluate
each dataset based on eight dimensions that could impact data usage [72]. The SkylmageNet initiative,
a significant project aimed at enhancing machine learning-based forecasting tools for solar power
integration, supports the creation of a large-scale dataset of sky images for solar energy forecasting,
cloud analysis, and modeling. By utilizing high-resolution sky images, SkylmageNet aims to improve
the accuracy of solar irradiance predictions, aiding in better management and utilization of solar energy
resources [73]. These advancements streamline the processes of identifying and selecting sky image
datasets, potentially accelerating method development and benchmarking in solar forecasting and
related fields, including energy meteorology and atmospheric science. These limitations highlight the
need for further development and optimization in the realm of image-based SI forecasting, ensuring
that the benefits of this advanced approach can be fully realized and more widely adopted [74].

A wide diversity of vision-based solar forecasting techniques based on deep learning have been
developed in recent years. Recent examples and approaches, such as those highlighted by Paletta et al.,
illustrate significant advancements in anticipating cloud-induced solar variability. These methods
employ sophisticated computer vision and deep learning algorithms to analyze sky images and predict
solar irradiance with higher accuracy compared to standard statistical methods that rely solely on
historical meteorological data [75].

Advancements in video analysis techniques have shown significant potential in improving solar
forecasting accuracy. By analyzing time-lapse videos from ground-based cameras or satellite imagery,
these methods can track cloud movement and development in real time. Techniques such as optical flow,
CNNs, and RNNs are employed to predict the impact of cloud cover on solar irradiance. For example,
studies have utilized CNNs to process video frames and extract features that indicate cloud patterns,
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while RNNs are used to model the temporal dependencies between consecutive frames. This
combination allows for more accurate short-term predictions of solar variability due to cloud cover,
surpassing the capabilities of standard statistical methods based solely on historical meteorological data.

In optical flow techniques, the motion of clouds is estimated between consecutive frames of video
footage. This technique helps in understanding the speed and direction of cloud movement, which
directly influences solar irradiance levels. Advanced implementations of optical flow can handle
complex cloud dynamics, providing high-resolution predictions of solar irradiance fluctuations [71].

CNN s in video analysis serve to identify and classify cloud structures in each frame of the video.
CNNs are adept at recognizing spatial patterns and textures within the cloud formations, which are
critical for predicting the impact of these clouds on solar irradiance. By processing multiple frames,
CNN s can build a comprehensive model of cloud behavior over time [60].

RNNs, including Long Short-Term Memory (LSTM) networks, are particularly effective in
modeling temporal sequences, such as the progression of cloud cover over time. RNNs can remember
important temporal features and provide a sequence of predictions that account for past cloud
movements and predict future changes. Combining RNNs with CNNs, known as ConvLSTM,
enhances the model’s ability to predict solar irradiance by capturing both spatial and temporal
dependencies [76].

Researchers have demonstrated the effectiveness of these video analysis techniques. For instance,
Elsaraiti and Merabet compared the performance of LSTM networks with traditional models and found
LSTM to be superior in forecasting accuracy [77]. Additionally, Ghimire et al. proposed a hybrid model
integrating CNN and LSTM for half-hourly global solar radiation forecasting, which outperformed
standalone models [76]. These advancements indicate a promising future for vision-based models in
solar forecasting, combining high-resolution imagery with advanced deep learning techniques to
achieve superior forecasting performance. By leveraging video analysis, researchers can anticipate
rapid changes in solar irradiance with greater precision, enhancing grid management, and energy
production planning.

5.3. Statistical models

Diverging from the methods previously discussed, statistical models offer a unique approach to
SI forecasting by utilizing historical time series data. These models establish a mathematical
relationship based on past records of SI, providing a basis for predicting future trends. Among the most
prevalent statistical models used in this field are the ARIMA, Exponential Smoothing (ETS), and
generalized autoregressive conditional heteroskedasticity (GARCH). These methods have been widely
recognized and utilized in various studies for their efficacy in forecasting GHI over short time horizons
ranging from 5 minutes to 6 hours [78—-80].

Statistical methods capitalize on historical data to infer patterns and relationships between input
factors and power production [81]. In the solar energy domain, these methods are prevalent and
encompass various techniques, including Markov Chains [82], fuzzy logic [17], and auto-regressive
models [83,84] such as NARX [85] and NARMAX [86]. Despite being generally less intricate than
physical models, their dependence on historical data enables a more nuanced modeling of specific
plant characteristics [87]. However, the requirement for extensive plant-specific data [83] can pose
limitations in rapidly evolving or expanding energy environments.

Statistical models are generally effective in predicting the values of stationary GHI time series.
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However, a key challenge arises due to the non-stationary nature of SI data, often influenced by varying
cloud cover and seasonal changes. This non-stationarity introduces complexities in the data that these
models struggle to accurately capture, leading to reduced performance in prediction, especially in
scenarios where non-linearity is prevalent [88]. This limitation underscores the need for continued
innovation in statistical modeling techniques to enhance their predictive accuracy, particularly in the
context of the dynamic and often unpredictable nature of SI.

5.4. Machine learning (ML) models

The emergence of artificial intelligence has led to ML becoming the preferred method for SI
forecasting. ML techniques focus on identifying patterns within data, shaping parameters, and creating
predictive models. This approach allows for the extraction of complex and nonlinear features from the
data. Various ML methods (refer to Figure 3), such as SVM, ANN, and RF, have been extensively
applied to predict SI, demonstrating their effectiveness in this field [89].

Despite their strengths, ML methods are not without limitations. Challenges such as overfitting, high
computational costs, and difficulties in managing complex, high-dimensional data are common [90]. To
enhance model performance, there has been a growing interest in the ensemble approach, which
combines multiple models to integrate their strengths, thereby improving prediction accuracy and
stability [91].
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Figure 3. Machine Learning models classification.
5.4.1. Artificial neural network (ANN)-based models

ANN-based models are inspired by the learning mechanisms of biological neural systems [92,93],
comprising interconnected units known as neurons [94]. These models are structured into three distinct
layers: Input, hidden, and output layers [95,96]. Capable of addressing both linear and nonlinear
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challenges [97], ANNs outperform many conventional empirical models in their performance [92,98].
The functional representation of ANN models is given by the equation:

y(x) = F(Xizy i () .x;(t) + b) 1)

where y(x) is the output; x;(t) is the input variables in discrete space t; F is transfer function for
the hidden layer; L is the neurons; w;(t) is the weight; and b is the bias. Depending on the
connections among the input, hidden, and output layers, ANN models can be categorized into
feedforward, recurrent, and symmetrical (or Hopfield) networks.

Feedforward Neural Networks (FF-NN) and Recursive Neural Network are illustrated in Figure
4. In FF-NNs, neurons are organized in sequential layers, with each neuron connected solely to those
in the preceding layer, thus eliminating feedback between layers [99]. This architecture makes FF-NN
one of the most prevalently applied ANNs. Conversely, Recursive Neural Networks (Figure 4), also
referred to as recursive neural networks, retain the input from previous steps within the network to
generate output alongside the current input, thereby offering the benefit of memory capability [100].

Input layer Hidden layer Output layer Input layer Hidden layer Output layer

Feedback layer

Feedforward neural network Recursive neural network

Figure 4. Feedforward and recursive neural network.
5.4.2. K-nearest neighbor (KNN)

KNN is a widely applied non parametric statistical methods used for classification and regression
related problems. It is based on the assumption that part of the past pattern series will reappear with
similar patterns in the succeeding iterations [101]. For searching the most similar patterns, search range
of nearest neighbor is defined by the user. This input is very critical as it affects the prediction results,
which vary based on data size and search range [102]. The computation algorithm of KNN can be
expressed as:

For a certain given search point x;, the search of K training points x;, where j =1,2,3, ---, k, is

computed using Euclidean Distance formula [103]. For more detailed description of KNN algorithm,
works by Larose et al. [104], Sutton et al. [105], and references therein, give better understanding.
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5.4.3. Support vector machine (SVM)

SVM models address regression challenges using various kernel functions, enabling the
transformation of low-dimensional input data into a higher-dimensional feature space [106]. Studies
have applied SVM models to predict SI (H) using data across different locations, demonstrating
SVM's effectiveness in providing satisfactory estimations of H [107]. The SVM’s objective function
is given by:

f&x) = wp(x) +b ()

Here, ¢(x) represents the mapping to a higher-dimensional feature space, while w and b denote the
weight vector and bias, respectively. SVM employs several kernel functions, such as the Radial Basis
Function (RBF), polynomial, linear, and sigmoid kernels [108]. Among these, the RBF kernel is
favored for its efficiency, simplicity, robustness, and optimization convenience [109], described by the
equation:

K (i, %) = exp( =l — x| (3)

where y = - 1/2¢°, with ¢ being the standard deviation of Gaussian noise, and xi and xj are the input
feature vectors. Compared to traditional Artificial Neural Network (ANN) models, SVM typically
offers superior accuracy and stability [110]. Research by Mohammadi et al. [111], Hassan et al. [112],
Quej et al. [113], and Baser et al. [114] has shown that SVM can efficiently identify the optimal
hyperplanes for support vectors during the training process and eliminate non-support vectors,
resulting in faster training and reduced computational costs, thus achieving better overall performance.

5.4.4. Random forest (RF)

RF, as identified by Breiman (2001) [115], stands out as one of the leading ML techniques. It
operates as a collective of decision trees, each developed through a dual-randomization process. Initially,
every tree is crafted from a bootstrap sample—randomly selected with replacement from the initial
dataset, mirroring its size. This approach typically results in about 37% of the instances being duplicates.
The second layer of randomness comes from attribute sampling: at every decision node, a randomly
chosen subset of attributes is evaluated to determine the optimal split, with Breiman et al. [115]
suggesting the formula [log>(#features)+1] for selecting the number of attributes.

For classification tasks, RF reaches its verdict through majority voting among its decision trees.
The Strong Law of Large Numbers assures that, as the ensemble grows in tree count, its generalization
error tends toward a limit, indicating the ensemble's size is not critical to its tuning. In essence, adding
more trees generally doesn’t compromise, but rather stabilizes, its predictive accuracy towards an
asymptotic generalization error.

One of RF’s key strengths is its minimal dependence on hyper-parameter adjustments; often, its
default settings yield robust performance across various datasets (Ferndndez-Delgado et al. [116]).
This characteristic positions RF among the top-performing methodologies in comparative studies, even
when minimally tuned. However, this aspect can also be seen as a limitation, as there is scant scope to
enhance performance through hyperparameter optimization.
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54.5. Light GBM

Light GBM, introduced by Ke et al. [117], represents a comprehensive framework that enhances
GB by introducing several innovative variants. Aimed at achieving computational efficiency, Light
GBM adopts a feature histogram precomputation approach similar to that of XGBoost. The framework
is versatile, supported by numerous hyper-parameters that ensure its adaptability across diverse
scenarios. It is compatible with both GPU and CPU architectures and incorporates basic GB alongside
various randomization techniques, such as column randomization and bootstrap subsampling.

Among its novel contributions [117], Light GBM introduces Gradient-based One-Side Sampling
(GOSS) and Exclusive Feature Bundling (EFB). GOSS is a sampling technique designed to prioritize
instances with higher classification uncertainty during the training of base trees. This is achieved by
focusing on instances with larger gradients, thereby increasing their significance in the learning process.
Specifically, the training sets for the base models consist of the top fraction of instances with the
highest gradients and a randomly selected fraction from those with lower gradients. To maintain the
integrity of the original data distribution, instances from the latter group are assigned increased weight
during the calculation of information gain.

EFB, on the other hand, consolidates sparse features into a single feature without information loss,
applicable when such features are mutually exclusive in their non-zero values. While EFB primarily
serves as a preprocessing step to enhance training efficiency and can be applied broadly, we concentrate
on the implications of GOSS within the LightGBM framework, given that the aspects of standard GB
are already well-covered by existing GB implementations.

5.4.6. Extreme gradient boosting (XGBoost)

The XGBoost model is an extreme development of the RF under the umbrella of ML models. The
RF-based models, being an ensemble algorithm containing quite long decision trees, has as a major
drawback, namely its probity to overfit. To mitigate this problem, XGBoost reduces the high variance
of RF using smaller random trees, together with parallel processing and better handling of missing
values, managing to obtain a better learning algorithm from weaker trees [118]. Other markable aspects
of XGBoost regard its scalability in several situations, meaning that the algorithm is capable of
manipulating consistently an increasing dataset size while also being of easy use and having good
generalization performance [118]. This model has been proven to reach state-of-the-art results,
achieving the best results in many ML challenges. Furthermore, this model has been successfully
applied in solar photovoltaic and radiation estimation, and also in astrophysics for pulsar candidates’
classification, granting it a reference status among ML models [119].

5.5. Deep learning (DL) models

In solar forecasting, DL models have marked a transformative advancement. Their ability to
learn directly from datasets enables these models to detect intricate patterns in data, enhancing the
overall training process. This proficiency addresses some key limitations of classical ML models,
such as Autoregressive (AR) models, where manual feature engineering and parameter optimization
are necessary.

Among the innovations in DL (refer to Figure 5) for PV power generation forecasting, the Gated

AIMS Geosciences Volume 10, Issue 4, 684-734.



705

Recurrent Unit (GRU) stands out. As part of the newer generation of RNNs, GRUs employ update and
reset gates, effectively tackling the vanishing gradient problem that plagues traditional RNNs [120].
These mechanisms allow GRUs to retain critical information from past data while discarding irrelevant
details, thus improving the accuracy of forecasts. Notably, GRUs have shown to outperform LSTM
models in processing speed and parameter efficiency, making them a valuable tool for short-term PV
power forecasting [121].
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Figure 5. Deep learning models classification.

Deep Networks (DNN) [122] are used more selectively due to their broader approach to time-
series data. RNN [123], including specialized versions like LSTM [124] and Gated Recurrent Unit
(GRU) [125], focus on temporal data modeling, thereby enhancing prediction stability over multiple
steps [126]. CNN [76] are particularly utilized for spatial analysis of power production data [127],
enabling precise localized predictions [128].

Hybrid models blend both spatial and temporal considerations [129]. An example is the
ConvLSTM [130], which integrates convolutional layers within LSTM units, affording translation
invariance and a broader scope of analysis. The WaveNet [131] and Temporal Convolutional Network
(TCN) [132] employ causal dilated convolutions to refine temporal data interpretation. The
Transformer model [133] leverages an attention mechanism for focused prediction on specific time
steps. Noteworthy implementations include the CNN-LSTM hybrid by Ghimire et al. [76] and Zang
et al. [134], combining pattern recognition with time-series analysis to lower data dependencies. These
models benefit from the incorporation of attention mechanisms, enhancing their ability to address both
short-term and long-term temporal patterns [135]. However, each model type has its inherent
challenges; RNNs, for instance, are prone to training difficulties due to vanishing gradients [136] and
numerical instability [137], whereas CNNs require extensive training data and deep architectures to
achieve broad receptive fields [128]. Despite these challenges, the continual evolution and integration
of these models underscore the dynamic nature of solar forecasting, driving the field toward more
precise and reliable prediction methods. The most prominent DL methods are discussed here.
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5.5.1. Convolutional neural networks (CNN5s)

CNNs, a subset of ANNSs, are renowned for their proficiency in processing data that exhibits a
grid-like topology, such as images or videos [138]. Drawing inspiration from the structure and function
of the visual cortex in the human brain, CNNs leverage convolutional layers to extract localized
features from input data [139]. A typical CNN architecture consists of convolutional layers, pooling
layers, and fully connected layers.

The convolutional layers, foundational to CNNs (Figure 6), use filters or kernels to capture localized
features from the input. These filters, essentially small matrices, traverse the input data, performing dot
products to produce feature maps that highlight essential elements for the specific task [ 140]. The pooling
layers, often succeeding the convolutional layers, reduce the spatial size of these feature maps, thereby
enhancing the network's computational efficiency. Max pooling and average pooling are common
methods used here, focusing respectively on the highest values and the average values within specific
regions of the feature maps [141].

Finally, the fully connected layers integrate these learned features to make final predictions,
similar to traditional neural networks. During the training phase, CNNs adjust their weights to
minimize the error between predicted and actual outputs [142]. This optimization is facilitated by the
back-propagation algorithm, which computes gradients of the loss function in relation to the weights
and updates them accordingly [143]. This intricate interplay of layers and learning mechanisms
positions CNNss as effective tools for tasks that require detailed analysis of grid-based data, including
solar forecasting applications, where they can be adapted to interpret time-series data, typically

handled by 1-dimensional CNNs [141].
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Figure 6. Structure of CNN.
5.5.2.  Long short-term method (LSTM)

The LSTM network, originally introduced by the pioneering work of Hochreiter et al. [136],
represents a transformative advancement in the domain of RNNs. Its distinctive appellation, “Long-
short term memory”, aptly signifies its unique ability to adeptly address both long- and short-time lags,
making it eminently suitable for a diverse range of complex tasks [144]. In stark contrast to traditional
RNNs, LSTM offers two crucial advantages of paramount significance. First, it effectively mitigates
the ubiquitous challenges of gradient vanishing and exploding, which often hinder the progress of
conventional RNNs during training, thus ensuring the stability and efficacy of the learning process.
Second, the ingenious architectural design of LSTM empowers it with remarkable proficiency in
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handling lengthy sequences, endowing it with a substantial leap in performance compared to its
predecessors [145].

At the core of the LSTM unit lie three pivotal gates (refer to Figure 7), the forget gate, the input
gate, and the output gate, each with a well-defined role. The forget gate diligently determines which
fragments of information warrant retention and which should be discarded, enabling dynamic and
adaptive memory mechanisms. Furthermore, the input gate skillfully integrates novel information into
the cell state, while the output gate astutely governs the subsequent hidden state [146]. Moreover,
LSTM ingeniously leverages an internal memory unit and gate mechanism to deftly overcome the
adversarial challenges of gradient vanishing and exploding during the training process, thereby
surmounting these obstacles with remarkable finesse and dexterity [147].
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Figure 7. Structure of LSTM.
The calculation formulas related to the LSTM structure are as follows:
fe = U(Wf [he—q, xe] + bf) (4)
f+ is the output of forget gate and ¢ is sigmoid activation function.
ur = tan h(W,[h;_y, x¢] + b) ®)
uy is indicating output value of update gate.
iy = o(Wilhe—1, ] + by) (6)
i, is the output value of input gate.
Co = fr X Comq + i XUy (7
C, is indicating memory cell.
0; = o(Wo[he—1, x¢] + bo) (8)
0, is indicating of output value of output gate.

h, is indicating the output vector result of the memory cell.
In the context of the LSTM model, the control gates, denoted by y € (f, i, ¢, 0), are associated
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with weight matrix W, and bias b,. These gates effectively integrate the weight matrices and biases
with the previous output h.; and the current input x; during the input process. Additionally, the LSTM
model maintains the previous cell state C.; and the current cell state C,, which are crucial components
in its functioning.

The control gates employ the sigmoid activation function o, responsible for determining the
significance of input information, while the hyperbolic tangent activation function tan/ governs the
transformations inside the LSTM cell. These activation functions play a pivotal role in regulating the
flow of information and the selective memory retention or forgetting mechanism, making the LSTM
model a powerful tool for handling sequential data and maintaining long-term dependencies.

5.5.3.  Gated recurrent unit (GRU)

GRU is the latest generation of Recurrent Neural Networks, and it is quite similar to the LSTM
in terms of functionality. They did away with the cell state and instead made use of the hidden state to
transport information [148]. In addition, it only contains two gates: a reset gate and an update gate,
which are both identical as shown in Figure 8.
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Figure 8. Illustration of a single cell of GRU.
5.6. Foundation models (Transformers)

Despite these advancements, challenges in renewable energy forecasting persist, necessitating
ongoing research and development. Within DL modeling a new terminology referred as “foundation
models” as coined by Stanford scholars [149] has emerged. As elucidated in Figure 9, a foundation
model is capable of centralizing information from data across various modalities, creating a unified
knowledge base. This singular model can afterward be adapted to a broad spectrum of downstream
tasks, demonstrating its versatility and efficiency in handling diverse datasets [149]. Notable examples
of such models include BERT [150], GPT-3 [151], and CLIP [152]. From a technical perception, the
concept of foundation models is not an entirely novel one, as they are fundamentally built upon the
principles of deep neural networks and self-supervised learning, concepts that have been a part of the
Al modelling for several decades [151]. Furthermore, the transformer model, initially introduced by
Ashish Vaswani. et.al. [133]in 2017, has been classified as a foundation model by Stanford researchers
[149] as they see it driving a paradigm shift in AL
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Figure 9. A foundation model can centralize the information from all the data from various
modalities. This one model can then be adapted to a wide range of downstream tasks [149].

The Transformer, consisting of encoder and decoder blocks with self-attention layers and feed-
forward neural networks, effectively analyzes the relationship between forecasting values and encoded
feature vectors in PV generation forecasting. To further refine self-attention-based models, several
variants have been proposed, including the Sparse Transformer [153], LogSparse Transformer [153],
Reformer [154], Longformer [155], Linformer [156], Compressive Transformer [157], and
Transformer-XL [158]. These models have introduced modifications to enhance performance,
particularly in handling long time-series data in forecasting tasks.

In the domain of long-sequence forecasting, the Informer [159] model stands out. It redesigns the
conventional Transformer structure to accommodate long sequence inputs more efficiently. By
replacing the standard self-attention block with a multi-head ProbSparse Self-attention mechanism and
incorporating self-attention distilling, the Informer not only manages long sequences effectively but
also improves computational complexity [160]. The decoder in the Informer, equipped to handle long
inputs, forecasts output values directly through a fully connected layer after analyzing the feature map.
This innovation showcases the evolving landscape of DL models in SI forecasting, where complexity
and data volume present ongoing challenges [160].

5.7. Hybrid models
Hybrid models in solar forecasting represent a cutting-edge approach that blends multiple
predictive techniques to improve accuracy and reliability. These models often combine physical

models, statistical methods, and ML algorithms, each bringing its unique strengths to enhance overall
forecasting performance.
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5.7.1. Hybrid physical and ML models

Hybrid physical and ML models integrate the deterministic elements of physical models with the
adaptability of ML algorithms. This combination is particularly effective in solar forecasting, where
the variability of weather conditions makes purely physical models less reliable. For instance, the
integration of numerical weather prediction models with ML techniques like neural networks has been
shown to improve the forecasting accuracy significantly by capturing both spatial and temporal
features in the data [161].

5.7.2. Hybrid statistical and ML models

Statistical methods have traditionally been used to model linear relationships and seasonal
patterns in solar energy data. However, the integration of ML algorithms, such as SVM and DL
networks, enhances the model’s ability to handle non-linear relationships and high-dimensional data.
This synergy is particularly useful in scenarios where solar radiation data exhibits complex behaviors
that are difficult to model with traditional statistical approaches alone [162].

5.7.3. Ensemble feature classification

Ensemble methods that leverage multiple models to make a collective forecast have proven highly
effective in reducing forecast error. These methods benefit from the diversity among individual models,
which can capture different aspects of the data. For solar forecasting, ensembles often combine various
ML models to predict SI, taking advantage of each model's strengths and mitigating their weaknesses.
This approach not only improves accuracy but also enhances the robustness of the predictions against
individual model biases [163].

5.7.4. ML and data assimilation

The combination of ML models with data assimilation techniques, which incorporate real-time
observational data into the forecasting process, offers a powerful tool for solar forecasting. This
approach allows for continuous model updates based on the latest data, enhancing the model's
responsiveness to changing weather conditions. For example, data-driven models that assimilate
satellite imagery and ground-based sensor readings can dynamically adjust to sudden changes in cloud
cover or atmospheric conditions, providing more accurate and timelier forecasts [148].

5.7.5. Hybrid model CNN-LSTM

The CNN-LSTM architecture is an innovative combination designed to leverage the strengths of
both CNNs and LSTM networks. This hybrid model is particularly adept at handling visual time series
prediction problems and generating textual descriptions from sequences of images. In this architecture,
CNN layers are employed for feature extraction from spatial inputs, and the extracted features are then
fed into the LSTM component for sequence prediction. The result is an effective system for processing
and interpreting complex data sequences, as depicted in Figure 10.
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Figure 10. I1lustration of CNN-LSTM.

The CNN-LSTM model has been applied to a wide range of problems, showcasing its
versatility. Its applications include rod pumping [164], particulate matter analysis [165],
waterworks monitoring [166], and heart rate signal processing [167]. Xingjian et al. [130] employed
this model for predicting future rainfall intensity over short periods, demonstrating its capability to
capture spatiotemporal correlations effectively. Studies highlighted that the CNN-LSTM network
consistently outperformed the fully connected LSTM (FC-LSTM) model in solar forecasting,
showcasing the potential of this hybrid approach in a variety of practical applications [168,169].

5.8. Transfer learning in solar forecasting

Transfer learning has emerged as a powerful technique in machine learning, enabling models to
leverage knowledge from related tasks to improve performance on the target task. In the context of
solar forecasting, transfer learning involves using pre-trained models on large datasets and fine-tuning
them for specific solar forecasting tasks.

5.8.1. Pre-trained CNN models

Researchers have utilized pre-trained CNNs on large image datasets, such as ImageNet, and
adapted them for solar forecasting by fine-tuning sky image datasets. This approach helps capture
complex spatial patterns and improve the accuracy of solar irradiance predictions. For example, Covas
employed transfer learning with spatial-temporal neural networks to forecast solar magnetic fields,
demonstrating the effectiveness of pre-training on sunspot data to enhance model performance on
magnetic field data [170].

5.8.2. Domain adaptation

Transfer learning techniques have also been applied to adapt models trained in one geographical
region to another. This is particularly useful in solar forecasting, where local weather patterns can vary
significantly. By transferring knowledge from regions with ample data to those with sparse data,
models can achieve better performance with limited local training data. Sheng et al. proposed an online
domain adaptive learning approach that dynamically adjusts to changing weather conditions,
enhancing the model’s adaptability and accuracy across different regions [171].
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5.8.3. Hybrid models

Combining transfer learning with other machine learning techniques, such as ensemble learning,
has shown promising results. For instance, using transfer learning to initialize models in an ensemble
framework can enhance robustness and accuracy. Ren et al. developed a hybrid approach that integrates
transfer learning and meta-learning for few-shot solar power forecasting, significantly improving
performance with limited training data [172].

5.8.4. Sequential transfer learning

Sequential models, like LSTM networks, pre-trained on historical weather data, have been fine-
tuned for short-term solar forecasting tasks. This method leverages temporal dependencies captured in
large-scale weather datasets to improve short-term prediction accuracy. Zhou et al. demonstrated the
effectiveness of using pre-trained LSTM models for photovoltaic power forecasting, highlighting
significant improvements in prediction accuracy by fine-tuning limited local data [173]. These studies
underscore the potential of transfer learning in enhancing the performance of solar forecasting models,
particularly in scenarios with limited data availability. By leveraging pre-trained models and adapting
them to specific solar forecasting tasks, researchers can achieve higher accuracy and more reliable
predictions. The integration of transfer learning in solar forecasting not only improves model
performance but also provides a practical solution to the challenges of data scarcity and variability in
weather patterns.

6. Comparative analysis

In this section, we provide a detailed comparative analysis of various ML, DL, and Hybrid models
used for SI forecasting. The performance of these models is summarized in Table 2, which highlights
key metrics, including Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), R? Score,
prediction time horizon, and the predicted outcome.

Figure 11a compares four ML models—RF, XGBoost, LightGBM, and CatBoost—for short-term
(day-ahead) forecasting. Among these, XGBoost stands out with the lowest MAE of 14.8 W/m? and
RMSE of 19.6 W/m?, along with the highest R* score of 0.96. This indicates that XGBoost is the most
accurate model for day-ahead predictions, outperforming the other models. In contrast, Random Forest,
LightGBM, and CatBoost exhibit similar performance metrics, with MAE values around 15 W/m? and
RMSE values close to 20 W/m?, all maintaining an R? score of 0.95. These findings suggest that while
XGBoost is superior, the other models provide reliable predictions with slight variations in accuracy.

Figure 11b shifts focus to a broader range of ML and DL models, comparing their MAE values.
The BiLSTM model, used for minute-ahead forecasting, demonstrates exceptional accuracy with MAE
values of 0.004 W/m?, significantly lower than other models. This highlights its precision in very short-
term predictions. Conversely, the SES model, used for monthly forecasts, shows a considerably higher
MAE of 7.130 W/m?, indicating lower accuracy for longer-term predictions. The PSO-BPNN model,
with an MAE of 0.754 W/m? for very short-term predictions, and XGBoost, with an MAE of 1.081
W/m? for daily forecasts, perform reasonably well, but not as impressively as BILSTM. The RSAM
model exhibits variability with MAE values ranging from 0.439 to 2.005 W/m?, depending on the
prediction horizon.
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Table 2. Comparative Analysis of ML and DL models.

Model Type  Model MAE RMSE  R=Score Time Predicted Reference
Name (WimZ  (WImZ Outcome
Machine Random 15.2 20.1 0.95 Short-term SI (Soleymani &
Learning Forest (RF) (day-ahead) Mohammadzadeh,
Models 2023) [174]
XGBoost 14.8 19.6 0.96 Sl (Soleymani &
Mohammadzadeh,
2023) [174]
LightGBM 15 19.8 0.95 Sl (Soleymani &
Mohammadzadeh,
2023) [174]
CatBoost 15.1 20 0.95 Sl (Soleymani &
Mohammadzadeh,
2023) [174]
BiLSTM 0.004 0.009 N/A Short-term Sl (Sutarna et al., 2023)
(minute- [175]
ahead)
Random 36.52 82.22 0.95 Short-term Sl (Bamisile et al., 2021)
Forest (RF) (hourly) [176]
LSTM N/A 0.7 N/A Short-term Sl (Sahaya Lenin et al.,
(hourly) 2023) [177]
BiLSTM 0.0043 0.0092 N/A Short-term Sl (Sutarna et al., 2023)
(minute- [175]
ahead)
SES 7.13 9.38 0.94 Short-term Sl (Syahab et al., 2023)
(monthly) [178]
PSO-BPNN  0.7537 1.7078 N/A Short-term Sl (Aljanad et al., 2021)
(5s, 1 min) [179]
XGBoost 1.081 1.6988  0.9977 Short-term Sl (Mbah et al., 2022)
(daily) [180]
Deep LSTM N/A N/A 0.95 Short-term Sl (Chaetal., 2021) [181]
Learning (hourly)
Models FFNN N/A N/A 0.99904  Short-term Sl (Reddy & Ray, 2022)
(hourly) [182]
LSTM N/A 0.099- N/A Short-term Sl (Chandola et al., 2020)
0.181 (3/6/24 hrs) [183]
RSAM 0.439- 0.463- 0.008- Short-term Sl (Yang et al., 2023)
2.005  2.390 0.059 (hourly) [184]
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Figure 11. Model Comparison; (a) ML models for short term forecasting, (b) ML and DL
models MAE comparison, and (¢c) ML and DL Models RMSE comparison.
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Figure 11c provides an RMSE comparison across the same set of models. The BILSTM model
again shows superior performance with RMSE values of 0.009 W/m? for minute-ahead forecasting,
reinforcing its accuracy and reliability. The LSTM model, used for hourly forecasts, has a higher
RMSE of 0.700 W/m?, indicating moderate accuracy. The SES model, with an RMSE of 9.380 W/m?
for monthly predictions, confirms its lower reliability for longer-term forecasting. PSO-BPNN and
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XGBoost models exhibit RMSE values of 1.708 W/m? and 1.699 W/m?, respectively, showing good
performance for their specific prediction periods. The RSAM model's RMSE ranges from 1.550 to
2.390 W/m?, reflecting its varying accuracy across different forecast intervals.

The analysis underscores the varying strengths of different models based on their prediction
horizons. The BiLSTM model consistently excels in short-term (minute-ahead) forecasting, while
XGBoost is most effective for short-term (day-ahead and daily) predictions among the ML models.
Models like SES show less accuracy for longer-term forecasts, highlighting the importance of selecting
models that align with specific forecasting needs. This comprehensive comparison illustrates the
critical role of model choice in achieving accurate solar irradiance predictions.

The continuation of our comparative analysis now includes an evaluation of hybrid deep learning
models for SI forecasting, as presented in Table 3. These models integrate various deep learning
techniques, often combining CNN, LSTM networks, and other advanced architectures to enhance
prediction accuracy and efficiency.

For instance, the Wavelet Transform Package-Generative Adversarial Network (WTP-GAN)
shows an RMSE range of 0.0473—0.0946 W/m? for short-term (1-6 pace) forecasting, indicating high
accuracy. The Deep Learning Neural Network (DL-NN) has an RMSE of 12.1 W/m? for hourly
predictions, demonstrating moderate performance. The Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise-BiLSTM (CEEMDAN-BILSTM) shows a MAE range of 16.34—
35.07 W/m? and an RMSE range of 1.81-28.46 W/m? for short-term (1-3 steps) forecasting, with an
impressive R? score range of 0.977-0.995, highlighting its strong predictive capability.

Table 3. Deep Hybrid Model Metrics Comparison.

Model Model Name MAE RMSE R? Time Predicted Reference
Type (W/m?) (W/m?) Score Outcome
Hybrid WTP-GAN N/A 0.0473- N/A Short-term SI (Meng et al., 2021)
Deep 0.0946 (1-6 pace) [185]
Learning DL-NN N/A 12.1 N/A Short-term SI (Kartini et al., 2022)
(hourly) [186]
RLMD 16.34— 1.81-28.46 0.977—  Short-term ST (Singla et al., 2022)
BiLSTM 35.07 0.995  (1-3 steps) [187]
CNN-LSTM N/A 36.24 N/A Short-term SI (Marinho et al.,
(5-30 min) 2022) [188]
LSTM-CNN N/A N/A 0.37—  Short-term SI (Kumari &
0.45 (hourly) Toshniwal, 2021)
[189]
CNN-LSTM N/A 0.36 0.98 Short-term SI (Michael et al.,
(hourly) 2022) [190]
Bi-LSTM- N/A 5.456 0.924 Short-term SI (Srivastava &
VMD-Grid (hourly) Gupta, 2023) [191]
Search
ResTrans 0.031 0.049 0.97 Short-term SI (Ziyabari et al.,
(hourly) 2023) [192]
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The CNN-LSTM model exhibits an RMSE of 36.24 W/m? for short-term (5-30 minutes)
forecasting, while the LSTM-CNN model’s R? score ranges from 0.37 to 0.45 for hourly predictions,
showing variable performance. Another instance of the CNN-LSTM model demonstrates a low RMSE
0f 0.36 W/m? and a high R? score of 0.98 for hourly forecasting, indicating excellent accuracy. The Bi-
LSTM-VMD-Grid Search model has an RMSE of 5.456 W/m? and an R? score of 0.924 for hourly
predictions, showing robust performance. The ResTrans model, with an MAE of 0.031 W/m?, an
RMSE of 0.049 W/m?, and an R? score of 0.97 for hourly forecasts, stands out for its precision.

Figure 12 further illustrates the R? score comparison among these hybrid deep learning models. The
CNN-LSTM model shows the highest R* score of 0.989, underscoring its superior accuracy in short-
term predictions. The LSTM-CNN model follows with an R? score of 0.42, indicating lower accuracy
compared to other models. The Bi-LSTM-VMD-Grid Search model achieves an R? score of 0.924,
demonstrating strong predictive performance. The ResTrans model, with an R? score of 0.97, also
indicates high accuracy in hourly forecasts. These results highlight the effectiveness of combining
different neural network architectures to improve the accuracy and reliability of solar irradiance forecasts.

In summary, the analysis of hybrid deep learning models reveals that the integration of various
deep learning techniques significantly enhances the predictive capabilities of these models. The CNN-
LSTM and ResTrans models, in particular, stand out for their high R? scores, indicating superior
performance in short-term forecasting. This comparative evaluation underscores the importance of
selecting appropriate hybrid models to achieve precise and reliable solar irradiance predictions,
tailored to specific forecasting needs.

DEEP HYBRID MODELS R* COMPARISON

ResTrans
Bi-LSTM-VMD-Grid Search
CNN-LSTM

LSTM-CNN

CEEMDAN BiLSTM

Figure 12. Deep Hybrid Models R? Comparison.
7. Discussion and analysis

The rapid development of ML and DL models has significantly advanced the field of solar energy
forecasting. We highlight the transformative potential of these technologies in overcoming the

AIMS Geosciences Volume 10, Issue 4, 684-734.



717

limitations of traditional empirical and physical models. Each class of model—whether empirical,
statistical, or ML/DL-based—offers unique strengths and faces specific challenges, emphasizing the
need for a hybrid approach that combines the best attributes of each method.

ML and DL models have proven superior in handling the nonlinearities and complexities inherent
in SI data. Models such as SVM, ANN, and more sophisticated architectures like CNN and LSTM
networks demonstrate remarkable accuracy improvements over traditional models [7,12,13]. Their
ability to learn from vast datasets and adapt to new data inputs offers a significant advantage,
particularly in dynamic environments where weather patterns and solar output can vary widely.

The performance of these models is rooted in their capacity to learn intricate patterns within the
data. For instance, SVMs are particularly effective in identifying the optimal hyperplane that separates
different classes in the data, enhancing prediction accuracy [12]. Similarly, ANNs, inspired by the
human brain's neural architecture, consist of interconnected neurons that process data through multiple
layers, enabling the extraction of high-level features from raw input [7]. CNNs are adept at processing
grid-like data, such as images or spatial data, making them suitable for applications requiring detailed
spatial analysis. RNNs, and LSTMs in particular, excel in modeling temporal dependencies, making
them ideal for time-series forecasting tasks like predicting SI over time [13].

The adaptability and scalability of ML and DL models are significant advantages over traditional
methods. These models can continuously update predictions based on new data inputs, which is critical
for real-time applications. Domain adaptive learning models, for instance, dynamically adjust to new
weather conditions, significantly improving prediction reliability without the need for constant
retraining [171]. This adaptability is juxtaposed with the static nature of NWP models, which require
manual updates to incorporate new data or changing atmospheric conditions.

7.1. Real-world applications and economic benefits of advanced solar forecasting models

Real-world applications of advanced solar forecasting models extend beyond academic research
into practical scenarios, contributing significantly to economic benefits and policy implications.
Enhanced forecasting accuracy reduces operational costs by optimizing energy production and
minimizing reliance on expensive backup power solutions, particularly in grid management, where
precise forecasts can decrease imbalance penalties and improve efficiency [21,23,27] Accurate forecasts
support more informed policy decisions, facilitating renewable energy integration into national grids and
promoting sustainable energy practices [25,26]. For example, improvements in solar power forecasting
can significantly reduce operational electricity generation costs by decreasing fuel and maintenance
expenses, as well as start and shutdown costs for fossil-fueled generators [21]. Furthermore, these models
enhance economic efficiency and grid reliability by decreasing the reliance on peak-time energy reserves,
thus making solar energy more competitive against traditional sources [23].

7.2. Policy implications and environmental benefits of accurate solar forecasting

Accurate solar forecasts are crucial for shaping effective renewable energy policies, enabling
governments to establish incentives for solar adoption and create subsidies for expanding capacity.
These forecasts aid in long-term energy planning, setting ambitious renewable energy targets, and
justifying the expansion of grid infrastructure like energy storage systems essential for managing solar
power's intermittency [25] Improved forecasting accuracy has led to significant investments in battery

AIMS Geosciences Volume 10, Issue 4, 684-734.



718

storage systems, stabilizing the grid during peak demand periods, and supporting economic
development and energy security in developing economies like India [25]. Enhanced solar forecasting
models align closely with global sustainability goals by optimizing the use of solar resources, thus
contributing to a more sustainable and resilient energy infrastructure. These models support the
development of energy storage systems, crucial for balancing supply and demand and ensuring grid
stability [28,29,193]. Improved forecasts can also help reduce CO> emissions by up to 6% annually,
supporting environmental goals while fostering economic resilience by diversifying energy sources
and mitigating the impacts of volatile fossil fuel markets [26].

7.3. Challenges in advanced solar forecasting

Despite significant advancements in ML and DL models for solar forecasting, several challenges
persist that hinder their broader applicability and adoption.

7.3.1.  Dependency on high-quality historical data

The effectiveness of ML and DL models is highly dependent on the availability of extensive, high-
quality historical data. In regions with insufficient data, the models may perform suboptimally, limiting
their usefulness. This dependency poses a significant challenge for implementing these advanced
models in areas where historical solar irradiance data is sparse or unreliable [31,90].

7.3.2. Interpretability of complex models

One of the primary barriers to the widespread adoption of DL models is their interpretability.
These models, particularly deep neural networks, often operate as “black boxes”, making it difficult
for stakeholders to understand how forecasts are generated. Stakeholders, including policymakers and
energy practitioners, require clear and transparent explanations of model outputs to make informed
decisions. The lack of interpretability can impede trust and acceptance of these advanced forecasting
models [31,90].

7.4. Addressing data quality and interpretability challenges
7.4.1. Improving data quality

Ongoing research is needed to enhance the quality and availability of historical solar data. Efforts
should focus on employing techniques for data augmentation to generate synthetic data, which can
help mitigate the scarcity of historical records. Additionally, utilizing remote sensing technologies and
satellite data can fill gaps in ground-based measurements, providing more comprehensive datasets.
Developing standardized protocols for data collection and preprocessing is also crucial to ensure
consistency and reliability across different regions, further improving the robustness and applicability
of solar forecasting models.
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7.4.2. Improving the interpretability of solar forecasting methods

Interpreting the outputs of solar forecasting models is crucial for their practical application in
energy management and decision-making. Enhancing the interpretability of these models can
significantly improve their usability for a broader range of stakeholders. We review various methods
to enhance the interpretability of solar forecasting models, drawing on recent research findings.

e Feature importance analysis

Feature importance analysis techniques, such as SHAP (SHapley Additive exPlanations) values
and LIME (Local Interpretable Model-agnostic Explanations), help in understanding the contribution
of each feature to the model’s predictions. These methods provide insights into which variables most
influence solar irradiance forecasts. For instance, a study by Chaibi et al. demonstrated the utility of
SHAP in explaining the importance of extraterrestrial solar radiation and sunshine duration in global
solar radiation estimation [194].

e Visualizations

Graphical representations, such as partial dependence plots and decision trees, can make complex
models more understandable. These visual tools help stakeholders grasp how different factors interact
to affect the model’s output. Mason et al. introduced a tool that combines interactive visualization with
empirical dynamic modeling to enhance the interpretability of solar forecasts [195].

e  Model simplification

Simplifying complex models without significantly compromising accuracy can also improve
interpretability. Ensemble methods, like Random Forests, can be pruned to reduce complexity while
maintaining performance. Rafati et al. explored the effectiveness of data-driven heuristic methods to
improve the accuracy of short-term solar power forecasting, showing that simpler models could
perform effectively [196].

e Transparent modeling techniques

Utilizing inherently interpretable models, such as linear regression and decision trees, can
sometimes be preferable. Even though these models might not always provide the highest accuracy,
their transparency makes them easier to interpret and trust. Wang et al. proposed an explainable neural
network that mathematically interprets the relationship between input features and solar irradiance
predictions, offering a clear advantage in interpretability [197].

e Case-based reasoning
Providing case studies or examples of specific predictions and their corresponding inputs can help

illustrate how the model arrives at its conclusions. This method can be particularly effective in
demonstrating the practical application of the forecasting model. For example, Theocharides et al.
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validated their machine learning-based photovoltaic power production forecasting model in different
climatic conditions, enhancing its practical relevance and interpretability [198].

By implementing these methods, we can enhance the transparency and usability of solar
forecasting models, making them more accessible to a wider range of stakeholders, including non-
experts. Improving interpretability not only aids in trust and acceptance of the models but also
facilitates better decision-making in solar energy management.

7.5. Future directions for research and development

Researchers should focus on enhancing the robustness of ML and DL models against data
variability. This involves developing models that can adapt to new and diverse datasets without
requiring extensive retraining, known as domain adaptation. Additionally, employing regularization
methods to prevent overfitting can improve model generalization across different geographical regions,
ensuring that models perform consistently under varying conditions.

To ensure the applicability of advanced forecasting models globally, efforts should be directed
toward improving their generalizability. This includes training models on diverse datasets from
multiple regions to enhance their performance in varied climatic conditions, known as cross-regional
training. Leveraging transfer learning techniques allows knowledge gained from well-studied regions
to be applied to areas with limited data, further extending the usability of these models.

Integrating ML and DL models with traditional forecasting methods can harness the strengths of
both approaches, leading to more reliable and accurate forecasts. This hybrid approach can enhance
model performance by combining statistical methods with advanced ML models, leveraging their
complementary strengths. Additionally, it can facilitate adoption by providing a gradual transition for
stakeholders familiar with traditional methods, easing the integration of advanced technologies into
existing systems.

In conclusion, the evolution of solar forecasting from empirical models to advanced ML and DL
techniques marks a significant milestone in renewable energy research. The integration of hybrid
models combining physical, statistical, and ML approaches offers the most promising path forward,
enhancing accuracy and reliability. Real-world applications of these models demonstrate substantial
economic benefits and support policy-making for sustainable energy development. Researchers should
focus on overcoming current challenges, particularly in data quality and model interpretability, to fully
harness the potential of these advanced forecasting techniques.

8. Conclusions

In this review, we explored the transformative impact of ML and DL models on solar energy
forecasting. We examined the evolution of forecasting methods from empirical and physical models to
the advanced ML and DL approaches, highlighting the strengths, challenges, and potential of each.
The integration of traditional methods with ML and DL models was emphasized to enhance forecasting
accuracy and reliability. The crux of this review is as follows;

e ML and DL models have significantly improved the accuracy of SI forecasts by handling
nonlinearities and complex patterns in the data [7,12,13]. These models offer superior adaptability and
scalability, allowing continuous updates and adjustments based on new data inputs, which is crucial
for real-time applications [171].
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e Enhanced forecasting accuracy reduces operational costs by optimizing energy production
and minimizing reliance on expensive backup power solutions, resulting in lower kWh costs and
improved economic efficiency [21,23,27].

e Accurate solar forecasts support more informed policy decisions, facilitating the integration
of renewable energy into national grids and promoting sustainable energy practices [25,26].

e Improved forecasts enhance grid reliability by allowing better anticipation of fluctuations in
solar output and optimizing the scheduling of energy production from various sources [28,29,193].

e Enhanced forecasting models contribute to global sustainability goals by reducing CO»
emissions and promoting the efficient use of solar resources, supporting environmental and economic
resilience [26].

e The dependency on high-quality, extensive historical data limits the applicability of ML
models in regions with insufficient data. Future research should focus on improving data quality and
availability [31,90].

e The complexity and interpretability of DL models pose challenges for widespread adoption.
Developing more interpretable models is essential for broader acceptance among stakeholders [31,90].

e Enhancing the robustness and generalizability of ML and DL models across geographical
regions is critical for their effective deployment in diverse environments.

In conclusion, we highlight the significant advancements in solar forecasting, transitioning from
empirical models to sophisticated ML and DL techniques, emphasizing the novel integration of
hybrid models that combine physical, statistical, and ML approaches. This evolution marks a crucial
milestone in renewable energy research, offering enhanced accuracy and reliability. The real-world
applications of these advanced models demonstrate substantial economic benefits and support
effective policy-making for sustainable energy development. Addressing current challenges,
particularly in data quality and model interpretability, is essential to fully harness the potential of
these innovative forecasting techniques.
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