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Abstract: Artificial general intelligence (AGI), or strong AI, aims to replicate human-like cognitive 

abilities across diverse tasks and domains, demonstrating adaptability and learning like human 

intelligence. In contrast, weak AI refers to systems designed for specific tasks, lacking the broad 

cognitive flexibility of AGI. This paper introduces a novel approach to optimize oil production by 

integrating fundamental principles of AGI with geophysical data inversion and continuous monitoring 

techniques. Specifically, the study explored how AGI-inspired algorithms, combined with established 

reinforcement learning (RL) techniques, can enhance borehole electric/electromagnetic monitoring 

and reservoir fluid mapping technology. This integration aims to mitigate the risk of unwanted water 

invasion in production wells while optimizing oil extraction. The proposed methodology leverages 

real-time geophysical data analysis and automated regulation of oil production. The paper begins by 

outlining the key features of AGI and RL, and then discusses their application in 

electric/electromagnetic monitoring to define optimal production policies. The effectiveness of this 

approach was verified through synthetic tests, showing significant improvements in production 

efficiency, resource recovery, and environmental impact reduction. 

Keywords: artificial general intelligence; reinforcement learning; geophysical inversion; monitoring; 
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1. Introduction  

The advancement of artificial intelligence (AI) technologies has opened new perspectives in 

optimizing industrial processes. Artificial general intelligence (AGI) stands at the forefront of the 
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evolving landscape of artificial intelligence, representing a paradigm shift in our pursuit of creating 

intelligent systems [1–5]. Unlike narrow or specialized AI systems designed for specific tasks (often 

indicated as weak AI), AGI aspires to replicate the broad cognitive abilities of the human mind, 

possessing the capacity to understand, learn, and adapt across a diverse range of domains. The 

concept of AGI envisions machines not only excelling in predefined tasks, but also comprehending 

the intricacies of novel challenges, like the flexible intelligence demonstrated by humans. This level 

of adaptability implies that AGI could solve complex problems and continuously improve its 

performance over time. The journey toward achieving AGI involves enabling machines to not only 

process information but also to understand and learn in a manner reminiscent of human intelligence. 

In this context, AGI emerges as a promising solution to address complex challenges in the oil 

production sector. We are aware that implementing an effective AGI system is still a theoretical goal, 

far to be reached with current technology. However, we can develop some basic algorithms inspired 

by AGI criteria to improve the performances of artificial agents.  

This article explores the role of AGI in optimizing oil production, with a focus on managing the 

risk of water invasion while maximizing hydrocarbon recovery [6–10]. Water invasion occurs when 

water from the surrounding formations infiltrates the production well. This can significantly impact 

the efficiency and economics of hydrocarbon extraction. Unfortunately, traditional methods often fall 

short in providing real-time, accurate assessments of subsurface conditions, leading to suboptimal 

decision-making and increased operational risks.  

Our approach to addressing the problem of water breakthrough is based on the combination of 

electric and/or electromagnetic data inversion, continuous monitoring techniques, reinforcement 

learning, and AGI. By installing electrodes and magnetometers within a production well, a persistent 

monitoring system is established, enabling the ongoing detection and analysis (through time-lapse 

inversion methods) of variations in electric potentials and/or electromagnetic fields associated with 

reservoir fluids displacement [11–14]. This approach provides insights into subsurface fluid dynamics, 

aiding in the understanding of reservoir behavior, fluid migration patterns, and potential geo-hazards. 

The physical background of our approach can be summarized as follows. The electrodes capture 

electrical signals (electric potentials) resulting from fluid movements, allowing real-time data 

collection on resistivity variations around the wellbore. Similarly, magnetometers measure changes in 

magnetic fields induced by fluid displacements, enhancing the accuracy and reliability of gathered 

geophysical data. This dual-sensor system [14] forms a robust network that enables scientists and 

engineers to track and interpret subsurface processes with precision (mainly fluids displacement), 

facilitating informed decisions about well operations, reservoir management, and environmental 

impact assessments.  

As an illustrative example, Figure 1 shows a synthetic resistivity model related to fluids 

displacement at reservoir depth. This model was obtained through the inversion of (simulated) electric 

potentials recorded in a horizontal production well. The black dots represent the location of electrodes 

permanently installed in the well (in real measurements, the electrodes must be properly insulated from 

the metallic casing [14]). The colors represent the different resistivity values. Low resistivity (blue) is 

associated with the water table. This is clearly detected, in contrast with the more resistive background 

(oil filled reservoir). Our approach consists of obtaining many models like this through time-lapse 

resistivity surveys, to map the fluids displacements over the time, during production. The final goal is 

to prevent undesired water invasion in the production well. To reach this target, we need to regulate 

the oil production in real time, considering the water displacements around the well.  
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Figure 1. An illustrative modeling example: resistivity section extracted from a 3D model 

around the production horizontal well, obtained through inversion of synthetic electric data. 

In that context, AGI plays a crucial role in interpreting and using the datasets obtained by electric 

and/or electromagnetic sensors. Through advanced deep learning algorithms, AGI allows analyzing 

complex patterns in the data, identifying subtle changes associated with fluid movements. This enables 

real-time decision-making by providing actionable insights into fluid dynamics, optimizing oil 

production, and minimizing risks associated with potential fluid invasion during production.  

A key novelty of our approach lies in its holistic integration of AGI criteria and reinforcement 

learning (RL) techniques with real-time geophysical monitoring. In the next section, we will discuss 

the AGI/RL workflow applied to our specific problem. Then, we will briefly recall the key aspects of 

borehole electric/electromagnetic acquisition/inversion methods. We will discuss how all these 

technologies can be integrated into a comprehensive methodology. Finally, we will present synthetic 

tests in realistic scenarios, showcasing the potential of the entire methodology. 

2. AGI/RL workflow 

The specific structure of the AGI and RL workflow proposed in this article can be summarized in 

the following two main aspects.  

First, we combine deep learning techniques with self-monitoring, self-learning, self-consciousness, 

and self-improvement abilities. We start from the assumption that these abilities, typical of biological 

entities, can be partially implemented (at a very basic level) in artificial agents [15,16]. In a previous 

work [17], we explained how all these abilities can be included in practice into the architecture of deep 

neural networks. We named this approach “self-aware deep learning” (or, briefly, SAL). In the specific 

case discussed in this paper, we apply the SAL approach to time-lapse datasets acquired through 

continuously monitoring geophysical methods aimed at mapping fluids displacements during production. 
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The SAL network can dynamically adjust its own architecture (hyper-parameters) to maximize its 

performance in response to changing conditions in various operational environments. We remark that 

this dynamic ability is a key feature of AGI systems that try to emulate dynamic problem-solving 

capabilities of natural intelligence. Figure 2 shows the workflow of the SAL approach. 

 

Figure 2. Block diagram of the SAL workflow addressed to self-learning and self-

improvement in deep neural networks. (Obtained from [17].) 

Initially, conventional neural networks process input data and produce an initial output (see left 

part of Figure 2). These “standard neural network outputs” are used as reference results and for 

comparison purposes. Self-aware mechanisms (such as performance self-evaluation, meta-learning 

algorithms, and so forth) continuously monitor the network’s performance (results check/validation 

block), aiming to autonomously evaluate real-time outcomes and adjust the network’s architecture 

(automatic network optimization block) to improve results. In this context, improving the results means 

decreasing validation loss and reducing overfitting with respect to the standard network output. This 

iterative process continues until certain termination conditions (stopping criteria) are met. These may 

include reaching a maximum iteration limit, achieving hyper-parameter convergence, enhancing 

performance, encountering resource constraints, and so on. 

The second crucial aspect of our workflow consists of integrating self-aware deep learning (SAL) 

with reinforcement learning (RL) techniques. Among the many available RL methods, in this paper we 

selected the well-known Q-Learning algorithm, which we recall briefly. The name of this method 

comes from the Q-function that provides a measure of the quality (in terms of effectiveness for a given 

task) of an action, a, that the agent takes starting from a certain state, s. It is defined as follows: 

Q(s, a)=S ×A → R.          (1) 

The Bellman equation provides an operative definition of the maximum cumulative reward:  

𝑄(𝑠, 𝑎) = 𝑟 +  𝛾 𝑚𝑎𝑥𝑎′ 𝑄(𝑠′, 𝑎′).         (2)  
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It is given by the reward r that the agent received for entering the current state s and action a, plus 

the maximum future reward for the next state s', taking all the possible actions 𝑎′ from that state. The 

symbol  represents the discount factor. It has the crucial role of balancing the contribution of future 

rewards with respect to the immediate reward. The value of Q(s, a) is found recursively, through the 

following procedure. First, the algorithm starts by using random values (or any type of guess value) 

for the Q-function. Next, while the agent explores its environment, the initial Q values progressively 

converge toward the optimal ones, based on the positive and/or negative feedback that the agent 

receives from its environment. 

Such an integration between SAL and RL creates a comprehensive approach that enhances the 

adaptability and performance of artificial agents. In our combined methodology, self-awareness 

mechanisms are embedded within the RL framework, enabling agents to monitor their internal states, 

evaluate their performance, and dynamically adjust various aspects of their behavior. In summary, self-

awareness is focused to the network architecture, enabling agents to modify their structure, such as the 

number of hidden layers or learning rates, in response to changing conditions. Meanwhile, 

reinforcement learning provides a framework for agents to interact with their dynamic environment, 

learn from experiences, and optimize their actions based on reward signals (Figure 3). In the following 

section, we are going to explain how such a novel deep learning workflow is applied to support time-

lapse electric/electromagnetic inversion/monitoring. 

 

Figure 3. Synergy between self-aware deep learning (left blocks) and reinforcement 

learning (right blocks). In this scheme, intelligent agents exhibit self-improvement of their 

own architecture and, at the same time, also adapt to environmental dynamics. 

3. EM monitoring supported by AGI/RL system for oil production 

Our continuous geophysical monitoring approach involves the permanent installation of 

electrodes and magnetometers within a production well, establishing a persistent system that enables 

the ongoing detection and analysis of variations in electromagnetic fields associated with fluid 

displacement. Installing magnetometers and electrodes in a production well is not a simple task. It can 

work in practice only if appropriate completion technology is applied [14].  

This innovative approach allows comprehending the dynamic changes occurring in the subsurface 

environment surrounding the well. For instance, borehole electric tomography, often combined with 
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surface electrode layouts, has been widely applied over the past few years for continuous monitoring 

of fluid displacement (water and oil, as well as CO2) in the subsoil [18–29].  

Um et al. [18] discuss a complex approach based on multiphysics network supported by deep 

learning techniques. The entire method is designed for real-time imaging of CO2 saturation in 

geological carbon storage. In their workflow, the authors combine seismic, electromagnetic, and other 

data to improve imaging accuracy and reduce uncertainties, providing an advanced tool for monitoring 

CO2 storage. 

Bergmann et al. [19,20] focus on the application of time-lapse surface-downhole electrical 

resistivity tomography (ERT) for monitoring CO2 storage at the Ketzin site in Germany. Their research 

highlights the effectiveness of ERT in detecting CO2 migration and monitoring storage integrity. 

Binley [21] and Binley & Kemna [22] review tools and techniques related to DC electrical and 

induced polarization methods, particularly focusing on their applications in geophysics and hydro-

geophysics. The authors cover the principles and practices of direct current resistivity methods and 

their role in subsurface investigations, for applications to monitoring as well as exploration problems. 

Buscheck et al. [23] discuss the strategy of pre-injection brine production to manage pressure in 

CO2 storage reservoirs. The approach is aimed at enhancing CO2 storage capacity and ensuring the 

stability of storage sites. 

Christensen et al. [24] provide an additional contribution to the discussion about the use of cross-

hole electrical resistivity tomography (ERT) for monitoring CO2 injection. Their study illustrates the 

capability of ERT in providing detailed images of subsurface CO2 movement during injection. 

Descloitres et al. [25] apply time-lapse resistivity mapping to investigate infiltration in a Sahelian 

gully erosion area. The authors show how resistivity mapping can be used to study water infiltration 

processes in erosion-prone regions. 

Goldman & Kafri [26] explore hydrogeophysical applications in aquifers, focusing on methods 

like electrical resistivity for studying groundwater in vulnerable coastal environments. The research 

emphasizes the importance of geophysical techniques in managing coastal water resources. 

Schmidt-Hattenberger et al. [27] discuss the development and application of electrical resistivity 

tomography (ERT) for monitoring CO2 migration. Like Bergmann et al., these authors focus the 

discussion on the results obtained at the Ketzin pilot site. In this specific work, the authors cover the 

progression from tool development to practical reservoir surveillance. 

Kazakis et al. [28] apply electrical resistivity tomography (ERT) and hydrochemical data to map 

seawater intrusion in the coastal area of the eastern Thermaikos Gulf, Greece. Their work demonstrates 

the effectiveness of ERT in detecting and monitoring saltwater intrusion in coastal aquifers. 

Tarrahi & Afra [29] discuss the optimization of geological carbon sequestration in heterogeneous 

saline aquifers. The study focuses on managing CO2 injection to achieve uniform distribution within 

the storage reservoir, enhancing the efficiency of carbon sequestration. 

In the above-mentioned research, a key message emerges: the electrodes play a crucial role in 

capturing electrical signals that result from the movement of fluids causing resistivity variations in the 

subsurface and around the wellbore. As these fluids are displaced, the electric fields are perturbed, and 

the electrodes, strategically positioned, provide real-time data on these alterations. This comprehensive 

monitoring system offers useful insights into the subsurface fluid dynamics, aiding in the 

understanding of reservoir behavior, fluid migration patterns, and potential geo-hazards. 

Similarly, magnetometers contribute to this continuous monitoring process by measuring changes 

in the magnetic fields induced by fluid displacements and the consequential variations in electric 
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resistivity distribution over space and time. This dual-sensor system, comprising both electrodes and 

magnetometers, forms a robust network that enhances the accuracy and reliability of the gathered 

geophysical data. By leveraging these technologies, scientists and engineers gain the ability to track 

and interpret subsurface processes with a high degree of precision, enabling them to make informed 

decisions about well operations, reservoir management, and environmental impact assessments. 

In this geophysical monitoring frame, artificial general intelligence combined with RL techniques 

can play a crucial role in analyzing/interpreting/using data from electric/electromagnetic sensors. Let 

us better clarify these concepts with the support of illustrative synthetic tests. 

4. Synthetic tests 

In this section, we delve into a simulation test designed to elucidate the core principles of our 

approach and its significance within the realms of geosciences and the oil industry. Our aim is to 

implement and apply some of the key elements of an AGI system through a software platform based 

on the integration of self-aware mechanisms with Q-learning. We discuss a synthetic test with the 

specific goal of showing how we can optimize oil production from a single horizontal well while 

mitigating the risk of water intrusion in the borehole. The section is divided into two sub-sections. The 

first part is dedicated to the simulation of a DC (geoelectric) experiment performed in a horizontal well. 

The second part is focused on the analysis of the simulated data through our AGI/RL approach. This 

provides prescriptive rules for optimizing oil production and, at the same time, reducing the risk of 

water invasion in the well itself. 

4.1. Data simulation 

We generate time-dependent data pertaining to a) waterfront distances from the production well 

and b) the rate of oil production.  

We simulate a scenario in which waterfront distances, variable over time, have been obtained 

through direct current (DC) borehole tomography. For that scope, we used the open-source software 

package R2, based on Python libraries [30,31]. Additionally, the pyres Python wrapper package for R2 

was employed, providing a robust and adaptable programmatic interface for the modeling and 

inversion of electrical resistivity tomography (ERT) datasets. The inverse solution method is grounded 

in a regularized objective function, incorporating weighted least squares principles akin to an “Occam’s” 

type solution. 

Our simulation introduces oscillations in waterfront distances, contaminated by random noise, 

with the risk of water invasion being derived from these distances (wherein risk escalates as the 

distance diminishes). To aid comprehension, in this specific synthetic test, both waterfront distances 

and oil production data are standardized within the range of 0 to 1. 

As already discussed in a previous paper [32], Figure 4 illustrates our schematic 2D scenario 

wherein the water table, marked by dashed lines and with a resistivity of 1 Ωm, exhibits an upward 

movement following an irregular dynamic trend. This scenario mirrors typical situations wherein 

overproduction of oil or water flooding techniques lead to undesired “cresting” or “coning” phenomena. 

In our simulation, we deploy an electrical resistivity tomography (ERT) permanent layout, with 

electrode spacing set at 10 m, within a horizontal well situated at a relative elevation of 0 m. Our 

objective is to monitor water movements to prevent any potential invasion within the producing well. 
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Through repeated monitoring surveys akin to this setup, we compile a dynamic database comprising 

electric potential measurements over time. 

Figure 5 shows the apparent resistivity pseudo-section obtained through the monitor ERT survey 

at time T0, when the water table is marked by the black dashed curve in the previous figure. 

 

Figure 4. Simulation scenario. Black dashed curve: waterfront at time step T0. Red dashed 

line: waterfront at a successive time step. The vertical axis represents a relative depth with 

respect to the horizontal well (thick black line). (Obtained from [32].) 

 

Figure 5. Apparent resistivity pseudo-section at time step T0. (Obtained from [32].) 

 

Figure 6. Example of ERT model (obtained through inversion of the pseudo-section of figure 

5) in a scenario of detection of fluids below the measurement points. (Obtained from [32].) 
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Figure 6 shows the ERT section obtained by inversion of the apparent resistivity pseudo-section 

of Figure 5.  

We created many scenarios like those depicted in the previous figures, simulating an oscillatory 

trend of the waterfront distance from the well induced by oil production over time. 

4.2. Prescriptive AGI data analysis  

To optimize oil production considering the variable risk of water invasion directly linked with oil 

production rate, we applied our AGI approach, based on a combination of RL and self-aware 

mechanisms, properly implemented in a dedicated deep learning architecture. Let us explain more in 

detail such an algorithm.  

In the frame of the RL context, we selected a Q-Learning technique [33–37]. First, we set up Q-

learning parameters, including the number of episodes, learning rate, discount factor, and exploration 

rate (epsilon). The Q-Learning algorithm is then trained over a fixed number of episodes specified by the 

user; at each episode, the agent begins at the initial state (time step 0) and interacts with the environment 

until the end of the data sequence. It utilizes an epsilon-greedy policy [37] to select actions (increasing 

or decreasing production) based on Q-values. The agent executes the chosen action and observes the 

resulting reward, which is positive for increasing production while maintaining a stable waterfront 

distance, and negative for decreasing production and decreasing waterfront distance. Subsequently, the 

agent moves to the next state (time step) based on its selected action, with Q-values being updated 

using the Bellman equation [37].  

Figure 7 illustrates how the Q-Learning algorithm, combined with self-aware deep neural 

networks (that continuously optimizes the network architecture), automatically regulates oil 

production, considering the oscillations of the waterfront. The left graph shows the total reward 

obtained by the agent in each episode, offering insight into the agent’s performance improvement over 

time. The graph on the right displays the normalized waterfront distance and oil production values 

across iterations, showing how these variables evolve based on the agent’s actions during the training 

process. This example refers to the oscillations of the waterfront (and of the oil production rate) 

observed locally at the center of the measurement system (to clarify, in Figure 6, this point corresponds 

to the distance x = 125 m). Of course, similar plots are produced for all the other observation points 

where we take measurements of the electric potential, waterfront distance, and oil production rate. 

Looking at Figure 7, a simple correlation function between water table distance and oil production 

might appear sufficient for our optimization purposes. That is reasonable in an idealized setting. 

Furthermore, we remark that this example considers the curves calculated as we had only one 

measurement point along the well. In real situations, the optimized adaptation of the network 

architecture as well as the use of Q-Learning techniques ensure that the network structure remains 

flexible and capable of handling more complex scenarios, where several production sectors and many 

observation points can operate simultaneously along the borehole. In these cases, simple correlation 

functions could not be sufficient for our goals. Through the Q-Learning approach, the artificial agent 

can learn from prolonged experience in dynamic scenarios, optimizing production in various sectors 

of the well according to a complex relationship. The final number of hidden neural layers after 

convergence provides insight into the network’s learned complexity; while two layers may be sufficient 

for the given simple simulation, real-world scenarios may benefit from additional layers to better 

capture and model complex relationships.  
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Figure 7. The Q-Learning algorithm, combined with self-aware deep neural networks, 

automatically regulates oil production, considering the oscillations of the waterfront 

estimated at a given observation point in the well. 

 

Figure 8. F1-score zoomed in to the range between 0.6 and 0.7. 

Furthermore, it is worth noting that an “episode” signifies a single run or trial of the 

reinforcement-learning agent in the environment. Within the context of our algorithm, an episode starts 

with the agent at the initial state (typically, time step 0) and proceeds with a sequence of decisions 

(actions) until the end of the data sequence is reached, with the aim of optimizing its actions over this 

sequence. The ultimate objective is to increase oil production while maintaining constant or increasing 

the water table distance. Throughout an iteration, the agent selects an action, observes the resulting 
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state transition, receives a reward, and updates its knowledge (e.g., Q-values in Q-learning). In our 

code, an “iteration” corresponds to the progression from one time step to the next within an episode, 

during which the agent decides whether to increase or decrease production based on its current state 

(water table distance and associated risk of water invasion) and policy, repeating this decision-making 

process until the episode concludes. 

Finally, in order to estimate the performance variations of the neural network, Figure 8 shows the 

trend of a well-known performance parameter, the F1-score, zoomed in to the range between 0.6 and 0.7. 

5. Further improvements and tests 

Next, we replicated the same type of test, but increasing the complexity of the simulated scenario. 

In this new test, we simulated a more complex trend of waterfront oscillations (at a single observation 

point). Consequently, the production trend becomes more complex, because the AGI/RL system tries 

to adapt it to the waterfront variations to maintain a safe distance of undesired water from the well, 

preventing possible phenomena of cresting or coning. Furthermore, to face such an increment of 

complexity in the data, we improved some aspects of the code. For instance, we refined self-reflection 

and self-learning mechanisms: the epsilon decay schedule was adjusted to decay over episodes, 

allowing for more initial exploration and gradually reducing it over time. In addition, we applied upper 

and lower bounds to the learning rate, ensuring it stays within reasonable limits during adjustments. 

Moreover, the number of hidden layers was now bounded by minimum and maximum values, 

preventing the network from becoming too complex or too simple. Finally, the learning rate and hidden 

layer adjustments were now based on recent performance relative to a moving average of rewards, 

leading to more informed adjustments. Figure 9 shows the reward trend and the normalized oscillations 

of waterfront and oil production for this new case. 

 

Figure 9. Reward vs. episodes (left) and oscillations of the waterfront-oil production 

oscillations vs. iteration number (right). 
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6. Why is this an AGI-inspired approach? 

The approach here applied through these tests incorporates many of the crucial mechanisms of an 

AGI system. These mechanisms enable an artificial agent to autonomously evaluate its performance, 

adjust neural network architecture, and modify learning parameters based on recent experiences, 

simulating the key aspects of a general form of operative intelligence. By dynamically adapting to 

changing conditions, the system exhibits a level of self-reflection and self-improvement characteristic 

of a typical AGI, allowing it to continuously enhance its performance over time without human 

intervention. Let us highlight these aspects in more detail, with reference to our tests. 

Generalization: The self-adjustment mechanism enables the system to generalize its knowledge 

and adaptability to a wide range of situations. By continuously evaluating its performance and 

adjusting parameters, the system learns to generalize effective strategies for optimizing oil production 

across diverse reservoir conditions and operational scenarios. 

Learning ability: The system’s ability to adjust autonomously neural network architecture and 

learning parameters reflects its capacity for continuous learning. Through experience-driven 

adaptation, the system improves its understanding of complex reservoir dynamics and refines its 

decision-making abilities over time. 

Reasoning and problem-solving: By dynamically modifying its internal structure and parameters 

based on recent performance, the system exhibits sophisticated reasoning and problem-solving 

capabilities. It can analyze complex production challenges, infer relationships between different 

variables, and formulate effective strategies to optimize oil production while mitigating risks. 

Autonomy: The self-adjustment mechanism empowers the system with a high degree of 

autonomy in decision-making and adaptation processes. Without requiring human intervention, the 

system autonomously evaluates its performance, adjusts its strategies, and enhances its effectiveness 

in optimizing oil production in real time. 

Self-improvement: Through iterative self-adjustment and learning, the system engages in 

continuous self-improvement. By tracking adjustments and analyzing performance metrics, the system 

identifies areas for enhancement and iteratively refines its strategies, algorithms, and neural network 

architecture to achieve better outcomes over time. 

Adaptability: The system’s ability to adjust dynamically its internal parameters and strategies in 

response to changing conditions demonstrates its adaptability. It can adapt to fluctuations in reservoir 

dynamics, production demands, and environmental factors, ensuring robust performance and 

optimization in diverse operational environments. 

Perception and sensing: The system’s integration with geophysical monitoring and inversion 

techniques implies a capability for perception and sensing. By analyzing data from sensors and 

inverting/interpreting geophysical signals, the system perceives changes in reservoir conditions and 

senses potential risks or opportunities for optimization. 

Continuous learning: The iterative nature of the self-adjustment mechanism facilitates continuous 

learning and adaptation. By leveraging experiences and performance feedback, the system engages in 

ongoing learning processes, continuously refining its understanding and strategies for optimizing oil 

production in dynamic operational contexts. 

All these capabilities are particularly useful for optimizing oil production because they enable the 

system to respond to (and predict) evolving reservoir dynamics and production challenges. By 

considering factors such as water intrusion risk, our approach can allow informed decisions to regulate 
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production strategies effectively. The integration of self-adjustment mechanisms ensures that the 

system remains adaptive and responsive in real time, ultimately leading to improved production 

efficiency and risk mitigation. Thus, this approach demonstrates the potential of AGI-inspired 

techniques in enhancing oil production management by facilitating autonomous decision-making and 

adaptation in complex operational environments. 

7. Discussion: benefits, limitations, and next steps 

The integration of AGI, RL, and SAL with continuous geophysical monitoring represents a 

significant advancement in the field of oil production and reservoir management. By combining these 

techniques in real-time data analysis and decision-making with electromagnetic monitoring techniques, 

our approach offers a comprehensive solution to optimize oil production while minimizing operational 

risks, particularly with reference to unwanted water invasion. 

Compared to traditional (non-AI) methods used for the optimization of oil-producing wells, our 

method offers several significant advantages. The first important benefit is that traditional methods 

typically rely on periodic manual data collection and analysis, which can result in delays in decision-

making. Instead, our approach provides continuous, real-time monitoring and analysis of geophysical 

data, enabling immediate adjustments to production strategies. This ensures more responsive and 

timely decision-making. 

A second advantage concerns adaptive learning and self-improvement. Traditional methods 

usually follow predefined rules and procedures that may not adapt well to changing conditions. On the 

other side, our method employs self-adjusting algorithms that learn from new data and experiences, 

continuously improving their performance and adapting to evolving reservoir dynamics without human 

intervention. 

This implies a significant step forward in risk management. In fact, in traditional methods, risk 

assessments and mitigation strategies are often based on historical data and fixed models, which may 

not accurately predict future events. Instead, our approach utilizes advanced machine learning 

algorithms to predict and manage risks such as unwanted fluid invasion (e.g., water ingress) in real 

time. This proactive approach helps prevent potential issues before they escalate. 

Additional benefits include higher accuracy and precision, increased efficiency and optimization, 

comprehensive monitoring system, scalability, and generalization using AGI-inspired criteria.  

On the other side, there are limitations in our methodology. These include a possible open problem 

of complex implementation. In fact, implementing AGI systems and continuous geophysical 

monitoring infrastructure may require significant initial investment, new technologies of well 

completion, and novel expertise. 

Furthermore, the effectiveness of the approach heavily relies on the quality of geophysical data 

collected and the accuracy of AGI algorithms in inverting/interpreting this data. That is true, especially 

considering the difficulties in recording borehole electric and electromagnetic data with a good 

signal/noise ratio at the depth of kilometers, in oil or gas reservoirs. Potential issues include signal 

distortion from well casings. This can interfere with data accuracy, requiring advanced signal 

processing for correction. Furthermore, low resistivity contrasts between reservoirs and water tables 

can complicate fluid differentiation, necessitating the use of enhanced inversion algorithms and 

additional geophysical data. In addition, fluid properties that change over time can affect measurement 

reliability, demanding adaptive algorithms and regular recalibration. Environmental factors and 
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external noise can distort measurements, which calls for robust noise-filtering techniques and high 

signal-to-noise ratio designs. Finally, integrating diverse data sources and interpreting them accurately 

is complex, necessitating advanced data fusion methods and AGI’s pattern recognition capabilities. 

Addressing these limitations effectively is crucial for ensuring accurate, reliable, and actionable 

insights in oil production optimization. 

An additional discussion is required about the synthetic tests presented in this paper. These serve 

as valuable demonstration of the proposed methodology’s efficacy in optimizing oil production and 

mitigating the risk of water invasion. By simulating scenarios of fluid dynamics and employing a 

combination of reinforcement learning and self-aware mechanisms within a deep learning architecture, 

the tests show how our approach can autonomously regulate production strategies to maintain optimal 

conditions. In fact, the results illustrate the adaptability and learning capabilities of the entire system, 

as it successfully navigates complex scenarios and optimizes production while considering the risk of 

water intrusion. Moreover, the inclusion of self-reflection mechanisms further enhances the system’s 

performance over time, highlighting the potential for continuous improvement and adaptation in real-

world applications. However, these tests are based on a simple 2D simulation, and additional tests and 

experiments on real data are necessary for validating the entire methodology.  

Moving forward, several avenues for future development and research emerge from this work. As 

anticipated earlier, conducting field trials to validate the effectiveness of the proposed methodology in 

real-world oil production environments would provide valuable insights and practical feedback. 

Furthermore, further refining AGI algorithms to improve their accuracy and efficiency in interpreting 

geophysical data could enhance the system’s performance and reliability. 

Of course, many additional applications can be done in different fields using a similar approach. In a 

multi-disciplinary scenario, other authors have successfully applied fruitful cross-disciplinary approaches 

that combine geophysics and advanced machine learning algorithms in various Earth disciplines, including 

mineral automatic classification, geothermal exploration, reservoir characterization, CO2 storage and 

multiphysics monitoring, and integrated geophysical field analysis [38–41].  

8. Conclusions 

This article underscores the transformative potential of artificial general intelligence (AGI) and 

reinforcement learning (RL) in improving oil production management. By integrating geophysical data 

monitoring, interpretation, continuous learning, and dynamic production control, AGI and RL offer a 

paradigm shift in reservoir management practices. 

The simple simulated examples presented in this study serve as theoretical illustrations of our 

approach in optimizing oil production while minimizing the risk of unwanted fluid invasion. Through 

advanced machine learning algorithms and self-adjustment mechanisms, the entire system 

autonomously regulates production strategies in real time, adapting to changing reservoir dynamics 

and environmental conditions. 

In conclusion, this study shows the potential of geophysical monitoring and AGI/RL integrated 

technology to be a game-changer in oil production management. As the industry continues to embrace 

digital transformation and automation, our approach offers a pathway toward more sustainable, 

efficient, and resilient reservoir management practices. 
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9. Appendix: Tutorial Python code 

To provide further insight in our approach, we prepared a sequence of tutorial Python codes with 

didactical purposes. This tutorial represents just a simplified version of our AGI software platform. It 

is shared exclusively for illustrative (neither commercial nor industrial) purposes. The entire Jupyter 

notebook can be requested directly from the author (paolo.dell’aversana@eni.com). In the following, 

we include an example of the code, extracted from the notebook. This can be copied by the users into 

their Python environment for running didactical tests.  

The code simulates the data to be used for tests like the one discussed in the paper. We remark 

again that the rationale behind the method is to use reinforcement learning, specifically Q-learning, to 

optimize oil production while minimizing the risk of water invasion in the borehole. By training an 

agent to learn optimal actions based on simulated data, the approach aims to automate decision-making 

processes and improve production efficiency. The inclusion of self-reflection and self-adjustment 

mechanisms further enhances the agent’s ability to adapt to changing conditions and optimize its 

actions over time. 

In this tutorial code, the input data consist of a set of distances of the water table from the 

production well (here, we skip the step that simulates the measurements of the electric potentials as 

well as the oil production rate). The following are the main blocks of the code. 

➢ Simulated data generation: Simulates time-dependent data for waterfront distances and oil 

production. The waterfront distances exhibit complex oscillation with added random noise, while oil 

production is initialized, and then it is determined based on the risk of water invasion, which is 

calculated from the waterfront distances and using Q-Learning technique. 

➢ Normalization: This block normalizes the simulated data between 0 and 1 to facilitate training. 

➢ Q-Learning setup: This block initializes Q-learning parameters such as the number of episodes, 

learning rate, discount factor, and exploration rate (epsilon) and sets up a Q-table to store Q-values for 

state-action pairs. 

➢ Training with Q-Learning: This block executes Q-learning training with self-reflection and 

self-adjustment mechanisms. The agent interacts with the environment (simulated data) over multiple 

episodes. At each step, the agent selects an action (increase or decrease production) based on an 

epsilon-greedy policy. The agent receives a reward based on the action taken and updates its Q-values 

accordingly. 

➢ Self-reflection and self-adjustment: Here, the code periodically evaluates the agent's 

performance and adjusts the neural network architecture (number of hidden layers), learning rate, and 

exploration rate accordingly. This adjustment enables the agent to adapt to changing conditions and 

improve its performance over time without manual intervention. 

➢ Plotting: Finally, the code allows visualizing the training progress and results using matplotlib. 

It plots the total reward obtained during training and the normalized waterfront distance and oil 

production over the iterations. 

Code example 

# This code is provided just for illustrative purposes. 

# The AGI-RL workflow is implemented at a very basic level, only for didactical scope. 

# Additional, more complex tutorial codes are available on demand (paolo.dell’aversana@eni.com) 



656 

AIMS Geosciences  Volume 10, Issue 3, 641–661. 

 

import numpy as np 

import tensorflow as tf 

import matplotlib.pyplot as plt 

 

# Simulated data 

time_steps = np.linspace(0, 10, num=500) 

water_front_distances = ( 

    150 + 20 * np.sin(0.5 * time_steps) + 10 * np.sin(1.5 * time_steps) + 

    np.random.normal(0, 2, size=500) 

) 

oil_production = ( 

    100 - 50 * np.exp(-0.02 * water_front_distances) + 20 * np.sin(0.5 * time_steps) + 

    15 * np.sin(1.5 * time_steps) + np.random.normal(0, 0.5, size=500) 

) 

 

# Normalize data between 0 and 1 

normalized_water_front_distances = ( 

    (water_front_distances - water_front_distances.min()) / 

    (water_front_distances.max() - water_front_distances.min()) 

) 

normalized_oil_production = ( 

    (oil_production - oil_production.min()) / 

    (oil_production.max() - oil_production.min()) 

) 

 

# Initialize Q-learning parameters 

num_episodes = 1000 

learning_rate = 0.1 

discount_factor = 0.8 

epsilon = 0.3 

 

# Initialize Q-table 

num_actions = 2  # Two actions: Increase production (0) or decrease production (1) 

Q_table = np.zeros((len(normalized_water_front_distances), num_actions)) 

 

# Initialize self-adjustment parameters 

hidden_layers = [10]  # Initial hidden layer configuration 

self_adjustment_rate = 0.1 

 

# Create lists for tracking rewards, exploration rate, self-adjustment, 

# learning rate adjustments, and hidden layer adjustments 

rewards = [] 

exploration_rates = [] 
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self_adjustments = [] 

learning_rate_adjustments = [] 

hidden_layer_adjustments = [] 

 

# Q-learning training with self-reflection and self-adjustment 

for episode in range(num_episodes): 

    state = 0  # Starting state 

    total_reward = 0 

 

    while state < len(normalized_water_front_distances) - 1: 

        # Epsilon-greedy policy 

        if np.random.uniform(0, 1) < epsilon: 

            action = np.random.choice(num_actions) 

        else: 

            action = np.argmax(Q_table[state]) 

 

        # Apply the chosen action 

        next_state = state + 1 

 

        # Calculate reward based on the change in water table distance and oil production 

        if action == 0:  # Increase production 

            if normalized_water_front_distances[next_state] >= 

normalized_water_front_distances[state]: 

                reward = 1 

            else: 

                reward = -1 

        else:  # Decrease production 

            if normalized_water_front_distances[next_state] < 

normalized_water_front_distances[state]: 

                reward = 1 

            else: 

                reward = -1 

 

        # Q-learning update 

        Q_table[state, action] += learning_rate * ( 

            reward + discount_factor * np.max(Q_table[next_state]) - 

            Q_table[state, action] 

        ) 

 

        total_reward += reward 

        state = next_state 

 

    rewards.append(total_reward) 

    exploration_rates.append(epsilon) 
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    # Self-reflection and self-adjustment 

    if episode > 0 and episode % 50 == 0: 

        # Check recent performance and adjust the neural network architecture 

        if total_reward > np.mean(rewards[-50:]): 

            hidden_layers.append(10)  # Increase the number of neurons in the hidden layer 

            hidden_layer_adjustments.append(1)  # 1 indicates an increase in hidden layers 

        else: 

            if len(hidden_layers) > 1: 

                hidden_layers.pop()  # Reduce the number of neurons in the hidden layer 

                hidden_layer_adjustments.append(-1)  # -1 indicates a decrease in hidden layers 

            else: 

                hidden_layer_adjustments.append(0)  # 0 indicates no adjustment 

 

        # Adjust the neural network learning rate based on self-reflection 

        if total_reward > np.mean(rewards[-50:]): 

            learning_rate *= (1 + self_adjustment_rate)  # Increase learning rate 

            learning_rate_adjustments.append(1)  # 1 indicates an increase in learning rate 

        else: 

            learning_rate_adjustments.append(0)  # 0 indicates no adjustment 

 

        self_adjustments.append( 

            1 if total_reward > np.mean(rewards[-50:]) else 0 

        )  # 1 indicates an adjustment, 0 indicates no adjustment 

    else: 

        self_adjustments.append(0)  # 0 indicates no adjustment 

 

    epsilon *= 0.995  # Decay epsilon for exploration over time 

 

# Plotting results 

plt.figure(figsize=(12, 6)) 

plt.subplot(1, 2, 1) 

plt.plot(range(num_episodes), rewards) 

plt.xlabel('Episode') 

plt.ylabel('Total Reward') 

plt.title('Total Reward vs. Episode') 

 

plt.subplot(1, 2, 2) 

plt.plot(normalized_water_front_distances, label='Normalized Water Front Distance') 

plt.plot(normalized_oil_production, label='Normalized Oil Production') 

plt.xlabel('Iteration Number') 

plt.ylabel('Normalized Value') 

plt.title('Normalized Water Table Distance and Oil Production vs. Iteration Number') 

plt.legend() 
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plt.tight_layout() 

plt.show() 
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