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Abstract: In the era of climate change-induced extreme rainfall events, the world faces unprecedented 

natural hazards, notably flooding. These events pose multifaceted risks to life, agriculture, 

infrastructure, and the well-being of society. Understanding and predicting extreme rainfall events are 

critical for achieving sustainable development and building resilient communities. This study 

employed advanced statistical techniques, specifically the generalized extreme value distribution 

(GEVD) and generalized Pareto distribution (GPD), using a Bayesian approach, to model and forecast 

annual maximum monthly rainfall in Somalia. Utilizing data spanning from 1901 to 2022, the rainfall 

extremes were fitted to both GEVD and GPD models using Bayesian Markov chain Monte Carlo 

(MCMC) simulations. Due to the lack of specific prior information, non-informative and independent 

priors were used to estimate posterior densities, ensuring objectivity and data-driven results, and 

minimizing subjective bias. Model comparisons were conducted using the deviance information 

criterion (DIC), prediction errors, and k-fold cross-validation. Findings reveal the robustness of the 

GEVD model in forecasting and predicting rainfall extremes in Somalia. Diagnostic plots confirmed 

the goodness of fit of the chosen model. Remarkably, the Bayesian GEVD return level estimation 

suggested that extreme rainfall could exceed 106 mm, 163 mm, and 195 mm for return periods of 10, 

50, and 100 years, respectively. These precise return level estimates may benefit urban planners, civil 
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engineers, and policymakers. Armed with this knowledge, they can design resilient infrastructure and 

buildings capable of withstanding the most extreme climatic conditions. Therefore, this study provides 

critical information for fostering sustainable development and resilience against climate-induced 

challenges in Somalia and beyond. Accurate estimation of extreme rainfall return levels enables 

effective mitigation of flooding risks and supports climate-resilient urban planning, civil engineering, 

and policymaking. These findings also inform strategies to optimize drainage systems, fortify 

infrastructure, and develop adaptive policies, thereby safeguarding lives, livelihoods, and 

infrastructure amidst escalating climate uncertainties. 

Keywords: extreme rainfall; generalized extreme value distribution; generalized Pareto distribution; 

MCMC simulation; Metropolis-Hastings algorithm 

 

1. Introduction 

Extreme weather events, including heavy and low rainfall, are increasingly linked to climate 

change, giving rise to a spectrum of natural disasters such as floods, droughts, and ecological 

disruptions. These events, in turn, have profound impacts on human daily life and economic well-

being. Numerous climate models predict a rise in extreme weather events due to global warming [1]. 

Hotter temperatures, heatwaves, and intense rainfall events are expected to become increasingly 

common, as highlighted by the United Nations Intergovernmental Panel on Climate Change (IPCC) in 

February 2023 [2]. 

Somalia, in particular, has witnessed a series of extreme weather-related catastrophes, including 

prolonged droughts, devastating floods, and locust invasions. Extreme rainfall frequently leads to 

perilous river overflows and flash floods. UNHCR reported that over 650,000 Somalis were displaced 

by river overflows and flash floods triggered by extreme rainfall in 2020, with Hirshabelle and 

southwest states among the hardest-hit regions [3]. The years 2018 and 2019 witnessed the 

displacement of an estimated 281,000 and 416,000 individuals from their homes, respectively. FAO 

reported that approximately 15,000 hectares were submerged under floodwaters in 2018, including 

3500–4500 hectares of cultivated cereals [4]. Furthermore, floods destroyed approximately 500 tons 

of sorghum stored in underground pits. These recurring weather-related calamities have severe 

repercussions for societies heavily reliant on agriculture, particularly farming and livestock, for their 

livelihoods. These extreme events underscore the importance of meteorological, hydrological, and 

climate information for disaster risk reduction and early warning systems in Somalia [5]. Changes in 

the human-flood distance can mitigate flood fatalities and displacements, emphasizing the critical need 

for flood protection measures, especially in areas lacking adequate mitigation works [6]. The 

development of effective early warning systems in Somalia is critical for fostering livelihood resilience 

and preventing loss of lives and properties [5]. Therefore, it is recommended that Somalia implement 

further strengthening of existing disaster risk reduction and early-warning-system mechanisms at the 

national and regional levels through an integrated and cross-sectoral approach [5]. 

Extreme environmental events profoundly impact both a country’s communities and its 

economy [7]. While these events may seem unpredictable, the consequences of extreme rainfall 

events can be mitigated through proactive measures informed by statistical analysis of extreme 



600 

AIMS Geosciences                                                      Volume 10, Issue 3, 598–622. 

rainfall data [8]. The unpredictability of the events can be understood through the concept of 

predictability-time-windows [9]. Within a specific time-window, such as 10 minutes for high-

resolution storm events, rainfall intensity can be predicted with a certain accuracy. Beyond this time-

window, the predictability diminishes, and assumptions like persistence models become more relevant, 

where each value is assumed to be equal to the next. This underscores the importance of timely and 

accurate meteorological information for effective disaster preparedness and response strategies. 

The behaviors of rainfall and extreme rainfall, both short-term and long-term, are crucial for 

understanding their impacts [10]. The fractal analysis quantifies short-term behavior through 

parameters like fractal dimension (D), indicating roughness [11]. A higher D signifies smooth behavior 

with more stable patterns, while a lower D suggests rough behavior with frequent changes. Long-term 

behavior is assessed by the Hurst parameter 𝐻, revealing the persistence and clustering of wet and dry 

periods [12]. An 𝐻 value close to 0.5 denotes randomness, while values near 1 indicate strong memory 

and high dependence between periods [13]. Simulation of short-term (fractal) and especially long-term 

(persistence) behaviors of rainfall often challenges Markov Chain models. Therefore, a stochastic 

synthesis framework proposed by Dimitriadis and Koutsoyiannis (2018, section 4.2) [14] can be 

explored, which explicitly preserves these behaviors and marginal moments, including heavy-tail 

distributions representing the marginal probability distribution of the process. 

In the last decades, numerous studies have been undertaken to study extreme weather events in 

various regions of the world [15–22]. A substantial historical dataset of extreme rainfall is essential 

to conduct such extreme value analysis. However, like many other countries, Somalia faces 

limitations in obtaining such data. In such cases, a Bayesian approach is often employed to estimate 

parameters for the generalized extreme value distribution (GEVD) and generalized Pareto 

distribution (GPD) [1,23,24]. Bayesian-based GEVD and GPD models offer the advantage of 

incorporating prior information through prior distributions. Previous research has utilized Markov 

chain Monte Carlo (MCMC) simulations to address computational challenges inherent in Bayesian-

based approaches [24–28]. 

Despite the existing studies on Bayesian extreme value modeling, research specific to Somalia 

remains limited [29, 30]. This paper aims to analyze patterns in extreme rainfall data using Bayesian-

based GEVD and GPD models. By examining the annual maximum average monthly rainfall in 

Somalia, this study seeks to enhance understanding of both short-term variability and long-term trends 

in extreme weather, contributing to improved disaster preparedness and mitigation strategies. 

2. Materials and methods 

2.1. Study area 

The area of study is Somalia (located at approximately 5.5941182°N, 47.2192383°E), a country 

situated on the Horn of Africa, a peninsula in the northern region of Africa. Somalia shares its borders 

with Djibouti to the northwest, Ethiopia to the west, Kenya to the southwest, the Indian Ocean to the 

east and south, and the Gulf of Aden to the north. Somalia covers an area of 637,657 square kilometers 

and is home to approximately 12,000,000 inhabitants, with a population density of around 25 people 

per square kilometer. It boasts a coastline that stretches for 3025 kilometers, making it the longest 

coastline in Africa. Mogadishu serves as both the largest city and the capital of Somalia. 
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The northern region of Somalia is characterized by its mountainous terrain, with elevations 

ranging from 900 to 2000 meters above sea level. In contrast, the southern and central areas are 

predominantly flat, consisting mainly of plateaus with elevations of less than 180 meters above sea 

level. Somalia’s geographical extremes include its lowest point, which lies at sea level in the Indian 

Ocean, and its highest point, Mount Shimbiris, which reaches an elevation of 2416 meters. The arid 

and semi-arid lands (ASALs) in Somalia, constituting over 80% of the nation’s land area, are 

inherently susceptible to extreme weather conditions such as elevated mean surface temperatures, 

prolonged droughts, unpredictable rainfall patterns, and intense winds [31]. 

Within Somalia’s meteorological landscape, the country experiences an arid and semi-arid 

climate that exhibits significant variations in both space and time. The primary climatic features 

include distinct wet and dry seasons, coupled with minimal temperature variations. Daily temperatures 

typically range from 24°C to 30°C, with exceptions in higher altitude areas and along the coastline. 

Rainfall holds crucial importance in Somalia’s meteorology, significantly influencing livelihoods. 

Rainfall patterns exhibit substantial spatial and temporal variations. Agriculture production is heavily 

reliant on these variations, both between seasons and within seasons. Nevertheless, Somalia generally 

receives low rainfall with high variability. The northeastern regions typically receive less than 100 mm 

of annual rainfall, while the central plateaus receive an average of 200 to 300 mm. In contrast, the 

southwest and northwest regions receive approximately 500 to 600 mm of annual rainfall. 

Flooding in Somalia manifests in two main forms: river floods and flash floods. River floods occur 

along the Juba and Shabelle rivers in southern Somalia, while flash floods are prevalent along 

intermittent streams in the north. Recent years have witnessed an increase in the frequency and intensity 

of flooding events in the country, resulting in loss of human life and significant economic damage. 

It is important to note that the country currently has 6 synoptic stations, 7 river gauging stations, 

82 manual rainfall stations, and 10 automatic weather stations (see Figure 1). Most of the rainfall 

stations have data gaps spanning from 1991 to 2002 as a result of the collapse of the central government 

in 1991. Therefore, the available data from these stations is temporally limited and, for this reason, 

they cannot be used in this study for modeling and forecasting extreme rainfall events. 

2.2. Data description and source 

The data utilized for the analysis in this study comprises high-resolution monthly gridded rainfall 

data obtained from the merged satellite-gauge product known as the Climatic Research Unit Time 

Series 4.0 (CRU TS 4.0) [32], with a spatial resolution of 0.5° × 0.5°. This dataset stands as a 

cornerstone in climate modeling research due to its widespread use. Over an extended timeframe, CRU 

TS 4.0 provides the most reliable estimates of month-to-month rainfall variations. 

The CRU TS 4.0 dataset considered in this study covers the period from 1901 to 2022 and has 

been sourced from the Climate Knowledge Portal of the World Bank Group 

(https://climateknowledgeportal.worldbank.org). The creation of CRU TS 4.0 involves interpolating 

monthly climatic anomalies derived from an extensive network of weather station records. Prior to its 

release, CRU TS 4.0 undergoes a stringent quality control process. This process includes updating 

historical data from multiple weather stations, filling in missing records, addressing outliers, and 

implementing various data refinement procedures (refer to Harris et al. [32] for details). 

Given the unavailability of continuous, long-term meteorological data with comprehensive spatial 

coverage within Somalia, the high-resolution gridded rainfall data (CRU TS 4.0) are employed as an 

https://climateknowledgeportal.worldbank.org/
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alternative and previously scrutinized data source. Leveraging the extensive historical record of this 

rainfall-gridded dataset, we are equipped to proceed with estimating the parameters of the GEVD and 

GPD models employed in the present study. 

 

Figure 1. The study area with synoptic, river gauging, manual rainfall, and automatic 

weather stations. (Source: Food and Agriculture Organization of the United Nations. 

Reproduced with permission). 

While the CRU TS 4.0 dataset is a valuable resource for climate research, it is important to 

acknowledge potential limitations and biases that could impact the study results. The dataset’s spatial 

resolution of 0.5° × 0.5° may be too coarse to capture localized extreme rainfall events accurately, 

potentially leading to underestimation or overestimation of rainfall extremes in specific areas. The 

interpolation methods used to create CRU TS 4.0 rely on available weather station data, which may be 

sparse in certain regions, including Somalia, introducing biases if the spatial distribution of stations is 
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uneven or if there are significant data gaps. The quality of historical weather station data can vary, 

with issues such as changes in station locations, instrumentation, and observation practices over time 

introducing inconsistencies and potential biases. Additionally, the dataset may not always accurately 

capture the most extreme rainfall events due to the limitations of the interpolation methods and the 

resolution of the underlying data. These limitations could influence the precision of the estimated 

parameters of the GEVD and GPD models. However, by using a comprehensive and well-established 

dataset like CRU TS 4.0, we aim to mitigate some of these challenges and provide robust estimates of 

extreme rainfall events. Future studies could benefit from higher-resolution datasets and improved 

interpolation techniques to address these limitations further. 

2.3. Extreme value theory 

The methodology and all of the formulae in this section are based on Coles [24]. Extreme value 

theory (EVT) is a statistical technique used to describe extreme events’ asymptotic behavior. The block 

maxima method is a popular approach in EVT. Block maxima refers to the maximum value of 

observations in a length of the interval, T. The choice of the block is often made on an annual, monthly, 

or seasonal basis, with each block containing only one observation. As a consequence, independent 

and identically random variables appear. The following equation gives the GEVD as the limiting 

distribution of the block maxima: 

1
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G z





− 
 −  

= − +   
    

 (1) 

where z represents the data, μ represents the location parameter (−∞ < 𝜇 < ∞), σ represents the scale 

parameter (𝜎 > 0), and 𝜉  stands for the shape parameter (−∞ < 𝜉 < ∞). The GEVD studies the 

combined extreme value distributions of Weibull (𝜉 < 0), Gumbel (𝜉 = 0), and Fréchet (𝜉 > 0). Thus, 

the differences in the generalized extreme values of the three classes highlighted are determined by the 

value of shape parameter ξ only. Another popular technique in EVT is peaks over threshold (POT). 

The data that surpasses the threshold, u, is modeled by GPD which has the cumulative distribution:  

1

( ) 1 1
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H y
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where y > 0, and 𝜎̃ = 𝜎 + 𝜉(𝑢 − 𝜇). The GPD consists of three types of distributions: exponential 

distribution (𝜉 = 0), ordinary Pareto distribution (𝜉 > 0), and Pareto-II-type distribution (𝜉 < 0). In 

this study, we used a threshold of 30 mm to analyze the extreme rainfall data as the parameter estimates 

of the GPD become stable at u = 30 mm. For assessing the validity of GEVD and GPD models, 

probability plots, QQ plots, return level plots, and density plots can all be used. If the model is 

appropriate for the data, then the probability plot, QQ plot, and return level plot will be roughly linear 

and the fitted density plot will be approximately the same as the actual density of the data. 

Estimates of the extreme quantiles of annual maxima are particularly useful in environmental 

extremes because they provide an estimate of the level that the process is likely to exceed once every 

n years on average. For GEVD, these quantiles are calculated as follows: 
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The quantity 𝑞𝑝 is the return level associated with the 1/p-year return period. It can be defined as the 

level that is expected to be exceeded on average once every 1/p years, or more precisely, the level 

exceeded by the annual maxima in any year with probability p. For GPD, the N-year return level is 

given by the formula: 
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where ny is the number of observations per year and 𝜁𝑢 = 𝑃𝑟(𝑋 > 𝑢), which has the natural estimator 

𝜁𝑢̂ = 𝑘/𝑛, the sample proportion of points exceeding u. 

2.4. Bayesian approach 

The methodology and all of the formulae in this section are based on Coles [24] and Smith [27]. 

The Bayesian method enables us to make inferences from the likelihood function when the sample size 

of the annual maximum time series is small. As shown by Koutsoyiannis [33], even with larger samples 

of 100 years or more, estimating the shape parameter based on a single series is extremely difficult. 

Bayesian analysis has the advantage of reducing these drawbacks because it enables prior information 

to be incorporated into the likelihood to increase estimation reliability. Therefore, this study adopted 

the Bayesian approach as recommended by Annazirin et al. [34], Lazoglou and Anagnostopoulou [35], 

and Ahmad et al. [36]. As per this method, unlike the maximum likelihood estimation, a parameter of 

a distribution is not an undefined constant but is viewed as a random variable with zero mean and a 

certain variance with a prior probability density function 𝑓(𝜃).  

If we suppose the data 𝑥 = (𝑥1, . . . , 𝑥𝑛) as independent realizations of a random variable with a 

density from the parametric family 𝐹: {𝑓(𝑥; 𝜃): 𝜃 ∈ 𝛩}, the Bayes Theorem states: 
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where 𝑓(𝜃) is the prior distribution, 𝑓(𝜃/𝑥) is the posterior distribution, and 
1
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i
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=  is the 

likelihood. The EVT’s function is to describe the observed process extremes in order to find the 

probability of future occurrence of extreme events. There are good reasons to choose Bayesian 

procedures if an appropriate prior can be specified. However, the denominator in (5) can be 

computationally complex in the case of several parameters such as the GEVD. MCMC is usually adopted 

to overcome this issue, using multiple simulations [37]. MCMC methods give the means to simulate 

complicated distributions by simulating from Markov chains that have the intended distributions as their 

stationary distributions. The Gibbs sampler is one type of MCMC method that offers a way to simulate 

multivariate distributions, given that it is possible to simulate full conditional distributions [37, 38]. 
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Simulating from these full conditions might not be easy, but Metropolis-Hastings systems offer a guide. 

These systems are based on studies by Metropolis et al. [39] and Hastings [40]. Suppose 𝜋 is a 

distribution of interest such that a reversible Markov chain, which has a stationary distribution, can be 

created. Simulating from such a reversible Markov chain can result in values from .  

The method is to create a transition kernel p (𝜃 , 𝜙) such that the distribution of the chain’s 

equilibrium is 𝜋. This transition kernel is composed of two elements: the arbitrary transition q (𝜃, 𝜙), 

also described as the distribution of the proposal, and the probability of acceptance a (𝜃, 𝜙) defined as: 

( )
( ) ( , )

, min 1,
( ) ( , )

q
a

q

   
 
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 
=  

 
 (6) 

This was proposed by Hastings (1970). To find a chain with limiting distribution  , we use the 

following algorithm: 

Step 1: Initialize the counter to j = 1 and the chain’s state to θ(0).  

Step 2: Using the kernel 𝑞(𝜃(𝑗−1), 𝜙), simulate a proposed value . 

Step 3: Obtain the probability of acceptance of the proposed value 𝑎(𝜃(𝑗−1), 𝜙). 

Step 4: With probability 𝑎(𝜃(𝑗−1), 𝜙), accept 𝜃(𝑗) = 𝜙 and otherwise take 𝜃(𝑗) = 𝜃(𝑗−1). 

2.4.1. Prior specification  

According to Coles, even if there is no prior information to work with, determining a prior 

distribution is an essential part of any Bayesian analysis [24]. In such cases, it is common to use priors 

with a high variance—or, to put it another way, priors that are near-flat—to represent the lack of 

genuine prior knowledge. There is a lot of literature on this subject, but in practice, studies are not 

typically sensitive to prior distribution choices with a wide enough variance. Sensitivity analysis may 

be used to analyze this aspect of any issue. Suppose the likelihood function for the maximum rainfall 

analysis is the GEVD given by: 

( )~ , , ,  1,...,122iZ GEVD i   =  (7) 

where Zi is the annual maxima for the year indexed by i. We might use the following prior density 

function with 𝜙 = 𝑙𝑜𝑔 𝜎: 

( ) ( ) ( ) ( ), , u           =
    (8) 

where 𝜋𝑢(𝜇), 𝜋𝜙(𝜙), and 𝜋𝜉(𝜉) are normal density functions with zero means and 𝑣𝜇, 𝑣𝜙,and 𝑣𝜉  are 

variances, respectively. The reason for using 𝜙 = 𝑙𝑜𝑔 𝜎 is that it is a simpler parameterization for 

preserving the positivity of  . When the variance parameters are sufficiently large, the prior density 

(8) refers to the prior independence specification in the parameters of 𝜇 , 𝜙, and 𝜉 , which can be 

rendered to be nearly flat. We used 𝑣𝜇 = 𝑣𝜙 = 10,000 and 𝑣𝜉 = 100 for this analysis. 
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2.4.2. MCMC algorithm 

It is essential to select an MCMC algorithm for inference. We adopt a Metropolis−Hastings 

MCMC sampling scheme, in which the individual components of the vector (𝜇, 𝜙, 𝜉) are considered. 

We denote the resulted transition densities by 𝑞𝜇, 𝑞𝜙, and 𝑞𝜉 and we specify a random walk procedure 

to generate the proposed values, i.e., 

*

*

*

,

,

,







  

  
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= +

= +

= +
 

(9) 

with 𝜀𝜇, 𝜀𝜙,and 𝜀𝜉  being normally distributed random variables with zero means and variances 𝑤𝜇, 

𝑤𝜙, and 𝑤𝜉 , respectively. The algorithm and its tuning parameters do not affect the model. However, 

it affects the algorithm’s performance. The parameters of the algorithm were tuned to strive for a 30 

percent overall acceptance performance. For GEVD, the values 𝑤𝜇 = 4.34, 𝑤𝜙 = 0.16, and 𝑤𝜉 = 0.19 

were found to function fairly well in this data after some trial and error. For GPD, 𝑤𝜙 = 0.115 and 

𝑤𝜉 = 0.07 were used. 

2.5. Model selection criteria 

The assessment of the selection of the Bayesian-based GEVD and GPD overall fits is based on 

the deviance information criterion (DIC) [41]. The DIC is the generalization of the Akaike information 

criterion (AIC) for hierarchical modeling. It is especially useful in Bayesian model selection problems 

where the models’ posterior distributions were obtained via MCMC simulations. DIC, like AIC, is an 

asymptotic approximation as the sample sizes get larger. The DIC is given by: 

( ) ( )2 , ,DIC D y D y = −  (10) 

where y is the data, 𝐷(𝑦, 𝜃) is the posterior mean deviance, and 𝐷(𝑦, 𝜃) is the deviance at the posterior 

mean of . The value of DIC is valid only when the posterior distribution is close to the multivariate 

normal distribution. 

Prediction errors such as mean squared error (MSE) and mean absolute error (MAE), as well as 

k-fold cross-validation errors (MSE, MAE), were also considered to assess model performance. MSE 

is calculated as: 

( )
2

1

1
ˆ ,

n

i i

i

MSE y y
n

=

= −  
(11) 

where 𝑦𝑖 are the observed values, ˆiy are the predicted values, and n is the number of observations. 

MAE is calculated as: 

1

1
ˆ
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MAE y y
n
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= −  
(12) 
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where  denotes the absolute value. 

In k-fold cross-validation, MSE and MAE are computed similarly across different folds of the 

data, providing an average performance metric across the validation process. 

2.6. Software used for data analysis  

Data analysis was performed using the R statistical software, an open-source programming 

language widely used for statistical computing and graphics. Specifically, the extRemes 2.0 package 

was utilized for extreme value analysis [42]. The extRemes package provides a comprehensive suite 

of tools for the analysis of extreme values in environmental data. This includes functions for fitting 

extreme value distributions to data, calculating return levels, and conducting various diagnostics to 

assess model adequacy. In our study, we employed this package to analyze the extreme values of 

monthly rainfall data, allowing us to better understand the frequency and magnitude of extreme events 

within our data.  

3. Results and discussion 

3.1. Results 

3.1.1. Descriptive analysis 

In this section, we conducted a detailed examination of the statistical properties of monthly 

rainfall data spanning from 1901 to 2022. These findings lay the foundation for subsequent Bayesian 

analysis. Table 1 (below) presents a comprehensive summary of key statistics for monthly rainfall (in 

millimeters) during the study period. The average monthly rainfall is calculated at 22.21 mm, 

representing a central tendency measure. The highest recorded monthly rainfall occurred in November 

1961, reaching an impressive 125.66 mm, showcasing extreme variability. Conversely, the lowest 

reported monthly rainfall was observed in February 1967, with a mere 0.77 mm, highlighting the 

occurrence of extremely dry periods. Skewness, a measure of the data's asymmetry, stands at 1.50, 

indicating substantial positive skewness. This confirms that the distribution of monthly rainfall is 

highly skewed toward higher values. The estimated excess-kurtosis coefficient (kurtosis minus 3), 

measuring the data’s peakedness, stands at 2.10. This value suggests a leptokurtic distribution, 

implying that the distribution has heavier tails and is more prone to extreme values. 

The Hurst exponents calculated for the rainfall in Somalia showed values consistently above 0.5, 

indicating a degree of long-term persistence in the data. Specifically, the corrected empirical Hurst 

exponent of 0.562 was obtained, suggesting a slight but noticeable positive autocorrelation, meaning 

that periods of high rainfall are moderately likely to be followed by similar periods, and the same for 

low rainfall. This persistence points to a tendency in the rainfall patterns to maintain their behavior 

over time. The corresponding fractal dimensions, derived as 𝐷 = 2 – 𝐻, range from approximately 1.39 

to 1.46, reflecting moderate roughness and complexity. This complexity indicates that while the 

rainfall patterns are somewhat predictable in their persistence, they still exhibit significant variability 

and irregularity typical of natural phenomena. 
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Table 1. Summary statistics for monthly rainfall (mm). 

Minimum 1st Quartile Median Mean 3rd Quartile Maximum Skewness Excess-Kurtosis 

0.7700 6.9575 13.8400 22.2121 32.0000 125.6600 1.4961 2.1008 

To gain a more intuitive understanding of the monthly rainfall distribution, we present Figure 2, 

which displays the histogram of monthly rainfall. This graphical representation visually confirms the 

data’s right-skewed nature, aligning with the skewness measure. The presence of heavier tails in the 

distribution is evident, further emphasizing the occurrence of extreme values. 

 

Figure 2. Histogram of monthly rainfall (mm). 

Moreover, Figure 3 provides insights into the seasonal variability of monthly rainfall in Somalia 

from 1901 to 2022. The observed pattern reveals a rise in monthly rainfall from March to May and 

again from September to November, indicating distinct wet periods. Conversely, the monthly rainfall 

experiences a decline from December to February and from June to August, representing dry 

intervals. This observed pattern underscores the suitability of EVT in analyzing extreme rainfall 

events in Somalia. 
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Figure 3. Seasonal box plot for monthly rainfall (mm). 

3.1.2. Bayesian analysis 

In the following section, we leverage Bayesian estimation techniques to analyze and model 

rainfall extremes. Specifically, we focus on the GEVD and the GPD. These distributions are essential 

for characterizing extreme rainfall events. 

Table 2 presents parameter estimates obtained through Bayesian estimation by fitting the GEVD 

model to annual maximum rainfall data. The parameter values, derived from the posterior means of 

MCMC samples, closely approximate maximum likelihood estimates due to the utilization of nearly 

flat and minimally informative priors. The estimated shape parameter (ξ) is observed to be close to 

zero, indicating a distribution close to the Gumbel type, as supported by the confidence interval that 

encompasses zero, suggesting symmetry in the tail behavior of the distribution. 

Table 2. GEVD parameter estimates using the Bayesian estimation method. 

Parameters Posterior 

Means 

Standard 

Deviations 

95% Confidence 

Interval (CI) 

Variance-Covariance Matrix 

Location (μ) 58.794 1.622 (55.745, 62.040) 
8
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For GEVD parameters, Bayesian inference using MCMC methods was employed to approximate 

the posterior densities, as depicted in Figure 4. The MCMC analysis was performed using the 
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Metropolis-Hastings algorithm, which iterated 50,000 times in total. To ensure robust inference, the 

first 10,000 iterations were discarded as burn-in periods, during which the chains stabilized and 

reached convergence. Following this initial phase, the remaining 40,000 iterations were retained as 

realizations of the posterior’s marginal distributions. Sensitivity analyses were conducted using 

different initial points to verify convergence across chains. All chains converged to consistent locations 

within the first 10,000 iterations, confirming the reliability and stability of the Bayesian estimates for 

the GEVD parameters. 

 

Figure 4. MCMC posterior densities of parameters and trace plots from fitting the GEVD 

model to annual maximum rainfall using Bayesian estimation. Horizontal dashed lines 

reflect the MCMC sample mean (after the initial “burn-in” values were removed) and 

vertical dashed lines reflect the burn-in period. 

The objective of fitting a statistical model to the annual maxima was to draw conclusions about 

the distribution parameters. Diagnostic plots were used to assess the adequacy of the Bayesian 

GEVD model. Figure 5 presents four diagnostic plots including a quantile-quantile plot, probability 

plot, density plot, and return level plot—which collectively indicate a satisfactory fit of the Bayesian 

GEVD model to the annual maxima. These diagnostic assessments are essential for validating the 

model’s assumptions and ensuring its appropriateness for describing the distribution underlying the 

annual maxima. 
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Figure 5. Diagnostic plots from fitting the GEVD model to maximum annual rainfall with 

the Bayesian estimation method. 

Samples from the posterior distribution of return levels were generated by substituting 

observation vectors from the marginal posterior distributions with values in the range 0 < p < 1 into 

equation (3). This method was applied for probabilities of p = 0.10, 0.02, and 0.01 to estimate the 

posterior distributions of return levels corresponding to 10, 50, and 100 years. Figure 6 displays plots 

of the posterior densities, illustrating the distributions of return levels across these different return 

periods. These posterior distributions provide probabilistic estimates of extreme event magnitudes, 

incorporating uncertainties from the Bayesian framework used in the analysis. 

Due to the positive skew observed in the posterior distributions, as depicted in Figure 6, the 

posterior medians are considered more suitable measures than the posterior means. Table 3 presents 

the posterior medians and their corresponding 95% credibility intervals for the 10-, 50-, and 100-year 

return levels. These intervals reflect the uncertainty in the estimation of extreme event magnitudes 

under a non-informative prior assumption. Notably, as indicated in Table 3, the return levels increase 

steadily with longer return periods. For instance, the 10-year return level has a posterior median of 

94.383 mm with a 95% credibility interval ranging from 87.033 mm to 106.230 mm, while the 100-

year return level shows a posterior median of 140.815 mm with a broader interval from 117.571 mm 

to 195.386 mm.  
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Figure 6. GEVD posterior densities of the 10-, 50-, and 100-year return levels using a non-

informative prior. 

Table 3. GEVD posterior medians with 95% credibility intervals for the 10-, 50-, and 100-

year return levels (mm) using non-informative prior. 

Return Level 95% Lower CI Posterior Median 95% Upper CI 

10 year  87.033 94.383 106.230 

50 year 109.105 125.839 162.655 

100 year 117.571 140.815 195.386 

The Bayesian approach can also be effectively applied to the GPD. Similar to the procedure used 

for the GEVD, a random walk method serves as the proposal density function, while independent 

normal density functions act as the priors. This approach facilitates the estimation of GPD parameters 

through MCMC sampling. The parameter estimates, represented by the posterior means, are detailed 

in Table 4. Given the use of non-informative priors, the posterior means are anticipated to be very 

similar to the maximum likelihood estimates for the GPD parameters. This similarity underscores the 

minimal influence of the priors on the parameter estimates, thereby allowing the observed peaks over 

the threshold to primarily inform the posterior distributions. 

Figure 7 depicts the estimated MCMC posterior densities and trace plots for the parameters 

obtained from fitting the GPD model to the peaks over the threshold using Bayesian estimation. The 

trace plots demonstrate the sampling paths of the parameters throughout the MCMC iterations, 

allowing for the assessment of convergence and mixing behavior. In this analysis, the 

Metropolis−Hastings algorithm was employed, and it was observed that all chains converged to the 

same parameter locations within the first 10,000 iterations. This convergence indicates that the 



613 

AIMS Geosciences                                                      Volume 10, Issue 3, 598–622. 

algorithm successfully explored the posterior distributions and that the subsequent samples can be 

considered reliable representations of the true posterior densities. The posterior density plots provide 

a visualization of the distribution of parameter estimates, showing their central tendencies and spreads. 

These plots are crucial for understanding the uncertainty and variability in the parameter estimates 

derived from the Bayesian framework. 

Table 4. GPD parameter estimates using the Bayesian estimation method. 

Parameters Posterior Means Standard Deviations 95% Confidence 

Interval 

Variance-Covariance 

Matrix 

Scale (σ) 29.141 1.835 (25.671, 32.879) 
3
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Figure 7. MCMC posterior densities of parameters and trace plots from fitting the GPD 

model to annual maximum rainfall using Bayesian estimation. Horizontal dashed lines 

reflect the MCMC sample mean (after the initial “burn-in” values were removed) and 

vertical dashed lines reflect the burn-in period. 

The diagnostic plots in Figure 8, including the quantile-quantile plot, density plot, return level 

plot, and probability plot, collectively validate the fitted Bayesian GPD model. The near-linear 

alignment in the quantile-quantile and probability plots indicates that the empirical data closely follows 

the theoretical distribution. The return level plot demonstrates that the model provides reasonable 

estimates for various return periods. However, the density plot shows some deviation between the 

predicted density and the observed data histogram, suggesting slight discrepancies. Despite this 
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deviation, the overall diagnostic plots confirm that the Bayesian GPD model is generally well-

calibrated and reliable for modeling extreme rainfall events. 

 

Figure 8. Diagnostic plots from fitting the GPD model to maximum annual rainfall with 

the Bayesian estimation method. 

To examine the effects of the non-informative prior on the return levels, we produced posterior 

density plots. These plots were generated by replacing observation vectors from the marginal posterior 

distributions of the location parameter (μ) and the scale parameter (σ) with values in the range 0 < p < 

1. Specifically, this procedure was performed for probabilities p = 0.1, 0.02, and 0.01 to obtain the 

posterior distributions of the 10-year, 50-year, and 100-year return levels, respectively. Figure 9 

displays the posterior density plots for these return levels under the non-informative prior assumption. 

These plots illustrate the uncertainty and variability in the estimated return levels, providing insights 

into the likely range of extreme rainfall events over different return periods.  

Given the slight positive skewness observed in the posterior densities, we opted to use posterior 

medians rather than posterior means for our analysis. Table 5 presents the posterior medians and 

corresponding 95% credibility intervals for the 10-year, 50-year, and 100-year return levels using a 

non-informative prior in the GPD model. As the return period increases, the 95% credibility intervals 

slightly widen, reflecting increased uncertainty in the estimates due to fewer extreme events occurring 

over longer periods. This phenomenon is evident in the quite widening of the intervals from the 10-

year to the 100-year return levels. The GPD model produced precise return levels and narrower 

credibility intervals compared to the GEVD, indicating reduced uncertainty associated with the 

estimated return levels. This precision is advantageous in assessing and planning for extreme events, 

ensuring reliable inference even in the presence of skewed distributions or limited data points. 
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Figure 9. GPD posterior densities of the 10-, 50-, and 100-year return levels using a non-

informative prior. 

Table 5. GPD posterior medians with 95% credibility intervals for the 10-, 50-, and 100-

year return levels (mm) using a non-informative prior. 

Return Level 95% Lower CI Posterior Median 95% Upper CI 

10 year  93.164 97.645 103.415 

50 year 108.204 113.978 123.721 

100 year 112.777 119.215 130.957 

3.1.3. Comparative analysis 

To determine the most suitable model between the GEVD and the GPD with Bayesian estimation 

for modeling extreme rainfall events in Somalia, we utilized multiple criteria. First, the deviance 

information criterion (DIC) was employed as a measure of model goodness of fit and complexity. 

Table 6 illustrates that the GEVD model exhibits a significantly lower DIC value compared to the GPD 

model (3130.044 vs. 9524.425, respectively). This indicates that the GEVD model provides a better 

balance between fit and complexity, suggesting superior performance in capturing the extreme tail 

behavior of rainfall distributions. 

Further analysis of prediction errors and validation errors supports this finding. For instance, the 

mean squared error (MSE) and mean absolute error (MAE) from k-fold cross-validation (k = 5) were 

computed for both models. The GEVD model demonstrates lower prediction errors across both MSE 

(756.523) and MAE (21.261) compared to the GPD model (MSE = 957.576, MAE = 24.561). These 

results reaffirm that the GEVD model more accurately predicts extreme rainfall values, which is 

essential for long-term risk assessments and infrastructure planning in Somalia. 
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Table 6. Selection criteria for the two models. 

Model DIC Prediction Errors k-fold Cross-Validation Errors 

  MSE MAE MSE MAE 

GEVD-Bayesian 3130.044 758.000 22.276 756.523 21.261 

GPD-Bayesian 9524.425 1776.506 36.346 957.576 24.561 

Figure 10 illustrates the observed values versus predicted values for rainfall extremes using block 

maxima and peaks-over-threshold methods. This figure visually represents how well each model—

GEVD and GPD—captures extreme rainfall events. Ideally, the plot would show a close alignment of 

observed and predicted values, especially in the tail regions where extreme events occur. The GEVD 

model exhibited a closer fit to observed extreme values compared to the GPD model. This alignment 

is crucial for ensuring the reliability of predictions related to rare but severe weather events, 

infrastructure resilience, and flood management strategies. 

 

Figure 10. Observed and fitted values of rainfall extremes using Bayesian GEVD and GPD models. 

3.2. Discussion 

This study aimed to model and predict annual maximum monthly average rainfall in Somalia by 

employing and comparing two statistical distributions, the GEVD and the GPD with the Bayesian 

approach. To estimate the parameters of these distributions, the study leveraged the MCMC technique, 

specifically utilizing the Metropolis–Hastings algorithm. An important aspect of this analysis was 

tuning the algorithm’s parameters to achieve an acceptance rate of 0.3. According to Gamerman, the 

acceptance rate is recommended to fall within the range of 0.2 to 0.5, and the attainment of this rate 
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suggests the efficiency of the proposed distribution [43]. To further justify the significance of this rate, 

it is important to consider its impact on algorithm efficiency and computational performance. 

Exploring alternative approaches, such as machine learning methods or advanced optimization 

techniques, may potentially yield improvements in achieving higher acceptance rates or optimizing the 

algorithm’s performance metrics. These avenues warrant further investigation to enhance the 

effectiveness of the proposed distribution and its application in practical scenarios. 

The results of this study reveal that the Bayesian GEVD model fits the data well and can be 

effectively employed to forecast extreme rainfall events in Somalia. This finding is in accordance with 

prior research, such as that conducted by Ahmad et al. [36], which supports the suitability of the GEVD 

for modeling extreme events in diverse contexts. Mohamed and Adam [29] also found that the GEVD 

is the best model for rainfall extremes in Somalia, emphasizing its robustness in capturing the 

magnitude and frequency of extreme rainfall. 

Nonetheless, the choice of priors in Bayesian analysis requires careful consideration, especially 

in data-scarce environments like Somalia. Due to the lack of informative priors for this specific 

application, we employed non-informative and independent priors to estimate posterior densities. Non-

informative priors are chosen to let the data primarily influence the posterior distribution, minimizing 

the introduction of subjective biases. This is particularly relevant when prior information is scarce or 

uncertain, ensuring that the resulting posterior is driven mainly by the observed data. However, it is 

crucial to recognize the potential impacts of this choice. Non-informative priors can lead to broader 

posterior distributions, reflecting higher uncertainty, but they are also more objective in the absence of 

strong prior knowledge. This approach is justified in our context as it allows a more transparent and 

data-driven inference process. When applying non-informative priors to the Bayesian analysis, it 

becomes evident that the return level densities exhibit a right-skewed distribution. This skewness may 

be attributed to the model’s inherent uncertainty in estimating upper return levels, particularly for 

longer return periods. This phenomenon is consistent with the findings of Coles and Tawn [44], who 

noted that such skewness may arise when the model struggles to provide precise estimates for higher 

return levels, while lower return levels are more confidently estimated. 

One of the key advantages of Bayesian analysis is its capacity to quantify uncertainty [27]. This 

is especially valuable in providing more accurate insights into what is likely to occur in a given year 

based on historical data. This quantification of uncertainty is achieved through various steps. These 

steps include the transformation of the sequence of simulated values (𝜇𝑖 , 𝜎𝑖 , 𝜉𝑖) and the extraction of a 

sample from the corresponding distribution of return levels [1]. This process enhances the precision of 

predictions and risk assessments, making it a valuable tool for decision-making in fields such as 

disaster preparedness and resource allocation. 

In this study, particular attention was given to posterior median return levels, as they tend to 

minimize expected loss when compared to posterior mean return levels [45]. By calculating posterior 

medians along with their associated 95 percent credibility intervals, the study gained a more 

comprehensive understanding of the maximum rainfall return levels for Somalia. This information can 

prove invaluable for risk management and resource planning in the face of extreme weather events. 

Furthermore, the study investigated the behavior of return levels as return periods increased. 

Notably, the study found that the widths of the credibility intervals for return levels expanded as return 

periods lengthened. This observation aligns with previous research, highlighting the increasing 

uncertainty associated with longer-term predictions. This underscores the importance of considering a 

wide range of scenarios and potential outcomes when planning for extreme rainfall events in Somalia.  
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Another significant finding of this study pertains to the efficiency of the GEVD over the GPD, 

particularly in modeling rainfall extremes. The GEVD was applied to block maxima (annual maxima), 

while the GPD was applied to peaks over threshold (POT) to capture the extreme rainfall tails [46]. 

Consequently, the GPD was observed to underestimate data points in some instances and overestimate 

them in others when extreme values were present in the data. This discrepancy contributes to the 

Bayesian GPD exhibiting a higher DIC value compared to the GEVD, along with elevated prediction 

and validation errors. However, the GPD excels in estimating return levels with precision compared to 

the GEVD model. For example, for a 100-year return period, the GPD estimated a quantile of 119.215 

mm, whereas the GEVD provided a higher estimate of 140.815 mm, potentially indicating 

overestimation. The GPD’s precision in return level estimation improves with longer return periods, 

highlighting its utility in Somalia for accurately assessing high return levels crucial for risk assessment 

and infrastructure planning. Generally, the GEVD demonstrates superior performance in accurately 

predicting quantile values, particularly for lower to moderate return periods. This capability is vital for 

designing resilient infrastructure and implementing effective flood management strategies. 

In comparison to Mohamed and Adam’s research on modeling the magnitude and frequency of 

extreme rainfall in Somalia using the maximum likelihood estimation (MLE) approach for the 

GEVD [29], our Bayesian approach yielded distinct findings for the return level estimation. For 

example, Mohamed and Adam reported a 100-year return level estimate of 168.111 mm using MLE 

for their study on Somali rainfall extremes. In contrast, our Bayesian analysis produced a more 

conservative estimate of 140.815 mm for the same return period, showcasing a significant difference 

in estimation precision. The Bayesian approach’s incorporation of prior information and iterative 

sampling from the posterior distribution likely contributed to this discrepancy, providing a more 

nuanced and robust estimation framework. This highlights the advantages of Bayesian methods in 

capturing uncertainties and refining estimates crucial for effective risk assessment and infrastructure 

planning in regions prone to extreme rainfall events like Somalia. 

In summary, the detailed analysis conducted in this study underscores the effectiveness of the 

GEVD model for forecasting extreme rainfall events in Somalia, particularly when utilizing Bayesian 

MCMC techniques. The study highlights the significance of considering uncertainty in risk assessment 

and decision-making, with a focus on posterior medians and credibility intervals. Additionally, the 

results emphasize the need to carefully select the distribution model based on the specific 

characteristics of the data, especially when dealing with extreme values and longer return periods. This 

comprehensive analysis contributes valuable insights for enhancing preparedness and resilience in the 

face of extreme weather events in Somalia. 

4. Conclusions 

Extreme environmental hazards, such as heavy rainfall, carry significant potential for property 

damage and human life loss, underscoring the need for understanding and predicting these events. This 

study harnessed the power of Bayesian extreme value theory to model and forecast extreme rainfall, 

offering a valuable tool for effective rainfall-related management. Particularly in data-scarce regions 

like Somalia, our Bayesian approach presents a robust solution for modeling extreme climate events, 

using monthly rainfall data spanning from 1901 to 2022. 

Our research has identified the Gumbel distribution within the GEVD family as the most suitable 

model for annual maximum monthly rainfall data in Somalia. Rigorous model diagnostics have further 
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substantiated the GEVD’s ability to capture extreme rainfall patterns. Additionally, our study has 

revealed that with increasing return periods, the associated return levels also escalate. Comparing the 

return levels generated by the GEVD and GPD models, we found that the GPD consistently predicts 

slightly smaller return levels than the GEVD, particularly for moderate to high return periods, and with 

higher precision (indicating less uncertainty). 

Utilizing the Bayesian GEVD model, we have estimated extreme rainfall return levels exceeding 

106 mm, 163 mm, and 195 mm for return periods of 10, 50, and 100 years, respectively. These return 

levels offer critical insights into the potential severity of future extreme rainfall events. Armed with 

this knowledge, decision-makers in Somalia can make informed choices to mitigate the potential 

impact on life, agriculture, and essential infrastructure. 

These findings have crucial implications for urban planning, civil engineering, and policymaking 

in Somalia. Accurate estimation of extreme rainfall return levels empowers decision-makers to 

mitigate flooding risks and enhance climate resilience. Urban planners can optimize drainage systems 

and flood management strategies to accommodate projected increases in rainfall intensity. Civil 

engineers can integrate these estimates into critical infrastructure designs, fortifying structures like 

bridges, dams, and roads against future climate impacts. Policymakers can craft adaptive policies that 

foster sustainable development and bolster community resilience to climate-induced hazards. These 

findings thus contribute to resilient planning and policy frameworks that safeguard lives, livelihoods, 

and infrastructure amid escalating climate uncertainties. 

As the impact of climate change continues to unfold, proactive measures in Somali communities 

become paramount. This study contributes to the development of early warning systems, preparedness 

strategies, effective management, timely response, and mitigation approaches to address flood risks 

and their repercussions. While Somalia has taken commendable steps in fostering climate change 

adaptation, ongoing efforts remain necessary to build resilience and protect vulnerable populations 

from the consequences of extreme rainfall. 
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