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Abstract: This study presents a novel approach that employs autoencoders (AE)—an artificial neural 

network—for the nonlinear transformation of time series to a compact latent space for efficient fuzzy 

clustering. The method was tested on atmospheric sea level pressure (SLP) data towards fuzzy 

clustering of atmospheric circulation types (CTs). CTs are a group of dates with a similar recurrent 

SLP spatial pattern. The analysis aimed to explore the effectiveness of AE in producing and improving 

the characterization of known CTs (i.e., recurrent SLP patterns) derived from traditional linear models 

like principal component analysis (PCA). After applying both PCA and AE for the linear and nonlinear 

transformation of the SLP time series, respectively, followed by a fuzzy clustering of the daily SLP 

time series from each technique, the resulting CTs generated by each method were compared to assess 

consistency. The findings reveal consistency between the SLP spatial patterns from the two methods, 

with 58% of the patterns showing congruence matches greater than 0.94. However, when examining 

the correctly classified dates (i.e., the true positives) using a threshold of 0.8 for the congruence 

coefficient between the spatial composite map representing the CT and the dates grouped under the 

CT, AE outperformed PCA with an average improvement of 29.2%. Hence, given AE's flexibility and 

capacity to model complex nonlinear relationships, this study suggests that AE could be a potent tool 

for enhancing fuzzy time series clustering, given its capability to facilitate the correct identification of 

dates when a given CT occurred and assigning the dates to the associated CT. 

Keywords: fuzzy classification; autoencoders; principal component analysis; sea level pressure; 

artificial neural network 
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1. Introduction  

The improved classification of atmospheric circulation types (CTs) is among the core interests of 

climate research. Understanding CTs provides insight into regional climate phenomena, as well as broader 

atmospheric dynamics, which are critical for weather forecasting, climatic modeling, and environmental 

risk assessments [1]. However, the complex, nonlinear nature of atmospheric systems [2,3] poses 

significant challenges to accurate CT classification. A variety of CT classification methods have been 

adopted over time, aiming to decipher complex atmospheric systems [4–7]. These techniques include 

cluster analysis [8] and rotated principal component analysis (PCA) applied to temporally decomposed 

climate data [6], among others. While each of these techniques has its strengths and limitations, cluster 

analysis and PCA, for example, are more adept at handling large datasets and reducing dimensionality. 

Still, they may oversimplify complex and nonlinear relationships [9]. Therefore, the performance of 

these traditional techniques in classifying physically consistent CTs might be constrained by the 

nonlinear and complex nature of atmospheric systems [10].  

Traditionally, rotated T-mode (the variable is the time series, and the observations are grid boxes 

or locations where the climate field was measured) PCA has been extensively employed for clustering 

time series climate data for subsequent classification of CTs [6,11,12]. T-mode PCA functions by 

reducing the dimensionality of the time series, focusing on temporal patterns that explain the most 

variance in the climate data [6]. The subsequent rotation of the PCs to a simple solution enhances the 

identification time series that covary in terms of having a similar spatial pattern over time. This is 

achieved by assigning larger loading magnitudes to such time steps that covary, enabling the 

classification of the time steps under a given retained PC (principal component). However, being a 

linear method, rotated PCA might be inadequate to model complex, nonlinear relationships in the data. 

The inadequacies of PCA to fully capture nonlinear interactions have led to the exploration of 

alternative methods. Fuzzy rotated T-mode PCA has been proposed as an alternative method, aiming 

to provide a more holistic approach to data variability by incorporating degrees of membership and 

some level of nonlinearity to CTs rather than definitive assignments [6]. However, while fuzzy rotated 

T-mode PCA is more flexible than traditional T-mode PCA, it might still inherit some limitations from 

its linear nature. Therefore, a more comprehensive method capable of capturing nonlinear relationships 

is needed. One such promising technique is the application of artificial neural networks (ANNs).  

Several studies have successfully applied ANN, such as convolutional neural networks and self-

organizing maps to classify atmospheric circulation patterns [13–16]. Autoencoders (AE), on the other 

hand, are a specific type of ANN designed to learn efficient data coding in an unsupervised manner [17]. 

While AE has been applied in climate science for several other purposes such as detecting anomalous 

climate events [18,19] and dimensionality reduction [20], among others [21], its application in time 

series clustering (of climate data) has not gained wide applications. Even so, AE has been applied to 

examine synoptic behaviors [22], and convolutional AE has been used in clustering the states of the 

polar vortex [23]; in other fields, it has been applied for clustering time series [24–28]. 

Since rotated T-mode PCA is one of the most extensively used and established traditional 

techniques for time series clustering (or decomposition) of climate data leading to the classification of 

CTs [6], this study will examine the consistency of CTs from AE and from rotated T-mode PCA. AE 

applied to cluster time series data can be expected to offer a more flexible and robust framework that 
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can model complex nonlinear relationships, potentially overcoming the limitations posed by rotated T-

mode PCA. The nonlinear dimensionality reduction capability of AE could prove particularly useful 

for CT classification in regions with complex climates like the southern region of Africa. It is also 

noteworthy that self-organizing maps excel at topological representation of the data and clear 

visualization of clusters in a 2D space. However, considering that the primary goal of this study is to 

capture essential linear and nonlinear temporal patterns in the data and then use the reduced-

dimensional representation for clustering, the AE is considered more suitable. The latent space of the 

AE can serve a similar role to the PC loadings from rotated T-mode PCA but with the added ability to 

capture nonlinearities.  

Given that rotated T-mode PCA has been applied to classify physically interpretable CTs in the 

southern region of Africa [6,29,30], this study uses the already classified CTs in [6] as a reference to 

analyze the effectiveness of AE for the time series clustering of sea level pressure (SLP) data to classify 

CTs in the southern region of Africa. This endeavor is poised to contribute significantly to the current 

state of knowledge in data science by providing an innovative approach to time series clustering. 

2. Materials and methods 

Daily SLP data from 1950 to 2020 was obtained from ERA5 reanalysis [31]. The horizontal 

resolution of the data is 0.25° longitude and latitude. The spatial extent for clustering the SLP time 

series leading to classifying the CTs in the southern region of Africa is 5.25°–55.25°E and 0°–50.25°S, 

which is based on matching degrees of freedom and prior knowledge of the spatial extent of circulation 

processes in the region [6]. 

AE, a type of artificial neural network, operates by compressing input data into a latent space 

representation and then reconstructing the original data from this representation [17]. This process is 

unsupervised and aims to learn efficient data representations through an encoder-decoder architecture. 

The encoder-decoder architecture consists of two main components: the encoder, which compresses 

the input data into a latent representation, and the decoder, which reconstructs the data from this 

representation. This framework is central to AE, enabling it to capture meaningful features and patterns 

in the input data while minimizing reconstruction error. In this study, AE was applied to encode the 

time series of gridded SLP data. The encoded temporal patterns were further classified to identify dates 

with coherent features, where “coherent” denotes dates with the alignment and consistency of temporal 

features (i.e., similar SLP spatial patterns) across the dataset, critical for precise classification.  

The logic for the time series clustering follows the same as the rotated T-mode PCA, where the 

output is PC loadings (time series) with each day in the analysis period having a weight (or loading 

magnitude), which indicates the amplitude (or relative contribution) of the circulation pattern detected 

by the rotated PC on that day [6]. The AE in the same paradigm is applied to achieve a compact 

representation of the temporal SLP patterns in the region, synonymous with the retained PCs, where 

each temporal output pattern in the latent space in this study is referred to as a Node. Each day under 

a Node will also have a weight that designates the amplitude (or relative contribution) of its circulation 

pattern to the overall atmospheric circulation of the day in question. The Nodes similar to the retained 

PC represent a class, and the daily SLP patterns under each Node (similar to the retained PC) are the 

potential variables to be classified under the class in question. The larger the weight of a day under a 
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given class, the higher the tendency to classify that day under the class; the lower the weight of a day 

under a given class, the higher the tendency to discard the day under that class using a fixed hyperplane 

width threshold. A hyperplane acts as a decision boundary for the encoded values (or rotated PCA 

loadings); days categorized under each Node are given weights that signify their relative contributions 

to the day’s circulation pattern. The hyperplane helps in distinguishing between significant and 

negligible contributions by setting a threshold (defined around a zero interval). Days with weights below 

this threshold are considered to have minimal impact and are hence discarded as noise. This method 

enhances the focus on more influential data points, improving the overall classification accuracy.  

The methodological approach of rotated PCA for time series clustering is already well 

documented in [6], where singular value decomposition was applied to T-mode SLP data to derive 

PCs. To enhance the physical interpretability of the PCs, the PC loadings (temporal patterns) were 

rotated obliquely using the Promax routine [6]. Figure 1 highlights the approach introduced in this 

study in using AE to achieve the same purpose toward CT classification.  

The target variable to reduce its dimensionality and extract the most crucial nonlinear temporal 

patterns is the daily time series of the SLP data from 1950 to 2020 comprising 25,933 variables. Hence, 

the aim is to reduce the 25,933 daily SLP time series (measured at 40,198 grid points) to a lower 

dimension K. 𝑘𝑖 for example, represents one of the classes or CTs (or nodes) in the latent compact 

space and has a dimensionality of 1 × 25933. Each of the 25,933 days has a corresponding weight that 

is used to determine if the day should or should not be classified under 𝑘𝑖. In other words, the dates 

classified under 𝑘𝑖 are synonymous with the dates when the recurrent atmospheric circulation pattern 

associated with 𝑘𝑖 occurred in the historical data.  

The SLP data was normalized to a [0,1] range using the MinMaxScaler function from the Scikit-

learn library [32]. This step ensures that all data have the same scale and enhances convergence, which 

is essential for the training process of neural networks.  

Next, the AE was defined using the Keras library in Python [33]. The encoder takes in high-

dimensional input data and compresses it into a lower-dimensional space. The decoder then takes this 

compressed representation and attempts to reconstruct the original high-dimensional data. The number 

of input and output neurons equated to the dimension (i.e., 25,933 daily time series) of the SLP data. 

The hidden layer, a component of the encoder and decoder, and the associating optimal epoch number 

were selected iteratively, seeking to balance the representation of the complexity of the data and the 

risk of overfitting. To optimize the hyperparameters, the data was split into 70% for training, 10% for 

validating, and 20% for testing. Different neuron configurations were tested (i.e., 2, 4, 8, 16, 32, 64, 

128, 256), with a maximum of 50 epochs and early stopping if the validation loss does not decrease 

after 5 consecutive epochs. Given that the minimum validation loss values after 64 neurons (and 15 

epochs) are insignificant compared to using 128 neurons and above, 64 neurons were used, balancing 

the need for dimensionality reduction with the desire to retain key features in the data and avoiding 

overfitting with a more complex model. Therefore, the model underwent training multiple times to 

optimize performance, with the results presented derived from the simulation that exhibited the best 

performance. This approach ensures that the model does not merely fit the training data but generalizes 

well to new, unseen data. 

The rectified linear unit (ReLU) activation function was utilized in the encoder. ReLU is widely 

used in neural network models due to its properties of mitigating the vanishing gradient problem and 
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introducing nonlinearity into the model [34]. The decoder employed the sigmoid activation function, 

which ensures that the output values are within the [0,1] range, aligning with the normalized data.  

The AE was compiled using the Adam optimizer and mean squared error (MSE) as the loss 

function [35]. Adam is an optimization algorithm that adjusts the learning rate adaptively, which 

typically results in faster convergence. MSE quantifies the difference between the original and 

reconstructed data, driving the autoencoder to learn a compressed representation that maintains the key 

features of the input.  

The trained autoencoder was subsequently used to encode the original SLP data into a lower-

dimensional representation. This compressed representation captures the most important temporal 

patterns of the SLP data necessary for distinguishing different CTs. The encoded vectors are daily time 

series from 1950 to 2020.  

 

Figure 1. Flowchart illustrating the process of applying autoencoder neural networks for 

the classification of atmospheric circulation types. 

To represent the asymmetry in climate patterns, the encoded vectors were z-score standardized 

and subsequently normalized between −1 and +1 to resemble rotated correlation-based PCA loadings. 

Days under a given Node with amplitude within the zero interval do not notably contribute to the 

circulation variability of the day. Hence, following [6], dates where the Node's value exceeded ±0.3 
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thresholds were selected and assigned to the positive phase and negative phase, defining two 

asymmetric CTs from a Node. This approach led to a subset of dates for each Node that were 

interpreted as periods when the circulation pattern presented by the Node was particularly active. The 

method of assigning the CTs also results in a fuzzy solution, since a day can be assigned to more than 

one Node or CT insofar as the CT was active on that day [6]. This fuzzy assignment method offers a 

more holistic and realistic portrayal of overlapping climate patterns, enhancing the model’s 

applicability to real-world climatic phenomena. 

The spatial patterns (i.e., composite maps) for the positive and negative phases of each CT 

derived from a given Node were computed using the weighted mean approach, which was 

documented to be optimal in representing fuzzy CTs [6]. This implied that for a given Node, all dates 

with values greater than 0.3 for the positive phase or lower than −0.3 for the negative phase were 

retained, the values of the other dates within the hyperplane were set to 0, and the non-zero values 

served as the weight when the encoded time series was projected onto the original gridded SLP data 

to derive spatial patterns (Equation 1).  

Weighted mean = (∑ 𝑍𝑛
𝑖=1 𝑖

 𝑏𝑖𝑇) / ∑ 𝑏𝑛
𝑖=1 𝑖𝑇

                            (1) 

𝑏𝑖𝑇 = Standardized/normalized encoded values. Encoded values with vector elements greater than |T| 

are retained and the vector elements with magnitudes lower than |T| are set to zero. 

𝑛 = number of observations in the SLP time series,𝑍𝑖 is the SLP data matrix.   

𝑤𝑒𝑖𝑔ℎ𝑡 = {
0 if |𝑏| < |T| 
𝑏 if |𝑏| ≥ |T| 

 

The patterns derived from AE were matched to the patterns derived from the fuzzy correlation-

based rotated T-mode PCA classified in [6] using a congruence coefficient (Equation 2) to document 

the distance between the vectors [36].  

Finally, to assess the best-performed method in time series clustering of the SLP data, the SLP field 

of the dates/days assigned to the CTs derived from each method was matched to the corresponding 

composite map representing the CT. A congruence match of at least 0.8 was used to subjectively define 

“true positives” or the number of dates correctly classified under a given CT. This analysis is instrumental 

in comparing PCA and AE based on the percentage of true positives. 

𝑔(𝑋, 𝑌) =  
∑ 𝑥𝑖𝑦𝑖 

√∑ 𝑥𝑖
2  ∑ 𝑦𝑖

2
                                                        (2) 

where X has elements 𝑥𝑖  and Y has elements 𝑦𝑖 . 𝑔(𝑋, 𝑌)  is the congruence coefficient between 

vectors X and Y. 

3. Results 

The architecture of the compiled AE resulted in six non-zero vectors or latent representations, 

which will be referred to as Nodes, for brevity. These Nodes represent the most salient features or 

temporal patterns in the SLP data. This makes the subsequent process of classifying CTs less 



530 

AIMS Geosciences  Volume 10, Issue 3, 524–539. 

computationally intensive and possibly more accurate, as it is based on the most significant temporal 

patterns identified by the AE. Also, the six Nodes implied 12 CTs, as two asymmetric CTs (positive 

and negative phase) are derived from each Node.  

The AE-based CTs were matched to the CTs derived from PCA using the congruence coefficient, 

supported by visual inspection of the SLP spatial patterns representing each CT. Figure 2 shows the 

SLP spatial patterns of the 12 CTs from AE and PCA. N1p is the positive phase of CT1 from 

autoencoders, while N1n is the negative phase of CT1 from autoencoders. Similarly, P1p is the 

corresponding positive phase of the CT1 classified from the rotated PCA and P1n is the negative phase 

of the CT classified from PCA. The 12 AE CTs were reproduced within 9 rotated PCs, i.e., among 9 

PCs, 6 resembled the encoded patterns. 

Interestingly, Figure 2 shows that the patterns of each CT and the asymmetric nature of the CTs 

from a single PC/Node are generally consistent. For example, for CT1, the positive phase is associated 

with a high-pressure anomaly on the south coast of southern Africa from both PCA and AE. Similarly, 

for the negative phase, from both AE and PCA, the southern hemisphere mid-latitude cyclone tracks 

northward. Very close similarities between the spatial pattern and asymmetry of the CTs are observable 

for most of the other CTs classified from both methods (Figure 2). The general consistency between 

the CTs classified independently from the two methods is quite promising—it shows that ANN-based 

CTs can produce patterns consistent with the traditional rotated T-mode PCA, widely applied in 

climate science for deriving (potentially) physically interpretable climate modes of variability. 

Moreover, as mentioned earlier, previous studies have documented the physical interpretability of the 

PCA-based CTs, used in this work in Figure 2 [29,30]. Hence, reproducing the CTs with AE is 

indicative that AE-based CTs can be interpreted physically.  

Despite the close similarity between AE and PCA-based CTs, some differences in the 

corresponding spatial patterns are evident (Figure 2). For example, under the negative phase of CT2, 

the strength of the subtropical high-pressure system, south of Madagascar, is notably stronger under 

P2n than N2n (Figure 2).  

Quantitatively from Table 1, the negative phase of CT1 has the highest congruence match of 0.99 

between the AE and PCA-based CTs. The lowest congruence match is for the negative phase of CT6 

(Table 1). The asymmetric patterns from CT6 and CT4 have relatively the lowest congruence matches, 

while CT1, CT3, and CT5 patterns have congruence matches greater than 0.94 (Table 1). The 

differences between the AE-based patterns and PCA-based patterns observed in Figure 2 could likely 

be due to their respective architectures and capabilities in modeling linear and nonlinear relationships. 

While PCA identifies a subset of dates that exhibit linear correlations, the AE, capable of capturing 

both linear and nonlinear correlations, locates a subset of dates accordingly. This distinction in 

handling linear and nonlinear relationships may account for the observed dissimilarities in the patterns 

produced by PCA and AE. 
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Figure 2. Circulation types from autoencoders (i.e., the “Ns”) and the counterparts from 

rotated PCA (i.e., the “Ps”). The maps were calculated using the weighted mean approach. 

The weights are values above or below the ±0.3 hyperplane threshold. “p” indicates the 

positive phase and “n” indicates the negative phase of the asymmetric CTs derived from a 

given node or PC. Color is standardized SLP. 

The time series of Node 1 and PC1 are shown in Figure 3. The inter-annual variability of the time 

series from the respective techniques is similar, such that for the individual months, the congruence 

matches are generally greater than 0.90. For other Nodes and corresponding PCs, the variability of the 

associating time series was close but not as close as that in Node 1 and PC1. The differences in the time 

series also imply the potential of assigning non-consistent dates to a respective CT, from either of the 

two methods. Therefore, the subtle differences in the spatial patterns in Figure 2 might be due to 

assigning some non-representative dates to a given CT or missing some representative dates in each CT.  
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Table 1. Congruence matches between the AE-based CTs and the corresponding PCA-

based CTs in Figure 2. The value in the Table is the congruence coefficient.  

Circulation type Congruence coefficient 

CT1 (positive) 0.94 

CT1 (negative) 0.99 

CT2 (positive) 0.95 

CT2 (negative) 0.73 

CT3 (positive) 0.95 

CT3 (negative) 0.94 

CT4 (positive) 0.88 

CT4 (negative) 0.66 

CT5 (positive) 0.97 

CT5 (negative) 0.98 

CT6 (positive) 0.81 

CT6 (negative) 0.65 

Though the PCA-based CTs in Figure 2 have been widely used in previous physical studies of 

the climate of southern Africa, the CTs might still have some limitations in their representation of the 

actual circulation variability due to the linear method used to create the CTs.  

The performance of each method in classifying CTs was further assessed based on the ability to 

accurately assign dates to a given CT. To determine this, the standardized SLP fields of the respective 

days assigned to a specific CT were matched with the corresponding spatial map (as shown in Figure 

2). This criterion was established to ensure that the identified CTs and any subsequent analysis derived 

from them are representative of the actual circulation variability and are not merely artifacts of the 

applied method. Hence, a congruence match between the SLP field of each day and the corresponding 

map (or CT) the day is assigned to, greater than or equal to 0.8, is used to define “true positives”. 

Indeed, it is reasonable to anticipate that multiple circulation patterns could co-exist at any given time. 

Thus, a single CT may not accurately encapsulate a substantial proportion of the variability present, 

especially if the CT represents rarer patterns with weaker signals [6]. Despite this, if a CT displays 

noteworthy characteristics on a particular day, it can still be considered representative and assigned to 

that day's CT. Also, at this point, it is vital to state that all days in the analysis period were classified 

under the CT(s) that occurred on the day. In Figure 4, when comparing the performance of the two 

different methods, the percentage of true positives from ANN-based CTs was used as the baseline. The 

percentage values represent improvements relative to each other. When the ANN-based CTs result in 

fewer true positives than the PCA-based CTs, the difference is expressed as a negative percentage 

change. When some values are negative, it suggests that for those specific CTs, the ANN-based method 

identified a lower number of dates with a congruence match greater than 0.8 compared with the PCA-

based method.  
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Figure 3 Time series of Node 1 and PC1 from 1950 to 2020. Time series was computed 

as the annual mean of the PC1 loadings/Node 1 values in each calendar month. 

From Figure 4, the ANN-based method outperformed the PC-based method in correctly assigning 

dates to the positive phases of CT1, CT2, CT4, CT5, and CT6 and the negative phases of CT4 and 

CT5 (Figure 4). For the others, the PCA-based method performed better. Moreover, except for the 

negative phase of CT2, the AE patterns outperformed the PCA-based patterns by a large margin 

(Figure 4). The average percentage of correctly classified dates under each of the 12 CTs is 35.8% for 
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the ANN CTs and 27.7% for the PCA-based CTs, representing approximately a 29.2% improvement. 

Moreover, the ANN-based CTs outperformed the PCA-based CTs in terms of the percentage of dates 

not incorrectly classified under a given CT.  

 

Figure 4 Comparison of the percentage of true positives for the ANN-based CTs and the 

PCA-based CTs. The y-axis represents the percentages of true positives. A “true positive” 

is defined as a date for which there is a congruence match greater than 0.8. These 

percentages are calculated based on the total number of days assigned to each CT. The 

values in the charts are percentage increases or decreases. Negative values imply a decrease. 

4. Discussion and conclusions 

While artificial neural networks (ANNs) offer numerous advantages in climate science research, 

a common challenge lies in their interpretability [37–39]. However, in recent periods, the physical 

interpretability of ANN outputs has increased [40]. For example, Pierdicca and Paolanti [41] 

highlighted the application of interpretable ANNs for the interpretation of geomatic data. Mamalakis 

et al. [42] reported that ANNs are applicable in model fine-tuning. Labe and Barnes [43] detected 

climate signals using explainable ANN.  

In a field like climate science where physical interpretations are of paramount importance, 

leveraging ANN algorithms to yield interpretable results is a critical task. This study contributes to 

resolving this challenge by utilizing autoencoders (AE), a type of ANN, to temporally decompose 

climate data, resulting in physically consistent atmospheric circulation patterns. Given the prevalence of 

PCA in climate science for deriving potentially physically interpretable modes of climate variability [6], 

comparing patterns derived from PCA and ANN was deemed essential. The findings of this study show 

that the AE-derived CTs generally align consistently with the PCA-based CTs. This outcome 
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highlights the potential of AE as a valuable tool for climate data time decomposition and subsequent 

CT identification, supporting previous research affirming the ability of ANN, especially convolutional 

neural networks, to enhance physically consistent classifications of the atmospheric system [13–15].  

A major limitation of this study is the possibility of a few emergent patterns, whereby the ANN-

based patterns might not be sufficiently comparable to any PCA-based patterns. This might be the case 

of CT4 and CT6 with the lowest congruence matches (Figures 2 and Table 1).  

Furthermore, the results show that the average percentage of correctly assigned days to given CTs 

was higher by 29.2% for ANN-based CTs than PCA-based ones. This finding suggests that ANNs, 

with their capacity to model complex linear and nonlinear systems, offer promise in enhancing the 

accurate classification of CTs representative of the actual circulation variability. Therefore, AE and 

other ANN techniques should be further explored and refined in future studies for broader applicability 

and enhanced interpretation in climate science. 

While the dense layers of AE were applied in this study due to its ability to capture nonlinear 

relationships and encode crucial temporal patterns in time series data, providing a strong foundation 

for identifying coherent temporal features crucial for time series classification, other ANN models such 

as convolutional neural networks (CNNs) and long short-term memory (LSTM) networks offer distinct 

advantages [44–47]. CNNs extract spatial features and LSTMs can capture temporal dependencies. 

The potential of integrating CNNs and LSTMs to exploit their spatial and temporal processing 

capabilities, respectively, could further enhance the model’s ability to handle the multidimensional 

nature of climate data. This will be investigated in subsequent studies. 
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