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Abstract: In the past century, water demand increased extensively due to the rapid growth of the 

human population. Ground observations can reveal hydrological dynamics but are expensive in the 

long term. Alternatively, hydrological models could be utilized for assessing streamflow with historical 

observations as the control point. Despite the advancements in hydrological modeling systems, 

watershed modeling over mountainous regions with complex terrain remains challenging. This study 

utilized the multi-physical Weather Research and Forecasting Hydrological enhancement model 

(WRF-Hydro), fully distributed over the Amu River Basin (ARB) in Afghanistan. The calibration 

process focused on land surface model (LSM) physics options and hydrological parameters within the 

model. The findings emphasize the importance of LSM for accurate simulation of snowmelt–runoff 

processes over mountainous regions. Correlation coefficient (R), coefficient of determination (R2), 

Nash-Sutcliff efficiency (NSE), and Kling-Gupta efficiency (KGE) were adopted for accuracy 

assessment over five discharge observation stations at a daily time scale; overall performance results 

were as follows: R was 0.85–0.42, R2 was 0.73–0.17, NSE was 0.52 to −8.64, and KGE was 0.74 to 

−0.56. The findings of the current study can support snowmelt process simulation within the WRF-

Hydro model. 
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1. Introduction  

Water resources management has a direct link to economic development and human activities. 

The water scarcity issue has been exacerbated significantly over the past century, demanding urgent 

attention and a sustainable solution. The surge in population is the key driver of water scarcity, as the 

increase in population corresponds to a higher demand for water [1]. According to FAO (2020) [1], the 

annual per capita freshwater availability declined by more than 20% in the past two decades, with 

particular severity in Western Asia and Northern Africa. In these regions, the per capita freshwater 

availability barely reaches the annual average of 1000 m3, conventionally considered the threshold for 

severe water scarcity [1]. Arid and semiarid climate zones face heightened vulnerability to drought and 

water scarcity. Past studies have declared a noticeable increase in drought severity in Afghanistan, 

Central Asia, and Iran [2–5]. Considering the water crisis in the region, a comprehensive approach 

involving extensive scientific studies on water resources is required to address the issue.  

Computer-based hydrological models are a simplified representation of real-world systems 

consisting of a series of contemporary equations and logical sets of operation [6]. Modeling is a common 

tool in many scientific fields in general and in water sciences in particular. Hydrological models have 

diverse applications, such as modeling existing catchments with available input and output data 

(operational flood prediction, water resources management, or extension of data array for flood design 

of water resources assessment), coupled hydrology and meteorology (global climate models), coupled 

hydrology and geochemistry (nutrients and acid rain), ungauged basins runoff estimation, and the 

prediction of the impact of changes (land use and land cover) [6]. The best model is the one that can 

represent results closest to reality with the fewest input variables and complexity [7]. Hydrological 

models are classified into (1) empirical models or metric models, (2) conceptual models, and (3) 

physics-based models based on process description [7]. As per Singh (2018) [8], physics-based models 

can overcome many defects of the other two types of models due to the physical interpretation of the 

process included in the model parameters. 

Most weather and climate models have adopted a one-dimensional (vertical) approach, resulting 

in an oversimplification of the hydrological process by ignoring lateral water movements and the 

subsequent re-infiltration and exfiltration processes, which could lead to errors in the representation of 

hydrological processes [9]. The hydrological enhancement of the Weather Research and Forecast 

(WRF) model, named WRF-Hydro [10], was designed to improve the simulation of land surface 

hydrology and energy states and fluxes at a fine spatial resolution (typically 1 km or less) with two 

modes: the coupled and standalone version. The WRF-Hydro model has a wide range of applications 

in water-related studies. Lee et al. (2022) [11] adopted the WRF-Hydro model to demonstrate the 

characteristics of recent droughts occurring between 2008 and 2015 in South Korea; the standardized 

soil moisture index and standardized streamflow index were estimated using WRF-Hydro simulations 

to evaluate the agricultural and hydrological droughts. Another study applied the coupled WRF-Hydro 

model to the flood early-warning system in the Ouémé river basin in Benin, West Africa, from 2008 to 

2010 [12]. The WRF-Hydro model may also be used in water resources planning: A study performed 

on the Tono dam in West Africa utilized fully coupled WRF-Hydro to simulate streamflow from 1999 

to 2003 at a 5-km horizontal resolution in the inner domain and used the output of the model as the 

input for a water balance model to simulate dam levels [13]. The literature describes the WRF-Hydro 

model as capable of simulating the hydrological processes in small-to-large basins. However, we 

consider the WRF-Hydro model to be a moderately computationally intensive modeling system when 
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compared with other physics-based models, such as the Soil and Water Assessment Tool (SWAT) or 

the Hydrological Simulation Program-Fortran (HSPF).  

Nowadays, hydrological studies in arid and semiarid mountainous watersheds have become an 

important research topic (e.g., [14,15]). Generally, modeling the snowmelt effect in large and 

mountainous basins is challenging due to high spatial and temporal variability in the model parameters 

and a theoretical simplification of the snowmelt–runoff mechanism within hydrological models [15]. 

Thus, the main objectives of this study are to (1) assess the performance of Noah multi-

parameterization (Noah-MP) land-surface physics in simulating snowmelt processes at high altitudes 

with snow domination of the streamflow hydrograph and (2) simulate the hydrological process over a 

large watershed using fine spatial and temporal resolution.  

For this purpose, the Amu River Basin (ARB), originating in northeastern Afghanistan, was 

selected as our study region. The ARB is the largest watershed in the country in terms of flow 

generation, with an extremely complex topography in the Hindu-Kush mountains, which are located 

in the southern part. The country has an arid to semiarid climate, receiving sparse precipitation in form 

of snow in the winter and rain in autumn and spring [16,17]. Afghanistan is extremely agriculture-

dependent, with approximately 80% of the population directly or indirectly engaged in agricultural 

activities. The country is under development; a few decades of war and conflict destroyed the 

nationwide irrigation infrastructure. Based on the Ministry of Agriculture, Irrigation and Livestock 

(MAIL) Management Information System (MIS), the arable land includes 3.2×106 ha of irrigation-fed 

land and 2.8×106 ha of rain-fed land; 4.8×106 ha of potential arable land remains uncultivated [18]. 

Afghanistan water resources are limited, but if proper management practices are adopted, there is 

potential for irrigating the existing farmland as well as new land development [19,20]. 

Despite its significance, only a few studies have focused on watershed modeling in Afghanistan. 

A few scientific works have attempted to perform hydrological modeling of Afghanistan watersheds 

by utilizing the SWAT to simulate the hydrological process on a monthly time scale [16,21–24]. 

Hydrological models with coarse spatial and temporal resolution are useful and can provide a general 

overview of the seasonal water-availability variation, supporting the formulation of strategies toward 

sustainable water resources management. So far, all hydrological modeling attempts performed in 

Afghanistan [16,21,24,25] have been based on a monthly time scale. However, higher temporal 

resolution models (daily and sub-daily time scales) are required for several purposes such as flood 

prediction, evaluation of catchment management consequences, reservoir management, freshwater 

ecology, and input provision for social, economic, and ecological models [26]. 

In this study, we assess the performance of the Noah-MP model in the simulation of snow 

processes over the ARB in Afghanistan. The sensitivity of the snow process to the parameterization 

scheme within Noah-MP land surface physics was explored by calibrating the schemes and comparing 

the output with the observation discharges. After optimizing the Noah-MP physics, WRF-Hydro model 

parameters were calibrated for the ARB to reconstruct the streamflow over three sub-watersheds in the 

ARB at a 3-km spatial and daily temporal resolution. This study contributes to the understanding of 

the community on the importance of the land surface model (LSM) of WRF-Hydro in the simulation 

of snow-related processes and its impact on the simulation of streamflow timing and magnitude. 

Dechmi et al. (2012) [27] emphasized the importance of continuously monitoring water quality and 

quantity for a better understanding of hydrological dynamics in intensely irrigated watersheds. 

However, the collection of long-term data is time-consuming and costly [28]. On the other hand, it is 

challenging to generalize the results of site-specific experiments to a regional level in complex 
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watersheds with mixed land use and soil type [28]. In this context, the use of hydrological models 

could be helpful for water resources management. The findings of this study show the importance of 

the Noah-MP physics parameters for the simulation of the snowmelt runoff process within the WRF-

Hydro model in mountainous watersheds with significant snowmelt contributions. In this study, the 

snowmelt runoff timing of peak flow simulation was significantly improved after calibration of the 

Noah-MP physics parameters. 

2. Study area and material 

2.1. Study area 

Afghanistan is a mountainous country with an arid to semiarid climate. The country has a 

population of 34.3 million people, 24.2 million of whom live in rural areas [29]. The agricultural 

sector, industry, and services are the main sectors generating 33.7%, 16.1%, and 45.0%, respectively, 

of the gross domestic product (GDP). The study area is situated in the ARB, in the northeastern 

region of the country. The ARB is subdivided into five subbasins: Kokcha, Kunduz, Khanabad, Panj, 

and Ab-i-Rustaq. The study region for the current study comprises the three westernmost basins of 

ARB: the Kokcha (22,367.7 km2), Khanabad (11,993.5 km2), and Kunduz (28,023 km2) watersheds 

(Figure 1). Out of 14 stations, five were selected based on the two criteria defined in section 2.3 to 

eliminate outliers and possible human errors. The study area is located in a complex topographical 

environment with significant differences in elevation, ranging from 308 to 6847 m.a.s.l. ARB's arable 

land area is around 450,000 ha and the agriculture sector consumes the largest share of surface water 

in the basin [30]. Moreover, it is pertinent to mention that irrigation infrastructure is not well 

developed, and rivers remain largely in their natural state. 

 

Figure 1. The study area map depicting the Amu River basin (ARB), its three subbasins 

Kokcha, Khanabad, and Kunduz, and the locations of the observation stations: Khawjaghar 

(KH), Gerdab (G), Pul-i-Bangi (P-B), Nazdik-i-Taluqan (N-T), and Nazadik-i-Keshem (N-K). 
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2.2. Dataset 

The minimum input data for the WRF-Hydro model include air temperature, precipitation, surface 

wind speed, specific humidity, shortwave radiation, longwave radiation, and surface air pressure. For 

these variables, the current study utilized Global Land Data Assimilation System Version 2.1 gridded 

data with 3-h temporal resolution as the atmospheric boundary conditions for the model. After data 

quality control (please refer to section 2.3), the observed discharge data from five gauging stations were 

shortlisted for model accuracy assessment. The MODIS-based land use data was used as input to the model. 

The MODIS Terra+Aqua Combined Land Cover product incorporates a 12-month input to identify two 

classes by the International Geosphere Biosphere Program (IGBP) based on 2001 data [31]. The 5-min 

FAO soil texture default dataset of WRF with 16 soil categories was used for the soil type [32]. The digital 

elevation model (DEM) was used for the generation of the WRF-Hydro routing grid inputs. Table 1 

summarizes the input data for the simulation and accuracy assessment purposes. 

Table 1. Summary of the input data used in the WRF-Hydro model. 

2.3. Observed data quality control 

The velocity-area method is used to measure streamflow in the ARB. The Ministry of Energy and 

Water (MEW) uses a current meter for measuring the velocity and wading or cableways for measuring 

the water depth. Errors in the observed data are unavoidable and are classified as observational errors 

or rough errors [33]. The observational errors are divided into random and systematic errors. Random 

No Description Sources Spatial 

resolution 

Temporal 

resolution 

Source 

1 Forcing data (temperature at 2 

m, precipitation, wind speed u 

and v component, specific 

humidity, incoming shortwave 

radiation, incoming longwave 

radiation, surface air pressure) 

Global Land Data 

Assimilation System 

(GLDAS_NOAH025_3

H 2.1) 

0.25 × 

0.25 deg 

3 h https://ldas.gsfc.nasa.gov/gld

as/gldas-get-data 

2 Observation discharge for 

calibration and validation 

MEW Point data Daily Ministry of Energy and 

Water, Islamic Republic of 

Afghanistan 

3 Land cover MODIS Modified IGBP 

2-classes land cover 

30 arcsec 2010 University Corporation for 

Atmospheric Research 

(UCAR) 

4 Soil type FAO/UNESCO soil map 

of the world 

5 km - University Corporation for 

Atmospheric Research 

(UCAR) 

5 Digital Elevation Model 

(DEM) 

Advanced Spaceborne 

Thermal Emission and 

Reflection Radiometer 

(ASTER) 

1 arcsec - https://earthexplorer.usgs.gov

/ 
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errors refer to misreading caused by human error, while systematic errors are the difference in the 

average of all observations from the true values [33]. On the other hand, rough errors can be caused 

by problematic observations, manual errors, or corrupted data during transmission. The main purpose 

of quality control is to remove errors from the data. In this study, after inspection of the data, two 

measures were considered for error removal; suspect records were deleted. We did not attempt to fill 

missing data or suspect data that was removed based on the following two criteria: 

(1) Daily observations with the exact same value for more than 10 consecutive days were flagged 

as suspect data [34]. 

(2) To detect outliers, the Z-score approach was adopted [35]. The Z score was estimated based 

on Eq. (1), and values greater than 3 and smaller than −3 were considered outliers. 

𝑍 =
𝑥𝑖 − �̅�

𝜎
                                                                                  (1) 

where 𝑥𝑖 is the observation, �̅� is the mean value of the observations, and 𝜎 is the standard deviation. 

After removing the outliers and records with the exact same value for 10 continuous days, data with 

less than 10% missing values in the total observation length were considered reliable. Table 2 presents 

a summary of the quality control stations. 

Table 2. List of five discharge stations out of 14 measurement stations in the Amu River 

Basin (ARB) used for the current study. 

Station Station 

ID 

River Percentage of 

suspect data (%) 

Elevation 

(m) 

Highest flow 

recorded in the 

station (m3/s) 

Lowest flow 

recorded in the 

station (m3/s) 

Nazdik-i-Keshem N-K Kokcha 2.6 807 930 34 

Khawjaghar KH Kokcha 6.3 488 1550 31 

Nazdik-i-Taluqan N-T Khanabad 5.7 1008 631 8.1 

Pul-i-Bangi P-B Khanabad 5.9 556 398 5.44 

Gerdab G Kunduz 9.3 475 498 7.8 

3. Methodology 

3.1. WRF-Hydro standalone model configuration 

WRF-Hydro is an open-access hydrometeorological modeling system originally developed to 

couple Weather Research and Forecast (WRF) atmospheric models for simulating surface and 

subsurface lateral water movement and shallow aquifer processes [10]. WRF-Hydro can also be 

applied in the uncoupled mode with external forcing data in offline mode or in a standalone version. 

In this study, the WRF-Hydro standalone mode was adopted to simulate the hydrological processes in 

the study region. WRF-Hydro is a multi-process, fully distributed, and multi-scale three-dimensional 

land surface hydrological simulation system depicting the surface, subsurface, channel, and 

groundwater lateral redistribution [9]. These interfaces enable a better representation of the 

relationships between water and energy fluxes at the atmospheric-terrestrial level. Moreover, for such 

a complex basin with high terrain, the WRF-Hydro represents a realistic simulation that considers the 

thermal processes and complete dynamics of the watershed [36].  
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WRF-Hydro is coupled with two land surface models: Noah and Noah-MP. The purpose of 

Noah-MP is to improve upon some of the limitations of its successor [37]. In this configuration, the 

Noah-MP LSM represents the energy flux and water from upstream to downstream, including surface 

runoff, snowmelt and accumulation, evapotranspiration, aquifer recharge, and soil water drainage 

and storage [38]. The model configuration is summarized in Table 3. In the physics option, surface 

overland flow routing, subsurface routing, and channel routing modules were activated. The 

baseflow bucket model was also activated with the exponential option. A detailed description of the 

WRF-Hydro modules and groundwater bucket model is available in Gochis et al., (2020) [39]. 

Figure 2 depicts the overall flow process of the model setup, calibration, and validation. Based 

on the available historical discharge data, the model output was set to daily discharge. The model 

requires an initial input, routing functions, and meteorological forcing data. The following steps were 

executed during data preprocessing: 

(1) Defining the mode domain: Data required to execute the Noah-MP model were defined in the 

netCDF file generated using the GEOGRID component of the WRF preprocessing system 

(WPS). The GEOGRID component of WPS automated the procedures for defining the 

georeferencing and space and attributing most land surface data for the execution of Noah-

MP [39]. The horizontal resolution for the Noah-MP model was set to 3 km. 

(2) Initial surface conditions: Initial surface conditions such as soil temperature, soil moisture, 

and snow states were generated in netCDF (wrfinput_d0x.nc) with the aid of an R script by 

the National Centre of Atmospheric Research (NCAR). 

(3) Hydrologic routing input: The WRF-Hydro routing functions are executed on the sub-grid of 

the LSM grid [40]. A suite of Python-based utilities, the WRF-Hydro GIS preprocessing 

toolkit [40], is available online in the NCAR website. The inputs for this step are the 

GEOGRID file, Digital Elevation model (DEM), and geographical coordinates for the 

generation of point data for the observation station sites. A detailed description of the 

procedures and output is available in Sampson & Gochis, (2018) [40]. The hydrologic routing 

grid was set to 250 m. 

(4) Land surface model and lateral routing parameters file: Parameters for the Noah-MP land 

surface model are general, vegetation, and soil parameters associated with land cover and 

soil-type classes. These are available in the model directory in .txt format with a TBL 

extension [39]. As part of the National Water Model implementation effort, these land surface 

model parameters can be presented in a single netCDF file (soil_properties.nc) with the 

SPATIAL_SOIL option on during model compilation. The soil property files were generated 

using the R script provided by NCAR. The parameters for the lateral routing component of 

WRF-Hydro are defined in the text files as the LSM parameters or a netCDF file 

hydro2dtble.nc. 

(5) Meteorological forcing data: Simulation of land–atmosphere exchanges and terrestrial 

hydrological processes in the standalone version of WRF-Hydro requires meteorological 

forcing data [39], obtained using the Earth System Modeling Framework (ESMF) with scripts 

using NCAR Command Language (NCL). 

The period from January 1, 2010, to December 31, 2013, was considered as the spin-up period 

for model warmup and was excluded from further analysis. The period from January 1, 2014, to 

December 31, 2016, was selected as the model calibration period, and the period from January 1, 2017, 

to December 31, 2019, was selected as the model validation period. 
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Table 3. Basic settings of the WRF-Hydro standalone modeling system. 

No Option Chosen setting 

1 Hydro output interval 24 h 

2 Land surface model (LSM) Noah-MP 

3 Soil column 2 m 

4 Subsurface routing Yes 

5 Surface overland flow routing Yes 

6 Channel routing Yes, with diffusive wave option 

7 Baseflow bucket model Yes, with exponential model 

8 Channel routing model timestep 15 s 

9 Terrain routing model timestep 15 s 

10 WRF-Hydro model grid resolution 3 km 

11 Hydrologic routing grid resolution 250 m 

 

 
Figure 2. Overall flowchart of the WRF-Hydro model setup. 

3.2. Calibration and validation 

3.2.1. Noah-MP physics parameters sensitivity analysis 

The default LSM for WRF-Hydro version 5 is the Noah-MP, which is an augmented Noah-LSM 

model with multiple parameterization options [38]. The Noah-MP model offers an expanded range of 

user control process schemes, unlike its predecessor Noah [9]. The calibration of the Noah-MP model 

focuses on improving and matching the simulation discharge in the snow melting season. A reasonable 
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representation of the snowmelt and accumulation within land surface hydrological models is key to a 

successful setup of the model over mountainous basins with significant snowmelt contributions. The 

Noah-MP model parameters were subjected to sensitivity analysis, and the best setup to represent the 

snowmelt timing and runoff peak was chosen. The recommended setup for the Noah-MP and the 

modified option for the current study model are presented in Table 4. 

3.2.2. WRF-Hydro model parameterization 

The manual calibration approach was adopted for the model parameter calibration. The model 

was compared with the observed discharge at the gauging stations. The model calibration process 

attempts to improve the simulation output in terms of discharge magnitude and timing. Sensitive 

parameters were selected based on a literature review [9,41–43] and an accuracy assessment of the 

default model run. After sensitivity analysis, five of the parameters were adjusted to the new optimized 

value; the default value for the three parameters found to be the best were kept as default values, as 

summarized in Table 5. The performance of the hydrological model was evaluated using four statistical 

indicators as shown in Eq 2–7, namely, the correlation coefficient (R), coefficient of determination 

(R2), Nash-Sutcliffe efficiency (NSE), and Kling-Gupta efficiency (KGE) [44]. 

 

𝑟 =
∑ (𝑄0 − �̅�0)(𝑄𝑚 − �̅�𝑚)
𝑛
𝑖=1

√∑ (𝑄0 − �̅�0)2
𝑛
𝑖=1 √∑ (𝑄𝑚 − �̅�𝑚)2

𝑛
𝑖=1

 

(2) 

𝑅2 =

(

 
∑ (𝑄

0
− �̅�

0
)(𝑄

𝑚
− �̅�

𝑚
)𝑛

𝑖=1

√∑ (𝑄
0
− �̅�

0
)
2𝑛

𝑖=1
√∑ (𝑄

𝑚
− �̅�

𝑚
)
2𝑛

𝑖=1 )

 

2

 
(3) 

𝑁𝑆𝐸 = 1 −
∑ (𝑄0 − 𝑄𝑚)

2𝑛
𝑖=1

∑ (𝑄0 − �̅�0)
𝑛
𝑖=1

2  
(4) 

𝐾𝐺𝐸 = 1 − √(1 − 𝑟)2 + (𝛽 − 1)2 + (𝛾 − 1)2  

(5) 

𝛽 =  
�̅�𝑚

�̅�0
 

(6) 

𝛾 =

𝜎𝑠
�̅�𝑚
⁄

𝜎𝑜
�̅�0
⁄

  

(7) 

where 𝑄0 is the measured discharge (𝑚3/𝑠), 𝑄𝑚 is the simulated discharge (𝑚3/𝑠), �̅�0 is the average 

observed discharge (𝑚3/𝑠) , �̅�𝑚  is the average simulated discharge (𝑚3/𝑠) , 𝛽  is the bias ratio 

(dimensionless), 𝛾  is the variability ratio (dimensionless), 𝜎𝑠,𝑜  is the standard deviation of the 

simulated and observed discharge, and 𝑛 is the number of days. 
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4. Results 

4.1. Noah-MP physics scheme calibration 

Snow accumulation and melting simulation are highly important in the reconstruction of the 

streamflow signal. The sensitivity test of the Noah-MP LSM physics options shows that the simulation 

of snow accumulation and melting are particularly responsive to surface layer drag coefficients (SFC) 

and snow/soil temperature time scheme (TEMP). Figure 3a–e illustrates four different combinations 

of these two physics options. The hydrographs in Figure 3 depict the significance of Noah-MP LSM 

model configuration in the simulation of the snow process in the WRF-Hydro model. There is a huge 

lag between the simulated and observed discharge in all five stations using the recommended physics 

option. The calibrations of the Noah-MP physics option significantly improved the model simulation 

by eliminating the delay in the start of melting season and peak flow matched with observations. 

Table 4. Noah-MP name lists for the physics option used for modeling. 

As shown in Figure 3, the change of the SFC scheme between option 1 (M-O) and option 2 

(original Noah) slightly alters the daily snow accumulation period and early melting season. 

Meanwhile, the SFC scheme affects the snow ablation period. A faster snow ablation was simulated 

using the original Noah option in the Noah-MP model. The TEMP option 1 (semi-implicit) and option 

2 (fully implicit) shows the most significant improvement in the simulation result. The TEMP semi-

implicit scheme simulated the snowmelt process with an earlier start of melting and early end of the 

snow ablation regarding the observations in all stations. The TEMP fully-implicit scheme captured 

Parameterization description Model default Selected after sensitivity test 

Dynamic vegetation 4-Table LAI 4-Table LAI 

Canopy stomatal resistance 1-Ball-Berry 1-Ball-Berry 

Soil moisture factor for stomatal 

resistance 

1-Noah 1-Noah 

Runoff and groundwater 3-Original surface and subsurface 

runoff 

3-Original surface and subsurface 

runoff 

Surface layer drag coefficient 1-M-O 2-Original Noah (Chen97) 

Supercooled liquid water 1-No iteration 1-No iteration 

Frozen soil permeability 1-Linear effects, more permeable 1-Linear effects, more permeable 

Radiation transfer 3-two-stream applied to vegetated 

fraction 

3-Two-stream applied to vegetated 

fraction 

Ground snow surface albedo 2-CLASS 2-CLASS 

Partitioning precipitation into rainfall & 

snowfall 

1-Jordan (1991) 2-BATS 

Lower boundary condition of soil 

temperature 

2-TBOT at ZBOT (8 m) read from a 

file (original Noah) 

1-Zero heat flux from bottom 

Snow/soil temperature time scheme 1-Semi-implicit 2-Full implicit 

Surface resistance to 

evaporation/sublimation 

1-Sakaguchi and Zeng, 2009 1-Sakaguchi and Zeng, 2009 

Glacier treatment 1-Include phase change of ice 2-Ice treatment more like original 

Noah 
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well the start and end of the melting season on a daily basis. The TEMP is the option used to solve the 

thermal diffusion equation in the Noah-MP model [45,46]. TEMP has a large influence on the 

simulation of snow cover and melting in the model; as a result, the discharge simulated by WRF-Hydro 

was highly improved after selecting the proper options for SFC and TEMP. These two options are 

extremely important in the simulation of the snow depth and snow-water equivalent in the modeling 

process. In regions with limited observations of snow depth and snow-water equivalent, recorded 

hydrographs can be used to depict the snow melting process. 

Table 5. WRF-Hydro model parameters subjected to sensitivity analysis and calibration. 

R is the value multiplied by the factor, and A is the value that has been replaced by a new 

value.  

No Parameter Abbreviation Range Selected 

value 

Hydrological response 

controlling 

Snow parameter 

1 Melt factor for snow depletion 

curve 

MFSNO 0.1–8.5 1A Snow ablation 

Soil parameters 

2 Soil pore size distribution 

index 

BEXP 0.01–10 0.6R Infiltration 

3 Saturated hydraulics 

conductivity 

dksat 0.0001–

0.00001 

Default Infiltration 

Runoff parameters 

4 Surface runoff 

parameterization 

REFKDT 0.1–5 Default Partition of total runoff into 

surface and subsurface 

runoff 

5 Linear scaling of “openness” 

of bottom drainage boundary 

Slope 0.1–1 Default Aquifer recharge 

Groundwater parameters 

6 Maximum bucket depth Zmax 5–250 250A Baseflow 

7 Exponent of bucket model Expon 

 

Default Baseflow 

4.2. Calibration  

After optimization of the Noah-MP model parameters and improvement of the snowmelt 

simulation, we calibrated the WRF-Hydro model parameters. The simulated discharges from the 

model calibration were assessed for accuracy against the ground truth data from five stations on the 

three rivers of Kokcha, Kunduz, and Khanabad. Figure 4 shows the simulated hydrographs after 

calibration and the observed discharge at the five stations (for the locations of the observation 

stations and the rivers, please refer to Figure 1). The Nazdik-i-Keshem station is located in the 

midstream, and the Khawjaghar station originates downstream of the Kokcha River (Figure 4a and 

4b). A summary of the model accuracy assessment is presented in Table 6. Overall, the statistics 
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reveal an acceptable result, except for the NSE value at the Nazdik-i-Keshem station, which is 0.33. 

According to Moriasi et al., (2015) [47], this result is unsatisfactory, but all the other indicators are 

within acceptable ranges. The hydrographs for simulated and observed discharge over the Khanabad 

River at the Nazdik-i-Taluqan (right branch of the Khanabad River) and Pul-i-Bangi (left branch of 

the Khanabad River) stations are shown in Figure 4c and 4d, respectively. The statistical indicators 

show good agreements between the observations and simulations at the Nazdik-i-Taluqan station 

located in the right branch of the Khanabad River upstream with respect to Pul-i-Bangi. The NSE 

and R2 values for the Nazdik-i-Taluqan station are not within a satisfactory range, while the KGE is 

reasonable for this station. At the Pul-i-Bangi station, the NSE and KGE values are not within the 

acceptable range, but the R2 value is. The model performance for the Gerdab station, located 

downstream of the Kunduz River (Figure 4d), did not significantly improve and became closer to 

the observation. The statistical indicators show a correlation of 0.59 and 0.35 for r and R2, 

respectively. However, the NSE and KGE values are not significant and represent negative values. 

The model failed to represent the peak flow in the Gerdab station and overestimated the discharge 

during the peak season. The presence of missing data in the peak flow season in this station may 

affect the statistical indicators, especially the NSE value. 

There are many efficiency criteria for the assessment of hydrological models, each of which 

associated with some limitations. The greatest disadvantage of the NSE is that the differences between the 

simulation and observation values are estimated as square values; as a result, larger values in a time series 

are overestimated, and lower values are neglected [48]. As shown in Legates and Davis (1997) [49], 

correlation-based measures are more sensitive to outliers than values near the mean. Each efficiency 

criterion reveals different information on the model’s performance. On the other hand, the study regions 

cover a large watershed subjected to spatial and temporal variability. A single set of model parameters 

cannot accurately represent all hydrological processes. The quality of the observation dataset and the 

presence of missing data could be potential reasons for inadequate model efficiency criterion values. 

Hydrologists must make subjective and objective estimates of the “closeness” of the simulated behavior 

of the model [50]. In this approach, the hydrologist may formulate the subjective assessment of the model 

behavior (e.g., over- and underestimation, raise limb, falling limb, and baseflow) parallel to the objective 

assessment using mathematical formulations [50]. 

Overall, the model properly captured the baseflow and seasonal fluctuations at all stations 

except for the Gerdab station (Figure 4e). The model reproduced well the seasonal fluctuation in 

discharge by reconstructing the streamflow during the start and end of the melting season during 

model calibration. The most sensitive model parameter was the soil pore size distribution index 

(BEXP), which controls infiltration into the soil column and baseflow as well as peak flow. The 

BEXP controls the actual hydraulic conductivity of the soil column according to the saturated 

hydraulic conductivity of the soil [9]. A higher BEXP during the simulation allowed more water to 

infiltrate the soil column, reducing the surface runoff, and vice versa. The melt factor for snow 

depletion curve (MFSNO) controls the snowmelt characteristics and can determine a delayed or rapid 

melting in the model. The maximum bucket depth (Zmax) and exponent of bucket model (EXPON) 

are the groundwater bucket model parameters controlling the calculation of baseflow. The WRF-

Hydro model uses a simple conceptual baseflow bucket model that connects the baseflow and 

overlaying channel in one way [39]. This simple bucket model is a highly conceptualized and 

abstracted representation of the groundwater process where the parameters and depth of the bucket 

do not represent any physical meaning. On the other hand, linear scaling of the “openness” of the 
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bottom (Slope) controls the simulated interaction between the water infiltrated into the soil column 

and the aquifer at the bottom of the soil column. 

4.3. Validation 

The results of the validation are shown in Figure 5 for all five stations in the ARB, and a summary 

of the statistical analysis is presented in Table 6. A comparison of the statistical data during the 

calibration and validation periods shows slight differences. The statistical indicators for the Nazdik-i-

Keshem, Khawjaghar, and Nazdik-i-Taluqan stations show slight differences between the calibration 

and validation periods. The R and R2 values decreased slightly during the validation period, except for 

the R2 for the Nazdik-i-Talquan station, which increased by 0.03. The NSE values show slight 

improvements for Nazdik-i-Keshem (0.13), Khawjaghar (0.06), and Nazdik-i-Taluqan (0.08). The 

hydrographs for the Nazdik-i-Keshem, Khawjaghar, and Nazdik-i-Taluqan stations are presented in 

Figure 5a, 5b, and 5c, respectively. The KGE values decreased with respect to those during the 

calibration period. On the other hand, the statistical indicator of the Pul-i-Bangi station decreased 

during the validation period compared with the calibration period. For the Gerdab station, R2 (0.50) is 

acceptable, but KGE and NSE are not within the satisfactory range. Overall, the model captured the 

start and end of the melting season except for the year of 2018, when a delay in the start of the melting 

season was visible at the Nazdik-i-Keshem and Khawjaghar stations. The model was less successful 

at simulating the peak flows in the hydrographs, over-representing them most of the time. 

Table 6. Summary of the statistical analysis of the simulated discharge vs. observed discharge. 

Station 

ID 

Station Calibration [daily] Validation [daily] 

R R2 NSE KGE R R2 NSE KGE 

N-K Nazdik-i-Keshem 0.80 0.64 0.33 0.70 0.77 0.59 0.46 0.59 

KH Khawjaghar 0.85 0.73 0.52 0.74 0.83 0.70 0.58 0.63 

N-T Nazdik-i-Taluqan 0.65 0.42 0.23 0.64 0.67 0.45 0.31 0.53 

P-B Pul-i-Bangi 0.78 0.61 −1.95 0.14 0.42 0.17 −5.76 −0.78 

G Gerdab 0.59 0.35 −9.21 -0.56 0.71 0.50 −8.64 −0.46 
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Figure 3. Hydrographs of the four experiments showing the sensitivity of Noah-MP LSM 

physics to the snow melting time and dynamics in the WRF-Hydro model. Note that station 

N-K (a) does not have an observed precipitation record.  
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Figure 4. Observed discharge vs. simulated discharge, observed precipitation and GLDAS 

precipitation at five measuring stations in the ARB for the calibration period. 
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Figure 5. Model validation comparison between the model outputs and observed discharge 

at five stations in the ARB. 
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5. Discussion  

5.1. Baseflow simulation 

The contribution of groundwater from aquifers to streamflow is highly important for hydrological 

modeling, especially in the simulation of baseflow in arid and semiarid regions with limited precipitation. 

Several studies suggest that the baseflow bucket model poorly represents the contribution of groundwater 

to streamflow, and due to a lack of information, the baseflow bucket model was excluded from the model 

structure in their studies [13,42]. However, for long-term simulations of streamflow where the baseflow 

and low-flow processes are considerable contributors, this model is useful [39]. The inclusion of the 

bucket model in the simulation process requires proper and accurate calibration of the parameters. 

The calibration of groundwater parameters should be considered not only for the calibration period 

but also for the spin-up period. The model starts from the initial depth of water in the groundwater bucket 

(Zinti), and the depth increases during the spin-up period. The spin-up period should be long enough for 

the depth of water in the ground bucket to reach an equilibrium state. The slow bucket discharge is a 

function of the depth of water in the soil column to the maximum depth of water in the soil column 

(Z/Zmax) and of the model parameters. When the calculated depth of water exceeds the maximum 

proscribed depth of the soil column, the excess water essentially produces a simulated spring, producing 

a high discharge value as a result. It is essential to calibrate the groundwater parameters prior to the other 

model parameters; since it takes a few model years for the bucket model to reach a stable state, parameter 

tuning should also be considered during the spin-up period. 

5.2. Noah-MP model physics schemes for the snowmelt season 

Snow is a crucial component of the hydrological cycle. Snow accumulation and melting strongly 

impact soil moisture and surface runoff, especially in mountainous regions. Snow accumulates during 

the winter and contributes to streamflow as the temperature rises above the melting point. Meltwater 

contributes to surface flow through direct runoff on the land surface or through infiltration of the soil and 

recharging of groundwater. The simulations of snow accumulation and melting are strongly affected by 

two physic schemes: (1) the surface layer drag coefficient (SFC) and (2) the snow/soil temperature time 

(TEMP). The TEMP option is highly influential on the snow accumulation and melting process. 

Switching between the TEMP options in the Noah-MP physics option significantly changes the shape of 

the hydrograph as highlighted in Figure 3. The TEMP option 1 simulates the snow melting season 

approximately one month earlier with respect to the observation data at the site. The SFC option highly 

affects the hydrograph during the snow ablation period with faster or slower ablation. 

6. Conclusions 

In this study, the WRF-Hydro model reasonably matched the streamflow signal timing over the 

ARB. The findings of this study enhanced the performance of the WRF-Hydro model for the simulation 

of the snowmelt process and improved the melting timing and magnitude of the simulated discharge. 

This study recommends a careful selection of the LSM model physics schemes in watersheds with high 

altitude and snowmelt contribution to surface runoff. The baseflow bucket model parameters are key to 

a successful model calibration. Users should consider the calibration of the groundwater parameters 
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during the spin-up period, while the remaining parameters could be calibrated during the calibration 

period. The simulation of the groundwater contribution to streamflow is challenging in mountainous 

regions due to the high topographic relief, hydrological heterogeneity, and limited data availability [51]. 

Naturally, timing of water infiltrating into the ground can produce a large effect, entering streamflow 

after a considerable amount of time, which makes its simulation challenging. The performance of the 

groundwater bucket flow model in the WRF-Hydro is reasonably good despite the simplification of the 

process for the long-term simulation. The soil pore size distribution index (BEXP) was the most sensitive 

parameter in the WRF-Hydro model parameters. BEXP improves the simulation baseflow and peak 

flows by controlling the amount of infiltration into soil column. 
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