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Abstract: The lateral earth pressure at rest is typically considered in situations where lateral wall
movements are negligible. Determining the coefficient of lateral earth pressure at rest (referred to as
Ko) often relies on established classical equations. However, these equations often overlook the
influence of the width of the backfill soil on lateral earth pressure. While this omission is generally
acceptable when the backfill soil is wide enough, there are instances where a retaining wall supports
backfill soils of limited width, such as basement walls between adjacent buildings. Yet, there is limited
research addressing the impact of narrow backfill in such scenarios. We aimed to address this gap by
investigating variations in Ko values under different conditions, including backfill width and soil
properties. Using ABAQUS for numerical simulations, we refined and validated our model using
relevant laboratory experimental data. Subsequently, the validated model was applied to various
simulation scenarios. For narrow backfill widths (ranging from 0.1 to 0.7 times the retaining wall
height), our findings indicated a general decrease in Ko values with decreasing backfill widths, often
smaller than those estimated using classical equations. Additionally, along the depth of the wall, Ko
values tended to decrease with increasing depth for narrow backfill widths. These findings contribute
to our understanding of the impact of narrow backfill on Ko.
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1. Introduction

In the context of urban expansion, retaining structures find widespread application in diverse
settings, including building basements, roads, and rivers. When designing these structures, the lateral
earth pressure is an important parameter to be determined, which is equal to the effective vertical stress
multiplied by the lateral earth pressure coefficient (K). Depending on the movement of walls and their
directions, this coefficient is categorized into active, passive, and at-rest earth pressure coefficients.

In practical applications, active and passive earth pressure coefficients are commonly computed
because lateral wall movements are assumed to occur in most design scenarios. Therefore, a large body
of existing research focuses on active and passive earth pressures acting on retaining structures.
Common analysis methods include limit equilibrium [1-4], finite difference [5—7], and classical limit
analysis methods [8—11]. However, some of these approaches rely on specific simplifications, such as
pre-specified failure patterns, which may limit their applicability in more complex scenarios. Further
insights into the non-linear distribution of active or passive earth pressures are offered by [12—-17],
presenting pseudo-dynamic approaches to assess the effects of various parameters such as soil-wall
friction angle, soil friction angle, and sliding stability of retaining walls.

Nevertheless, there are instances characterized by neglectable lateral wall movements, such as
laterally restrained basement walls situated between two adjacent buildings. In such cases, the
application of the at-rest lateral earth pressure coefficient (Kj) is more suitable. The definition of K, is
presented in Eq. 1. Various empirical equations have been proposed to calculate K, using mainly the
angle of friction of soil. Jaky’s equation, as shown in Eq. 2 [18], is the most widely utilized. Jaky’s
equation is a simplified form of Eq. 3, where the fraction term is omitted. Subsequent researchers have
introduced modifications to Jaky’s equation. Saglamer, through odometer tests on air-dried, uniform,
cohesionless sandy soils from three different sites, derived a modified equation for K, as shown in Eq.
4 [19]. Considering sandy soils, Bolton proposed a fractional form in Eq. 5 [20]. To explore potential
improvements on Jaky’s equation, Szepeshazi conducted tests on various formulae using 153 measured
data points, resulting in an optimized solution in Eq. 6 [21]. In addition to the angle of friction, efforts
have also been made to understand the effect of various other factors on K;, such as porosity,
fragmentation process and elasticity modulus of granular materials [22,23], transverse strains [24,25].

o,

Ky=—+ (1)

v

where gy, and g, represent the effective lateral earth pressure and the effective vertical earth pressure,

respectively.
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The calculation of K|, is conventionally performed under the assumption of an adequate width of
soil behind a retaining wall. However, scenarios exist where the backfill soil width is restricted, notably
in retaining walls situated in mountainous regions or urban build-up areas due to spatial constraints. A
limited number of studies [26—30] have explored the impact of narrow backfill width on K.

Janssen’s Arching Theory [31] suggested that the main distinction between unlimited and narrow
backfill width was attributed to the reduction of pressures by soil-wall interaction. The wall’s vertical
friction prevents the upper soil layer from exerting its full weight on the layer below, resulting in a
reduction in the resultant force in the vertical direction. Addressing this issue, Handy [29] proposed
Eq. 7 through a theoretical approach to estimate the at-rest earth pressure coefficient under narrow
backfill conditions.

. 1 L z
K, = —|1-exp| —2K, —tan¢’
0 2tang’ z { p( L v ﬂ )

where L is the backfill width; z is the ground depth; ¢’ is the soil-wall friction angle; and K|, is the
classical at-rest earth pressure coefficient under an unlimited backfill width.

In addition to analytical and theoretical investigations, centrifuge experiments have been employed
to examine lateral earth pressure on retaining structures [26,27,32]. Frydman and Keissar [26] utilized
centrifuge tests to mimic retaining walls near rock faces under at-rest conditions. Investigating different
aspect ratios (ratios of backfill width to wall height) ranging from 0.1 to 1.1, they observed a decrease in
the measured K, values as the backfill width increased. A similar trend was noted in the centrifuge
experiments conducted by Take and Valsangkar on rigid retaining walls [27].

Previous research on K|, primarily leaned on theoretical frameworks [29], analyses [33], or
experiments [26,27] that did not thoroughly explore the effect of different factors on K, particularly
when dealing with narrow backfill widths. Consequently, the impact of narrow backfill width on K|,
remains uncertain. Hence, conducting comprehensive numerical simulations, capable of simulating
and analyzing various variables, constitutes the primary contribution of this study.

2. Materials and methods
2.1. Key factors in numerical simulations
Based on the related work on K|, in Section 2, we seek to establish correlations between K, and

key variables, including backfill widths L, wall depths z, and soil types of different properties. Soil
properties considered include friction angle ¢, cohesion ¢, modulus of elasticity E, and Poisson’s ratio

U.

AIMS Geosciences Volume 10, Issue 2, 274-289.



277

2.2. Setup of finite element model

Finite element modeling has proven to be a widely employed technique for modeling the stability
of geo-structures with a variety of soil conditions [33—37], analyzing geosynthetic-reinforced retaining
walls [38,39], evaluating the impact of varying environmental conditions on retaining structures, and
analyzing soil-wall interactions [40—42], making it an appropriate tool for addressing the research
problem in this study.

In this research, the finite element software ABAQUS is selected for implementing the intended
numerical simulations. To create a validated finite element model, the parameters from the
experimental study [26] are utilized to customize our ABAQUS model, ensuring its consistency with
their experimental findings. The model setup, along with the associated soil parameters for validation,
is depicted in Figure 1 and Table 1, based on data from [26]. Since the geometry in Figure 1(a) is
symmetric, the finite element model in Figure 1(b) considers only half of it. Sections 3.2.1, 3.2.2, and
3.2.3 elaborate on the material components, meshes, and boundary conditions, respectively.

In addition to the parameters used for model establishment and validation, an extra validation is
performed using laboratory test results in [27]. This supplementary validation considers the outcomes
of Test B and Test D in [27], representing backfill widths of 75 mm and 15 mm, respectively. Once the
ABAQUS model is validated, it is employed for various simulations where the values of key design
variables are adjusted, as detailed in Section 3.3.

2.2.1. Material Components

The initial ABAQUS model is constructed based on the data (comprising geometry, soil properties,
and soil-wall friction coefficient) related to the retaining wall used in a series of centrifuge tests
documented in [26]. These data aid in validating our model against experimental results. Figure 1
illustrates the wall with a height (H) of 160 mm and a width of 1 mm. The backfill has a width (L) of
45 mm, matching the wall's height and extending along its length. The wall body is represented as an
isotropic and elastic material. The backfill soil is characterized using Mohr-Coulomb Plasticity,
assuming perfect plasticity [41].

In our initial model built for validation, the internal friction angle (¢) of the backfill is set as 36°
according to [26]. Regarding the soil-wall interaction, the following conditions are presumed. Initially,
the wall is assumed to exhibit frictional behavior with a soil-wall friction coefficient of 0.364, as per [26].
For Elastic Slip at the wall-soil interface, the characteristic surface dimension fraction is set to
infinitesimally small. Additionally, “Hard” Contact is selected for Pressure-Overclosure, indicating that
separation between wall meshes and soil meshes at the contact surface is prohibited.

2.2.2.  Meshes
For meshing, the eight-node plane strain cell (CPES) is employed. The approximate global size

is configured at 0.2, with a maximum deviation factor set to 0.1. This meshing strategy results in a
total of 10,681 nodes and 3,384 mesh elements.
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2.2.3.  Boundary conditions

The selt-weight of the backfill is applied in the model, determined by a uniform soil density of
16.4 kN/m?. Boundary conditions (BC1 and BC2) are applied to the wall and backfill mesh nodes,
respectively. BC1 restricts horizontal movements and rotations at the right edge of the model, while
BC2 restricts vertical movements and rotations at the bottom edge of the model.

Imm -fj

Half of the soil

<. —_, Boundary
./ conditions

-Backfill soil

~

——Wall

(@) O

Figure 1. Illustration of the finite element model: (a) Geometry, and (b) load, meshes, and
boundary conditions.

Table 1. Material properties used for model validation, according to [26].

Material Components Density (g/cm®)  Modulus of elasticity (MPa)  Poisson’s ratio Friction angle (°)
Wall - 2x 10 0.05 -
Soil 1.64 30 0.3 36

2.3. Key factors considered

Using the validated finite element model, adjustments to the inputs are made to investigate the
impact of backfill width and soil properties on the at-rest lateral earth pressure coefficient K. This
approach allows for an in-depth exploration of how different backfill widths and soil types influence
the at-rest lateral earth pressure coefficient. This study considers various backfill widths, specifically
I m,3 m,5m, 7 m, and 50 m, with a retaining wall height of 10 m. The corresponding normalized
backfill widths (L/H or aspectratio) are 0.1, 0.3, 0.5, 0.7, and 5, respectively. It is assumed that L/H =
5 is sufficiently large, and any further increase in width would not influence the lateral earth pressure
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in the model. The other normalized widths are employed to simulate the effects of finite backfill widths
on K. We consider a variety of soils with distinct properties. Table 2 provides a summary of the soil
parameters used in the simulations, sourced from the Geotechdata database [43].

Table 2. Soil properties considered in the simulations, according to [43].

Soil types Unit weight Cohesion (kPa) Friction angle (°) Poisson’s ratio ~ Modulus of
(KN/m?) elasticity (MPa)

Sandy gravels 19 0 40 0.32 80

Firm clay 19 20 25 0.35 20

Medium sand 19 0 33 0.3 40

2.4. Sensitivity analysis

Sensitivity analyses were conducted to investigate the impacts of different parameters in
simulations, encompassing soil friction angle, soil-wall friction angle (derived as 2/3 times the soil
friction angle), modulus of elasticity, Poisson’s ratio, and cohesion. The ranges of values for these
parameters were systematically tested in our sensitivity analyses, as depicted in Table 3.

Table 3. Range of values of the soil parameters considered in sensitivity analyses.

Sensitivity Unit weight Cohesion (kPa)  Soil friction angle (°) Poisson’s ratio  Modulus of elasticity
Analysis Tests  (kN/m?) (MPa)
Test 1 19 0 25, 30, 35, 40, 45 0.3 40
Test 2 19 0 35 0.1,0.2, 40
0.3,0.4,0.5
Test 3 19 0 35 0.3 1,5, 10, 20, 80
Test 4 19 1,5,10,20,40 35 0.3 40
3. Results

3.1. Model validation

Figure 2 displays the variations in lateral earth pressure coefficients with wall depth, incorporating
data from our ABAQUS simulations conducted under at-rest conditions, Frydman and Keissar’s
experimental tests, Jaky’s equation (Eq. 2), and the arching equation (Eq. 7). Theoretically, K, values
should surpass those of K, (i.e., the active lateral earth pressure coefficient). To confirm this, K, values
were calculated using Coulomb’s method, as indicated in Eq. 8 [44], assuming flat backfill and vertical
walls, and are presented in Figure 2 for comparison. Despite some disparities at the upper and lower
wall depths, the K, values corresponded with those derived from the arching equation and exhibited a
similar trend to that observed in the experiments conducted by Frydman and Keissar [26].

cos’ @

cos ¢’ [1 N \/sin(qo +¢@")sinp }2 ®

a

cos ¢’

where ¢ is the soil friction angle and ¢’ is the soil-wall friction angle.
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Figure 2. Comparisons in lateral earth pressure coefficients estimated by our finite element
model and other methods (including the centrifuge tests of [26], the arching equation (Eq.
7), the Jaky’s equation [18] and the Rankine’s active earth pressure coefficient) where the
depth is normalized as z/L (z is the depth from the wall crest and L is the backfill width).

In Figure 3, the lateral earth pressure estimated from our finite element simulations was compared
with the test results from Take and Valsangkar [27]. The visual inspection further confirms the accurate
prediction capabilities of our finite element model concerning lateral earth pressure.
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Figure 3. Comparisons in lateral earth pressures versus depth, estimated by our finite
element model and the centrifuge test results of Take and Valsangkar [27].
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3.2. Effects of backfill widths and soil properties on K|,

Figure 4 presents the variations in K, values with wall depth at different aspect ratios for various
soils. As observed, the backfill width exerted a substantial impact on K, values. On average, there was
a decrease in K, values as the width of narrow backfill decreased. This effect is more pronounced at
smaller aspect ratios (e.g., L/H = 0.1to L/H = 0.3), with a reduced impact observed as the aspect
ratio increased (e.g., from L/H = 0.5 to L/H = 0.7). With respect to the narrow backfill widths, the
changes in K, over the wall depth exhibited a nonlinear decrease at smaller aspect ratios, transitioning
to more uniform values with increasing aspect ratios. This trend was consistent across various soil
types considered in the study. Such variations in K, with the wall depth was likely attributed to the
soil-wall friction. To confirm this, Figure 4(d) shows the simulated K, values for medium sands when
zero soil-wall friction was considered. Under this condition, almost constant K, values were observed.
In addition, the effect of backfill width was significantly reduced, although a smaller backfill width
also led to a slightly smaller K, values. In addition, all simulated K, values for clays and granular soils
corresponded well to laboratory experiment results by Mesri and Hayat [25], where K|, values for soft
plastic cohesive soil were found to be between 0.31~0.67.

Furthermore, Figure 4 also presents K, values estimated using Eq. (2) and Egs. (4)—(6) as
benchmark values representing conditions with adequately wide backfill widths. These benchmarks,
along with the K, values calculated by Eq. (8), were compared with K|, values predicted by our finite
element models. Notably, the Saglamer’s and Bolton’s equations were applicable only to sandy
materials and were excluded for calculating K|, for firm clay. For medium sand and firm clay, the
predicted K|, values at various backfill widths were smaller than the benchmark values. For sandy
gravels, the predicted K, values were either slightly smaller or larger than benchmark values,
depending on the backfill width.

Figure 4 shows that K|, values at the aspect ratio L/H = 0.1 varied significantly with wall depth,
likely attributing to soil-wall friction and exceptionally small aspect ratio. Under this small aspect ratio,
K, values at certain depths were smaller than K, values, contradicting the conventional theoretical
expectation that K, values should surpass K, values for a given soil. The exact reasons for this
deviation remain unclear, demanding future investigations. However, K, values obtained from the
numerical simulations may not be directly comparable to K, values calculated using the theoretical
equation, as the theoretical solution does not involve the complex set of parameters considered in the
simulations. In addition, the engineering significance of this deviation is minimal, given the rarity of
encountering a retaining wall with such a small aspect ratio.

For narrow backfill widths, the predicted K|, values near the crest of the wall displayed a concave-
downward trend, likely attributed to the effect of boundary condition, especially soil-wall friction,
which constrained vertical backfill movements and may unrealistically represent actual backfill
behavior.

AIMS Geosciences Volume 10, Issue 2, 274-289.
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Figure 4. Variations in K values with wall depth and aspect ratio: (a) Sandy gravels with
soil-wall friction taken into account, (b) firm clay with soil-wall friction taken into account,
(c) medium sand with consideration of soil-wall friction, and (d) medium sand without

consideration of soil-wall friction.

3.3. Sensitivity analysis

The analysis findings reveal that the K, values derived from our model were almost not affected
by cohesion and modulus of elasticity, as shown in Figure 5. However, they exhibited significant
variations with soil friction angle and Poisson’s ratio, as depicted in Figure 6 for L/H = 0.1 and Figure
7 for L/H = 0.7. A higher soil internal friction angle corresponded to a decrease in K|, values, whereas

a higher Poisson’s ratio resulted in an increase in K, values.
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Figure 5. Factors that the model is not sensitive to under narrow backfill width (using
under L/H = 0.1 as an example): (a) Variations in K, values with cohesion and (b)

friction angle and (b) variation in K, values with Poisson’s ratio.
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Figure 6. Factors that the model is sensitive to under narrow backfill with consideration
of soil-wall friction (using L/H = 0.1 as an example): (a) Variation in K values with soil
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Figure 7. Factors that the model was sensitive to under narrow backfill width with
consideration of soil-wall friction (using L/H = 0.7 as an example): (a) Variation in K|,
values with soil friction angle and (b) variation in K, values with Poisson’s ratio.

3.4. Simulation of the displacement field and strain field

Figure 8 displays the horizontal displacement field of soils at the soil-wall interface from the
simulations under the narrow backfill width L/H = 0.1. The values of displacement increased as the
soil depth increased. Additionally, likely due to its comparatively large value of Poisson’s ratio, the
largest displacements were observed for firm clay amongst all the three soils considered.
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Figure 8. Lateral displacements for different soils considered, under narrow backfill

widths (using L/H = 0.1 as an example).
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4. Discussion

A primary limitation within numerical modeling is the oversimplified representation of material
properties. Our model assumed a homogeneous material behavior, disregarding the inherent
heterogeneity found in natural soils and backfill materials. Lade and Duncan’s studies [45] underscored
the impact of material heterogeneity on the emergence of localized failure mechanisms within the
backfill. Moreover, the assumption of soils as continuum materials in finite element modeling fails to
adequately capture their granular nature, especially concerning sands and gravels. Hence, as a
prospective direction for further research, it is interesting to investigate the variation of K, under
diverse conditions utilizing a discrete element modeling approach [46—48].

The accuracy of numerical models significantly relies on the accurate representation of boundary
conditions. The interaction between the retaining wall and the surrounding soil constitutes a complex
and dynamic process. However, accurately modeling this interaction is challenging, which may have
limited the overall performance of our models. Numerical models typically adopt simplified
approaches to depict this interaction. Such oversimplification may yield inaccurate predictions
regarding wall stability and deformation behavior, particularly in cases of narrow backfill width.
Researchers have [49] illustrated that improper boundary conditions can lead to distorted pressure
distributions and erroneous forecasts of wall deformation behavior. Several prior studies [50,51] have
demonstrated that the Goodman contact element proves more suitable for the soil-wall interface.
Nevertheless, their findings are confined to specific scenarios such as cantilever or masonry walls,
leaving suitable contact models for our investigated problem to be further explored.

Construction methods can markedly impact the stress state and deformation behavior of narrow
backfill width retaining walls [52]. For instance, inadequacies in backfilling procedures or insufficient
compaction efforts may result in non-uniform soil density and lateral pressure distribution, thereby
influencing the overall performance and serviceability of the retaining wall. Failure to replicate these
interactions in numerical models may result in underestimation of long-term deformations of retaining
walls.

Research conducted by [53] showcased that the presence of surcharge loading can modify the
distribution of lateral earth pressures on retaining walls. This redistribution may result in localized
stress concentrations and potential failure mechanisms, particularly near the top of the wall where
surcharge loading is most pronounced. Additionally, surcharge loading can influence the emergence of
critical failure surfaces within the backfill, thereby impacting the overall stability of the retaining wall
system [54].

5. Conclusions

In this study, we employed numerical simulations with the ABAQUS finite element software to
predict the at-rest lateral earth pressure coefficient (K,) for various backfill widths in a retaining
structure. The crucial parameters considered were the ratio of backfill width to wall depth (L/H) and
soil properties. The model underwent refinement and validation using experimental results
documented in the literature. Subsequently, the validated finite element model, with adjusted parameter
values, was applied to various test cases.

For the narrow backfill widths investigated (L/H = 0.1, 0.3, 0.5 and 0.7), our findings revealed
a consistent decrease in K, values on average as the backfill width decreased, suggesting that

AIMS Geosciences Volume 10, Issue 2, 274-289.
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conventional equations likely overestimate lateral earth pressures in the case of a narrow backfill width.
This trend was observed across all three soil types examined. Additionally, it was noted that the values
of K, exhibited a nonlinear decrease with depth when the ratio of backfill width to wall depth was
small. These findings underscored a deficiency in classical equations, which offer a constant value of
K, irrespective of backfill width and depth. Within our model, the inclusion of soil-wall friction and
Poisson’s ratio emerged as critical factors influencing the variability of simulated K, values across
diverse conditions. Interestingly, in instances where soil-wall friction was disregarded, K, values
exhibited minimal alterations with depth.
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