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Abstract: Terrain surface roughness, often described abstractly, poses challenges in quantitative 
characterization with various descriptors found in the literature. In this study, we compared five 
commonly used roughness descriptors, exploring correlations among their quantified terrain surface 
roughness maps across three terrains with distinct spatial variations. Additionally, we investigated the 
impacts of spatial scales and interpolation methods on these correlations. Dense point cloud data 
obtained through Light Detection and Ranging technique were used in this study. The findings 
highlighted both global pattern similarities and local pattern distinctions in the derived roughness maps, 
emphasizing the significance of incorporating multiple descriptors in studies where local roughness 
values play a crucial role in subsequent analyses. The spatial scales were found to have a smaller 
impact on rougher terrain, while interpolation methods had minimal influence on roughness maps 
derived from different descriptors. 
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1. Introduction 

Terrain surface roughness is a key metric in the earth sciences that describes the complexity or 
variability of a terrain surface at a specific spatial scale. Its utility spans various applications, including 
geospatial analysis, simulation of Earth surface processes, and terrain classification [1–6]. Depending 
on specific application needs, calculations may involve determining either global or local terrain 
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roughness. Especially when using point cloud data as the main data source, local terrain roughness is 
often calculated [7–11]. This is mainly due to the fine spatial resolution inherent in such data, enabling 
the detailed recording of local topographic surface characteristics and spatial changes. The acquisition 
of such data typically relies on Light Detection and Ranging (LiDAR) [12], and registered point cloud 
data [13,14] have been widely used for characterizing the shape and form of land features. 

The definition of terrain surface roughness frequently involves ambiguity. Roughness indicators 
typically depend on quantitative descriptions of alterations in specific terrain features, including factors 
like local relief, degree of folds, or the extent of local mutations. Commonly employed indicators 
include, but are not confined to standard deviation of residual elevation [9], root mean square height 
(RMSH) [11], standard deviation of slope [7,8], standard deviation of curvature [2], topographic 
ruggedness index [15], fractal dimension analysis [16], autocorrelation function [17], and geostatistical 
analysis [18,19]. 

As highlighted by Shepard et al. in 2001 [20], there was no standard method for quantitatively 
characterizing surface roughness, a challenge that have persisted until now. The absence of a 
universally accepted or preferred method for estimating terrain surface roughness is largely due to the 
diverse range of applications and user requirements. In practical applications and research, individuals 
often choose a commonly used terrain surface descriptor based on personal preference, with limited 
consideration given to the validity of the local roughness map derived for a specific application. For 
rigorous applications, researchers evaluate multiple roughness descriptors to compare the results of 
interest to determine a more appropriate descriptor [7–11]. The comparison is usually based on simple 
visual inspection for the particular application under consideration [2,9]. This approach requires more 
effort during the data processing stage. 

Until now, there has been limited research dedicated to exploring quantitative correlations among 
metrics of terrain surface roughness, providing the motivation for this study. The research involves a 
comparative analysis of five frequently employed roughness descriptors, utilizing three lidar point 
cloud datasets that represent varying levels of terrain surface complexities. 

2. Materials and methods 

2.1. Study data 

In this study, we consider three sets of airborne LiDAR data, each representing bare earth surfaces 
of approximately 350 metres by 350 meters. These terrain surfaces exhibit distinctive spatial variation 
characteristics: Hilly rough, flat rough and flat smooth, with an average data spacing of 0.63–0.64 
meters. The data are extracted from an extensive LiDAR dataset acquired by the National Airborne 
Laser Mapping Centre of the USA in a volcanic area in central Nevada [21,22]. 

Each set of point cloud data exhibits a noticeable global elevation trend. To minimize its impact 
on local surface roughness calculations and improve the visualization of surface spatial variability, the 
global trend within each set of point clouds is eliminated by subtracting the corresponding best-fitting 
plane. To prevent the display of negative elevation values in a detrended point cloud, detrended 
elevation values are subsequently translated upwards by an amount equal to the absolute value of the 
minimum elevation in the point cloud. This translation ensures that the minimum elevation within each 
detrended point cloud is set to zero, and enhances visual comparison of elevation ranges between 
different point clouds. Point cloud data with these adjusted elevations server as the study data for 
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deriving local roughness maps in this study. These study data are shown in the left plots of Figure 1, 
with elevation represented by color. 

Additionally, the histograms in Figure 1 illustrate the distribution of elevation values, 
accompanied by the display of the range and the standard deviation of all elevation values. These two 
statistics provide insights into the overall roughness of the three terrain surfaces under consideration. 

 

Figure 1. Point cloud data (left) and elevation histograms (right). 

2.2. Digital elevation model (DEM) maps 

Certain surface roughness descriptors, such as RMSH, are applicable to both unstructured scatter 
point cloud data and gridded (i.e., structured) data in the form of digital elevation models (DEMs). In 
contrast, many other descriptors like the standard deviation of curvature/slope are typically exclusive 
to gridded DEM maps. 

To ensure a consistent comparison of various metrics for estimating roughness, gridded DEM 
maps are used to compute local surface roughness values in this study. To generate such maps, spatial 
interpolation is needed to convert scattered elevation data into a grid format. A range of interpolation 
methods is available, with simpler methods often preferred for high-density point cloud data [4].  
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The interpolation technique adopted in this study is natural neighbor interpolation, which identifies 
the nearest subset of known data points to a query grid location and assigns weights to them according 
to proportional areas to interpolate a value at the query location. It works well with irregularly distributed 
data points such as point cloud, and can produce smooth surfaces across scattered known data points 
while preserving their elevation values. This interpolation method does not require any user-defined 
parameters as input and therefore enhance consistency of generated DEM maps. 

Considering the spatial resolutions (0.63–0.64 m) of the point cloud data used, a spatial grid 
resolution of 1 metre is employed for constructing DEM maps in this study. Figure 2 illustrates the 
DEM maps produced through the utilisation of detrended point cloud data, employing natural 
neighbor interpolation. 

 

Figure 2. DEM maps of the globally detrended point cloud data: (a) Hilly rough terrain, 
(b) flat rough terrain, and (c) flat smooth terrain, using triangulation with liner interpolation. 

2.3. Terrain surface roughness descriptors 

We investigate five commonly used descriptors for terrain roughness, with an elaboration of the 
computational procedures outlined in Section 2.3. These descriptors include RMSH, standard deviation 
of locally detrended residual elevations (𝜎୐ୈୖ୉ ), standard deviation of residual topography (𝜎ୖ୘ ), 
standard deviation of slope (𝜎ୱ୪୭୮ୣ), and standard deviation of curvature (𝜎ୡ୳୰୴ୟ୲୳୰ୣ). 

2.3.1. RMSH 

RMSH serves as a commonly employed descriptor for measuring local surface roughness, 
especially when dealing with scattered elevation data [2,23]. Its applicability extends to gridded 
elevation data in the form of a DEM. The definition of RMSH is provided in (1). 
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where 𝑛  denotes the number of selected data points; 𝑍௜  represents the elevation value of the 𝑖୲୦ 
data point; 𝑍̅ denotes the mean elevation value of all (𝑛) selected data points. 
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2.3.2. Standard deviation of locally detrended residual elevations 

This approach involves linear detrending of local elevation data within a moving window. A best-
fitting plane is utilized to derive residual elevation values, and the standard deviation of these residuals 
within the moving window is calculated to characterize local surface roughness. 

2.3.3. Standard deviation of residual topography 

Residual topography is characterized as the variance between the original DEM and the smoothed 
DEM [9]. In our investigation, the elevation value at a grid location in the smoothed DEM is 
established by averaging the elevation values of adjacent cells within a 5 × 5 moving window. Given 
that both the original and smoothed DEMs share the same spatial resolution, the residual topography 
is determined through arithmetic subtraction of the elevation values in corresponding cells between 
the two DEMs. The standard deviation of the residual topography is then computed as an indicator of 
terrain roughness. 

2.3.4. Standard deviation of slope 

Calculating the standard deviation of slope requires the computation of slope values. Slope 
represents the rate of change of terrain elevations and is expressed in (2). 

22
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where 𝑑𝑧 𝑑𝑥⁄  and 𝑑𝑧 𝑑𝑦⁄  denote the rate of change in the 𝑥 and the 𝑦 directions, respectively, for 
the cell under consideration. 

In the context of DEM maps, slope is often determined using elevation values in a 3 × 3 moving 
window, as shown in (3). The calculations of 𝑑𝑧 𝑑𝑥⁄  and 𝑑𝑧 𝑑𝑦⁄  for the central cell (𝑍ହ ) are 
determined through (4) and (5), respectively, where 𝐿  represents the cell size. In cases where 
neighboring cells (such as those at the edge of a DEM) do not have elevation data, it is assumed that 
these cells adopt the elevation value of the central cell. This approach is valuable for cells positioned at 
the DEM raster's edge, ensuring consistency in spatial extent between the slope map and the DEM map. 
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2.3.5. Standard deviation of curvature 

Curvature is determined by computing the second derivative of a DEM map, using the same 
moving window as that employed for slope calculation. Various methods are available for calculating 
curvature. We employ the approach presented by Zevenbergen and Thorne [24,25], outlined in 
equations (6) to (8). Similar to the procedure for slope calculation, in the presence of non-value cells 
in the neighborhood, it is assumed that these cells adopt the elevation value of the central cell. 
Following the derivation of the curvature map, the standard deviation of curvature is computed to 
characterize terrain roughness. 

curvature 2 2E D   (6)

where 𝐷  and 𝐸  are given in (7) and (8), respectively, where relevant elevation values are those 
specified in the moving window shown in (3). 
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2.4. Correlation between roughness maps 

To assess the correlation between roughness maps, we compute the correlation coefficient (𝑟) of 
the pixel values of two maps compared, using (9), which is widely used for assessing correlation 
between images. A correlation coefficient of 1 represents that the pixel values of two compared maps 
are perfectly matched at all pixel locations. A correlation coefficient of 0 suggests that the pixel values 
in one map are randomly different from the corresponding pixel values in the other map. 
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where 𝐴  and 𝐵  denote the pixel values of two compared roughness maps, respectively; the 
subscripts 𝑚  and 𝑛  refer to the pixel location in the maps; 𝐴̅  and 𝐵ത   denote the corresponding 
mean value.  
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2.5. Spatial scale for roughness calculation 

One of the major challenges in studying roughness is its highly scale-dependent nature [26]. Local 
terrain surface roughness is often determined at a particular user-defined spatial scale. This is typically 
achieved through non-overlapping moving windows in the context of DEM maps. However, the extent 
to which the spatial scale influences the correlation between roughness maps characterized by different 
descriptors remains unclear. Consequently, we explore various non-overlapping moving window sizes, 
including 3 × 3, 5 × 5, 7 × 7, 9 × 9, and 11 × 11 moving windows, to assess their potential impact. 

3. Results 

3.1. Roughness maps by different descriptors 

Figure 3 depicts local terrain roughness maps for the five roughness descriptors, utilising a spatial 
scale of 5 × 5 cells (a commonly used spatial scale in practice) as an illustrative example. In Figure 3, 
each column in the plots represents a different roughness descriptor while each row corresponds to one 
of the three considered terrain surfaces. To enhance visual comparison, the roughness values shown in 
Figure 3 were normalized to a range of 0 to 1. 

 

Figure 3. Local roughness maps for the three terrain surfaces, derived using the DEM 
maps in Figure 2. 

Figure 3 shows that terrain roughness produced by most roughness descriptors exhibited similar 
global patterns, justifying their widespread use in the literature. However, the terrain roughness maps 
produced by RMSH appeared to be more distinct from the others. In terms of local variations in the 
distributions of roughness values among different descriptors, certain descriptors (such as standard 
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deviation of residual topography and standard deviation of curvature) exhibited similar local 
distributions, while others (such as RMSH and standard deviation of slope) showed notably differences. 
These distinctions between descriptors imply that the choice of roughness descriptors can impact the 
results of subsequent analyses, particularly in quantitative studies reliant on local roughness values. As 
such, it is advisable to carry out a sensitivity analysis using multiple roughness descriptors in 
quantitative studies where local roughness values are the critical inputs. 

3.2. Quantified correlations between roughness maps 

The correlation coefficient 𝑟 for each pair of compared roughness maps was calculated using (8) 
for the three terrain surfaces considered. With five roughness descriptors in consideration, a total of 10 
pairs were formed for comparison. The correlation coefficient values are visually presented in the radar 
charts depicted in Figure 4. In these radar charts, each vertex corresponds to a roughness descriptor, 
and markers along each axis from the radar center (where 𝑟 ൌ 0 ) to the vertex (where 𝑟 ൌ 1 ) 
represent the correlation coefficient values between other descriptors and the one located at the vertex. 

 

Figure 4. Correlation coefficient values for paired roughness maps. In the charts, each 
vertex corresponds to a roughness descriptor, and markers along each axis from the radar 
centre to the vertex represent the correlation coefficient values between other descriptors 
and the one located at the vertex. 
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In the case of rough terrain surfaces (both hilly rough and flat rough), large correlations were 
identified between roughness maps derived using the considered descriptors, with the exception of 
RMSH, as shown in Figure 4. Notably, the largest correlation values (approximately 0.964 for hilly 
rough terrain and 0.960 for flat rough terrain) were observed for the pair 𝜎ୖ୘ and 𝜎ୡ୳୰୴ୟ୲୳୰ୣ, aligning 
with the global patterns of the roughness maps shown in Figure 3 for these two descriptors. However, 
for the flat smooth terrain, weak correlations between different roughness descriptors were observed. 
This suggests that the choice of roughness descriptors imposes a greater impact on the estimated 
roughness of terrains that are less rough. 

In Figure 4, the correlation coefficient values for the flat rough terrain were found to surpass those 
for the hilly rough terrain. This was likely attributable to distinct characteristics in the spatial variations 
between the two terrain surfaces. For the hilly rough terrain, its spatial variation comprised a strong signal 
spatial variation (as indicated by “hilly”), alongside a noisy spatial variation. In contrast, the flat rough 
terrain was predominately featured by noisy spatial variations with minimal signal spatial variations (as 
indicated by “flat”). The characterization of the signal component likely varied with algorithms (i.e., 
roughness descriptors in this study), resulting in greater differences between roughness maps produced 
across different roughness descriptors. Generally, the similarity between roughness maps generated by 
different descriptors was influenced by the magnitude and type of spatial variations. Greater similarity 
was observed for rougher terrain surfaces, especially those with noisy spatial variations. 

The correlation between RMSH and any of the other four roughness descriptors was found to be 
relatively modest, as depicted in Figure 4. This observation was also supported by the roughness maps 
presented in Figure 3. Notably, in Figure 3, the roughness values of RMSH exhibited greater spatial 
coherence compared to those derived from the other descriptors. This phenomenon can likely be 
attributed to the presence of local elevation trends, resulting in stronger local spatial autocorrelation in 
the RMSH maps. This explanation is supported by the roughness map of 𝜎୐ୈୖ୉, which shares the 
same algorithm as RMSH but uses locally detrended elevation values. 

3.3. Impact of spatial scales 

The influence of spatial scales, represented by the moving window size used, on the correlations 
between roughness maps generated by different roughness descriptors are illustrated in Figure 5. A 
mixed behavior was observed. When comparing two paired roughness descriptors, the correlation 
between them could either increase or decrease with a larger window size. 

Notably, the terrain complexities exerted a great impact, as evidenced by the results presented in 
Figure 5. The changes of correlation coefficient values with varying spatial scales were significant for 
the flat smooth terrain. However, for the flat rough terrain, such changes were relatively small for most 
paired descriptors. This seems to suggest that the impact of the window size on correlations was smaller 
for the rougher terrain surfaces, especially those characterized by greater noisy spatial variations, such 
as the flat rough terrain. 
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Figure 5. Correlation between paired roughness maps under different window sizes: (a) 
Hilly rough terrain, (b) flat rough terrain, (c) flat smooth terrain. 

4. Discussions 

To understand the potential impact of interpolation methods on roughness maps generated from 
different roughness descriptors, we also considered another two simple yet commonly used 
interpolation techniques for rasterising point cloud data, including nearest neighbor (i.e., assigning the 
elevation value of the nearest known data point to a query grid location) and triangulation with linear 
interpolation (i.e., using the Delaunay triangulation to form triangles, and determining the elevation at 
a query grid location through linear interpolation using the triangle’s three vertices [27]). Other more 
advanced interpolation techniques are not considered because the impact of interpolation techniques 
on DEM accuracy is typically minimal when applied to highly dense data such as LiDAR point clouds. 
The impact of interpolation methods on roughness maps generated from various roughness descriptors 
is illustrated in Figure 6. Large correlation coefficient values suggest neglectable differences between 
roughness maps from DEMs through triangulation with liner interpolation and natural neighbor 
interpolation. In comparison, roughness maps derived from DEMs through nearest neighbor were 
slightly more distinct from those from DEMs through triangulation with liner interpolation, especially 
for the flat smooth terrain. These observations suggest that the influence of interpolation methods on 
roughness maps derived from different roughness descriptors is minimal, likely attributed to the high-
density point cloud data used. 
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Figure 6. Correlation coefficient values for compared roughness maps from different 
interpolation methods. 

In this study, it was observed that different algorithms yielded diverse roughness values. Therefore, 
the selection of an algorithm should align with the specific goals of a geospatial analysis. When 
integrating terrain roughness information with other geospatial data layers such as slope and aspect, 
careful consideration is essential to ensure compatibility and meaningful integration. For instance, in 
a geospatial analysis task combining surface roughness with slope data, it may be more appropriate to 
utilize the standard deviation of slope as the roughness descriptor for compatibility and meaningful 
integration. 

While we focus on differences between roughness maps generated by various descriptors, it does 
not look into the accuracy of terrain roughness values. It is evident that roughness maps are susceptible 
to various uncertainties. For example, the accuracy and resolution of point cloud data can impact the 
accuracy of DEM maps, subsequently affecting the accuracy of calculated roughness values. Coarse-
resolution or inaccurate DEM maps may fail to capture subtle terrain variations, leading to 
underestimation or overestimation of roughness. There are limited established methods for quantifying 
these uncertainties, and future research in this regard would enhance roughness accuracy and 
contribute to and more informed decision-making. 

Machine learning algorithms have gained widespread use in geoscience. Future research could 
explore the application of machine learning algorithms for predicting and classifying terrain surface 
roughness. Training models to automatically identify roughness characteristics from LiDAR data has 
the potential to reduce the manual effort required in the analysis. 
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In this study, local roughness values are computed using LiDAR-derived DEM maps. As potential 
future work, a comparison could be made with methods directly applied to scattered point cloud data, 
such as RMSH of data points, the standard deviation of orthogonal point-to-plane distances [28], and 
the degree of dispersion of normal vectors among adjacent data points. 

5. Conclusions 

In this study, the roughness maps of three terrain surfaces of distinct spatial variations, quantified 
by five commonly used roughness descriptors, were compared. The following findings are found. 
1. Local roughness maps from the considered descriptors exhibited similar global patterns across 

varying spatial complexities, demonstrating their effectiveness in characterizing terrain surface 
roughness.  

2. Similarity between roughness maps generated by different descriptors was influenced by the 
magnitude and type of spatial variations, with greater similarity observed for rougher terrain 
surfaces, particularly those with noisy spatial variations. 

3. Variations in local distributions of roughness values were noted among descriptors, highlighting 
the significance of considering multiple roughness descriptors in cases where local roughness 
values serve as inputs for subsequent analyses, especially for the widely used RMSH, which 
showed small correlations with the other descriptors. 

4. Investigation of the spatial scale of roughness maps revealed mixed effects on correlations 
between two roughness descriptors, with a smaller impact on correlations for rougher terrain 
surfaces, especially those with greater noisy spatial variations like the flat rough terrain. 

5. Minimal influence of interpolation methods on roughness maps derived from different descriptors 
was observed, likely due to the high density of the point cloud data used. 
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