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Abstract: The Padé-Laplace technique consists of approximating impulse response relations by fitting
the Laplace transforms of such relations as ratios of polynomials in the transform variable. This can
be used to define “reduced models” that capture the dominant behaviour of more complex systems.
This approach is illustrated by analysing various aspects of the carbon cycle and its connection to
climate, providing a way to capture how the interactions depend on the timescales involved. The
Padé-Laplace technique is used to relate descriptions of the carbon cycle in terms of impulse response
functions versus descriptions in terms of feedbacks. It is also used to discuss the concept of CO2-
emission equivalence. A further example analyses the gain of the climate-carbon feedback loop. This
is approximated with a simple parameterization that captures the results of more complex model results
and shows that the gain on timescales of centuries is as much as 3 times the gain on decadal timescales.
The scope for extensions to more general aspects of the carbon system, such as the distribution of
radiocarbon, is noted along with other potential extensions of this approach.
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1. Introduction

Impulse response functions are widely used as a characterisation of causal linear systems. Such im-
pulse response functions have played various roles in the study of the carbon cycle. Notably the CO2

impulse response function is central to the definition of Global Warming Potential (GWP), the factor
that has been used in international agreements to convert emissions of other gases to a CO2-equivalent
[1]. Numerical fits to impulse response of models, commonly expressed as sums of exponentials, have
been a common way of summarising model behaviour. Impulse response function descriptions for
subsystems (e.g. ocean carbon mixing [2, 3]) have often been used as components of more compre-
hensive models. Impulse response functions have also been used to characterise how global tempera-
ture responds to changes in radiative forcing, and, as illustrated below, can be useful in analysing the
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climate-carbon feedback loop.
In carbon cycle studies, Laplace transforms of impulse response functions have been used con-

ceptually [4, 5, 6, 7] to characterise generic aspects of the carbon cycle. However apart from some
minor exceptions, noted in Section 3.4.1, the analysis using Laplace transforms has not been the ba-
sis of calculations in the transform domain. The present paper explores the possibility and utility of
such transform domain computations. The technique that is used is the Padé-Laplace approximation
developed by Claverie and colleagues [8, 9], and used in areas such as circuit analysis [10]. The
technique involves fitting low degree Padé approximants (ratios of polynomials in the transform vari-
able) to Taylor series expansions of relations involving the transforms of impulse response functions.
Such approximations can define “reduced model” expressions that give good approximations to more
complicated relations.

The outline of the remainder of this paper is as follows: Section 2 references the mathematical
basis that underlies this paper, including citing the computer code used for the numerical examples.
Section 3 introduces the concept of impulse response functions using atmospheric CO2 levels as an
example. It reviews the properties of the Laplace transform and introduces the Padé-Laplace technique
which makes it straightforward to perform quantitative calculations in the transform domain. Section
4 considers the carbon system of atmosphere, land and oceans and analyses how different response
functions are related and how they relate to descriptions in terms of feedbacks from concentration
changes. Section 5 considers response functions that characterise how global temperature responds to
changes in radiative forcing, and the extent to which climatic influence on the carbon cycle creates a
feedback loop that amplifies both the temperature response and the CO2 response. Section 6 compares
the parameterisations of the key responses to parameterisations used in various other studies. Section
7 reviews the various results, concentrating particularly on the utility of the Padé-Laplace formalism.
Possible generalisations and directions for future studies are noted.

2. Methods

The Padé-Laplace analysis, described in Section 3.4, is based on the widely-used Laplace trans-
form, described in Section 3.2, along with key generic properties. Specific properties of the Laplace
transform that are required for the Padé-Laplace analysis are given in Section 3.3.

The numerical calculations in the examples and figures were performed using R code [11] that was
based on the routines [12] used by Enting and Clisby [13]. The coefficients that specify the various
response functions used in the examples are given in Table 1.
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Table 1. Response functions for atmospheric CO2 response analysed in this paper, expressed
as sums of exponentials,

∑
a j exp(−λ jt). In each case, the a j are on the upper line and the λ j

are on the lower line. The λ j are expressed as 1/τ j in cases where this form was used in the
original source. The “Type” is as defined in Section 3.1.

Name Type Source 1 2 3 4 5

Iinit [6] Tab 9.4 0.130164 0.333279 0.260540 0.165742 0.110275
0 1/4.144656 1/18.587414 1/58.455562 1/414.152957

Joos:FB RFB [1] (supp) 0.1266 0.2607 0.2902 0.3218
0 1/302.8 1/31.61 1/4.240

Joos:noFB R [1] (supp) 0.1332 0.1663 0.3453 0.3551
0 1/313.3 1/29.99 1/4.601

3. Impulse response functions and Laplace transforms

3.1. Carbon dioxide

Impulse response functions were introduced into carbon cycle studies by Oeschger and Heimann
[14] with the relation:

Q(t) = MCO2(t) − MCO2(t0) =

∫ t

t0
RX(t − t′) S (t′) dt′ (3.1)

where MCO2(t) is amount of CO2 (carbon dioxide in gigatonnes of carbon) in atmosphere at time t so
that Q(t) is the perturbation from the initial amount. RX(t) is an impulse response function that specifies
the proportion of CO2 remaining in atmosphere at time t after emission. S (t) is CO2 emissions, par-
ticularly anthropogenic emissions, from “outside” the system which may comprise atmosphere and/or
ocean and/or land vegetation. The integration starts at t0, a time of notional pre-industrial “equilib-
rium”, with S (t) taken as zero for earlier times.

The type of response function depends on what is defined as internal to the system (generally ex-
cluding direct human influence). Some examples of the generic RX(t) are:

• RO System is “atmosphere+ocean”. This form was introduced by Oeschger and Heimann [14].
• RL System is “atmosphere + land biota” (i.e. including living and dead biomass and soil organic

carbon). This response characterises the so-called “CO2-fertilisation effect”.
• R System is “atmosphere + ocean + land biota”.
• RFB System is “atmosphere + ocean + land biota”, including climate-to-carbon feedback.

Relations between these various response functions are given by equations (4.4) and (5.8, 5.9) below.
Enting [15] has noted that in many cases, when estimates of R(t) are derived from models calibrated
against 20th century data, the estimates were actually estimates of RFB(t) since the feedback from
temperature change was occurring through the 20th century.

Impulse response functions can also be defined for subsystems within the carbon cycle, e.g. for
the ocean mixed layer [3]. Such subsystem responses, converted to differential equations as described
below (equation (3.15)), are sometimes used within more comprehensive models [2]. The various
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response functions are often expressed as sums of exponentials, most commonly obtained by numerical
fits to model output.

The response function for CO2 has been of considerable importance because it is used in the def-
inition of GWP (Global Warming Potential). This has been used to define the relative importance of
different greenhouse gases and convert non-CO2 emission rates to a CO2-equivalent. Originally GWP
was notionally defined using R(t). More recent usage is based on RFB(t), which includes feedbacks
explicitly. The change in GWP values is relatively small, because, as noted above, estimates of R(t)
based on models calibrated against 20th century CO2 may be effectively estimates of RFB(t) since the
climate-to-carbon feedback was operating in the 20th century. Joos et al. [1] reported an extensive
intercomparison of CO2 response functions and a number of cases from that study are used in the ex-
amples below. Table 1 lists the coefficients in various response functions used in this paper, expressed
as sums of exponentials.

3.2. Laplace transforms

The Laplace transform of a function f (t) is defined as

f̃ (p) =

∫ ∞

0
e−pt f (t) dt (3.2)

This paper uses the tilde notation to denote the Laplace transforms of functions of time. Earlier work,
for example [4, 5, 16, 7], followed Abramowitz and Stegun [17] in using upper case for functions of
time and lower case for the transforms. Since many recent descriptions, especially on-line presenta-
tions, reverse this case distinction, the present paper follows [13] in order to avoid confusion and uses
the tilde notation: ( f̃ (p) as the Laplace transform of f (t)).

Some of the properties of the Laplace transform that are important in the present analysis are
linearity

f̃ (p) = a g̃(p) + b h̃(p) for f (t) = a g(t) + b h(t) (3.3)

and the derivative relation

h̃(p) = ˜̇f (p) = p f̃ (p) − f (t = 0) for h(t) =
d
dt

f (t) (3.4)

where ˜̇f (p) denotes the Laplace transform of the time derivative of f (t).
A very important property is

h̃(p) = f̃ (p) g̃(p) for h(t) =

∫ t

0
f (t − t′) g(t′) dt′ (3.5)

which means that impulse response expressions, such as (3.1), that are expressed as convolutions be-
come simple products in the transform domain.

Derivatives of convolutions can be expressed in various ways. Taking k̃(p) = f̃ (p) g̃(p) one has

h̃(p) = p ˜̇k(p) + K(t = 0) = p f̃ (p) g̃(p) =
[ ˜̇f (p) + f (0)

]
g̃(p) = f̃ (p)

[
˜̇g(p) + g(0)

]
(3.6)
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In the time domain, some of these equivalent forms can be regarded as being related by “integration by
parts”.

Two important connections between values in the time domain and values in the transform domain
are:

f (0+) = lim
p→∞

p f̃ (p) (3.7)

and, subject to all poles in p R̃(p) being in the left half plane,

f (∞) = lim
p→0

p f̃ (p) (3.8)

Two important specific cases are:

f̃ (p) = 1/(p + a) for f (t) = exp(−at) (3.9)

and
f̃ (p) = 1 for f (t) = δ(t) (3.10)

where δ(t) is the “Dirac delta functtion”.
For exponential growth from the indefinite past, with S (t) = C exp(ct)

Q(t) =

∫ t

−∞

R(t − t′) C exp(ct′) dt′ = C exp(ct)
∫ ∞

0
R(t′′) exp(−ct′′) dt′′ = C exp(ct) R̃(p = c) (3.11)

by putting t′′ = t − t′. The asymptotic airborne fraction, κ(c), defined as either instantaneous, κ =

Q̇(t)/S (t) or cumulative, Q(t)/
∫ t

−∞
S (t′) dt′ is given by

κ(c) = c R̃(p = c) (3.12)

3.3. Relations using Laplace transforms

Laplace transforms have been used for describing relations between aspects of the carbon cycle
[4, 5, 16]. Their relation to the time domain can be regarded as comparable to the use of vector notation
to express, in a compact way, relations between multiple components. This can be taken a step further
by using Laplace transform expressions to derive techniques for time domain analysis [18, 19], as is
summarised in Section 5.2 below.

Specific calculations in the transform domain can be readily done for functions expressed as sums
of exponentials:

f (t) =

M∑
j=1

a j exp(−λ jt) (3.13)

which has the transform

f̃ (p) =

M∑
j=1

a j

p + λ j
(3.14)

This sums to a ratio of polynomials in p, with numerator and denominator of degrees M − 1 and M
respectively. Thus f (0) will be given by

∑
j a j, consistent with (3.7) .

AIMS Geosciences Volume 8, Issue 3, 346–365.



351

Expressing a sum of exponentials as a sum of functions: f̃ (p) =
∑

f̃ j(p) =
∑

a j/(p +λ j) means that
relations of the form f̃ (p) g̃(p) can be expressed as

p f̃ j(p) = a j g̃(p) − λ j f̃ j(p) (3.15)

This corresponds to a set of first order differential equations in the time domain, as is well known,
without reference to Laplace transforms, e.g. [20].

A special case occurs if one of the λ j (which will taken to be λ1) is equal to zero, as applies for most
representations of the CO2 response, RX(t). In this case analysis of p R̃X(p) is better suited to Padé-
Laplace analysis. Property (3.8) means that a1 will give the long timescale limit of p R̃X(p) which, as
noted above, corresponds to the asymptotic airborne fraction. For an expansion of RX(t) in terms of M
exponentials plus a constant, p R̃X(p) will be the ratio of polynomials, both of degree M.

3.4. The Padé-Laplace technique

The Padé-Laplace technique stems from the analysis by Yeramian and Claverie [8] with an extensive
discussion by Claverie et al. [9].

The technique consists of deriving approximations as ratios of low-degree polynomials in the trans-
form variable. Approximations of this kind are known as Padé approximants and characterised by
[M,N], the degrees of numerator and denominator respectively. The [M,N] Padé approximant to a
function f (x) is the ratio of polynomials whose Maclaurin series agrees with the first M + N + 1 co-
efficients in the expansion of f (x). Conventionally, the polynomials are defined such that the constant
term in the denominator is 1. Padé approximants can give good fits that converge more rapidly than the
underlying series and can even extend series beyond their radius of convergence. The Padé-Laplace
technique, as used here, consists of analysing response function relations in terms of Padé approxi-
mants to the Laplace transforms.

Some of the important aspects of the use of the Padé-Laplace technique for analysing response
functions are:

• The various combinations of response function transforms can be expressed as ratios of polyno-
mials if the inputs also have that form. However the degree of the resulting expressions may be
higher than is justified by the knowledge of the system and lower-degree expressions from the
Padé-Laplace technique may be more than adequate.
• The Padé-Laplace technique can be applied even for expressions that are not expressible as ratios

of polynomials, e.g. those used by Enting [5].
• The calculations for combinations can be performed using the series expansions without having

to express all intermediate expressions as ratios of polynomials.
• The technique is not restricted to the use of Maclaurin series, but can also use Taylor series

expansions about some chosen p0 as long as all input series are expansions about the same p0.
• The choice of p0 introduces an extra degree of freedom into the choice of approximation. The use

of p0 = 0 (i.e. Maclaurin series, as in the examples in [21]) is appropriate for the long timescales
targeted for stabilising the human influence on climate. A choice of p0 ≈ 0.02 focuses the fits on
the timescale of the growth in anthropogenic CO2 emissions over the 20th century.
• More generally, it may be appropriate to impose additional constraints (and thus reduce the num-

ber of coefficients that are fitted) in order to reproduce known behaviour such as the limiting
values. This possibility is not explored in this paper.
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The aim of the Padé-Laplace formalism is to produce a “reduced model” description of a complex
system. It needs to be noted that the choice of degrees of the approximant translates into a choice of
the form of reduced model.
— [M − 1,M]: This case expands to a sum of partial fractions which transforms to a sum of exponen-
tials. This represents the impulse response function of the reduced model which can, as noted above,
be expressed as a set of differential equations.
— [M,M]: This can be expressed as a constant, plus an approximant of degree [M − 1,M]: and so the
[M,M] approximant transforms to a sum of exponentials plus a multiple of the Dirac δ function.
— [M,M − 1]: This can be expressed as a multiple of p, a constant and a sum of partial fractions. In
the time domain the reduced model operation becomes differentiation, plus convolution with a sum of
exponentials plus a multiple of the δ function.

3.4.1. Precursors

An early case of approximating CO2 responses in using low-degree Padé approximants in p was
given by Enting [5] in the analysis of the Box Diffusion Model of Oeschger et al. [22]. This work was
not taken further at that time.

A more recent example of calculations in the transform domain was the analysis of greenhouse gas
emission equivalence by Enting and Clisby [13]. This was based on the Forcing-Equivalent Index (FEI)
defined by Wigley [23] which has emission histories equivalent if they have equal radiative forcing at
all times. With aCH4 and aCO2 giving the radiative forcing per unit mass of CH4 (methane) and CO2

respectively, the FEI equivalence of CH4 and CO2 requires

aCH4 R̃CH4(p) S̃ CH4(p) = aCO2 R̃CO2(p) S̃ CO2-equiv(p) (3.16)

which gives the FEI CO2-equivalent of CH4 emissions as

S CO2-equiv(p) =
aCH4

aCO2

[
R̃CO2(p)

]−1
R̃CH4(p) S̃ CH4(p) (3.17)

where
[
R̃CO2(p)

]−1
corresponds to the CO2 deconvolution operator discussed below. Enting and

Clisby discussed various proposed replacements of GWP in terms of how their behaviour matched[
R̃CO2(p)

]−1
× R̃CH4(p) over the range of timescales, p.

4. Carbon cycle relations

4.1. The concentration feedback

A highly influential analysis by Friedlingstein et al. [24] expressed CO2 changes as

∆M =

∫
S (t) dt

1 + βL + βO
+ term from temperature influence (4.1)

with the factors βL and βO regarded a describing a feedbacks from concentration changes affecting land
and ocean systems respectively. The term from temperature influence is given explicitly in equation
(5.1) below.
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Equation (4.1) represents emissions that are partitioned between atmosphere, land biota and oceans
in the ratio: 1 : βL : βO. An analysis by Oeschger et al. [25] shows that for exponentially growing
emissions, these ratios depend on the growth rate, c, and should be written as the ratio: 1 : βL(c) :
βO(c). The relation (3.11) above indicates how responses specific to pure exponential growth can be
interpreted as Laplace transform relations. These take the form

pR̃(p) =
1

1 + B̃L(p) + B̃O(p)
=

1
1 + B̃(p)

(4.2)

with R̃L(p) and R̃O(p) given by

pR̃L(p) =
1

1 + B̃L(p)
and pR̃O(p) =

1
1 + B̃O(p)

(4.3)

The terminology of what is classified as feedbacks depends on what is regarded as the underlying
system versus what is treated as external to the system. For a “null” case of the atmosphere only,
accumulating net CO2 fluxes, the “null” response has R̃null(p) = 1/p. Wigley and Raper [26] effectively
regarded the “base” carbon as atmosphere + ocean (characterised by RO(t)) and referred to the land
contribution as a feedback. Relative to a system of atmosphere + ocean + land, the influence of climate
counts as a feedback. Recent usage has included the climate-to-carbon influence as part of the carbon
system and defined GWPs in terms of RFB(t) [1].

The connection between an impulse response description and a description in terms of feedbacks, as
shown by (4.2), seems to be little appreciated. For example, Gregory et al. [27] state that “The concen-
tration to carbon feedback is negative; it has generally received less attention in the literature” [i.e. less
than the temperature-to-carbon feedback]. Discussions of the carbon cycle in terms of concentration
feedbacks generally ignore extensive studies of using response functions, e.g. [1], in connection with
the definition of Global Warming Potentials.

4.2. Combining feedbacks

Combining (4.3) and (4.2) gives

R̃(p) =
R̃O(p) R̃L(p)

R̃O(p) + R̃L(p) − pR̃O(p) R̃L(p)
(4.4)

Enting et al. [6] gave a less direct derivation of this relation. This was not used numerically, although
if RL and RO are expressed as sums of M and N exponentials respectively an explicit expression for R
as a sum of M + N exponentials could be obtained. This level of detail is unlikely to be justified by
the accuracy of estimates of RL and RO. The Padé-Laplace formalism provides a systematic way of
simplifying such expressions.

The Laplace transform also provides a convenient way of combining impulse response functions
for subsystems into an overall system description. For example the study by Enting [5] shows how
the carbon response for the ocean mixed layer can be incorporated into a linearised version of the Box
Diffusion Model of Oeschger et al. [22]. These expressions can also be used with other estimates of
the mixed layer response, e.g. [3]. Again, the Padé-Laplace technique provides a practical way of
implementing such relations.
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4.3. Padé-Laplace analysis

To illustrate the Padé-Laplace technique we construct explicit representations of B̃(p), using (4.2).
The input is the response function “Iinit”, expressed as a sum of 5 exponentials, taken from [6] and
listed in Table 1. This case has been analysed with initial calculations using Maclaurin series [21].
If R is expressed as a sum of M exponentials, pR̃(p) can be expressed exactly as an [M − 1,M − 1]
approximant, as can B̃(p). B̃(0) , 0, as expected since it characterises long-term carbon partitioning
into the oceans and land biota.

Figure 1 shows some examples of fitting B̃(p), the Laplace transform of the concentration feedback.
The solid line is B̃(p) (a ratio of two 4th degree polynomials) derived from RIinit from [6] using (4.2).
The [2, 3] Padé approximant fitted to the Maclaurin series of B̃(p).

B̃[2,3](p) =
6.682 + 2713.562p + 101329.6p2

1 + 949.9812p + 101630.1p2 + 1412153p3 (4.5)

but is virtually indistinguishable from the full expression for B̃(p) [21] and is not shown here. The
dashed line is the [1, 2] Padé approximant fitted to the Maclaurin series of B̃(p) and gives a reasonable
approximation. The dotted line and chain lines are the [1, 2] and [0, 1] Padé approximants fitted to the
Taylor series of B̃(p) expanded around p = 0.02. The [1, 2] approximant (dotted line) gives a better
approximation than the [1, 2] approximant to the Maclaurin series. Even the [0, 1] approximant, given
by

1.415
1 + 26.14(p − 0.02)

(4.6)

gives a reasonable approximation to B̃(p) except at very small p.
This analysis also forms the basis for analysing the deconvolution operator that inverts (3.1) to

derive sources from concentrations. This can be expressed as[
R̃(p)

]−1Q̃(p) = p Q̃(p) + pB̃(p) Q̃(p) (4.7)

This gives a specific computational form of the generic relations from Enting and Mansbridge [4],
confirming that differentiation, with its associated numerical noise amplification, is an inherent char-
acteristic of this deconvolution. The various ways in which the second term can be expressed (cf.
equation (3.6)) reflect alternatives given in [4].

5. Climate

5.1. Response and coupling to carbon

Friedlingstein et al. [24] expressed CO2 changes as

∆M =

∫
S (t) dt

1 + βL + βO
−

[γL + γO]∆T
1 + βL + βO

(5.1)

(where equation (4.1) above considered only the first term) and

∆T = α∆M + ∆Tindependent (5.2)

AIMS Geosciences Volume 8, Issue 3, 346–365.
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Figure 1. Laplace transform of the concentration feedback, B̃(p) and approximations. Solid
line is the exact B̃(p) derived from RIinit from [6] using (4.2). Dashed line is the [1, 2] Padé
approximant fitted to the Maclaurin series of B̃(p). The dotted line and chain lines are the
[1, 2] and [0, 1] Padé approximants fitted to the Taylor series of B̃(p) around p = 0.02.

leading to a gain
g = −

α γ

1 + β
(5.3)

These relations have provided a framework for characterisation of both observations and model studies
such as intercomparisons [28, 29].

The discussion in previous sections suggests that (5.1), (5.2) and (5.3) should be generalised to
incorporate a dependence on timescale. This can be expressed as Laplace transform relations with
α, β, γ replaced by Ã(p), B̃(p), Γ̃(p), (the corresponding upper case Greek letters) as is done in relation
(5.11). The Laplace transform analysis comes from Enting [7].

An impulse response for climate, giving the warming W(t) as a response to radiative forcing, F(t)
can be written as

W(t) =

∫ t

t0
F(t′) U(t − t′) dt′ (5.4)

where U(t) is an impulse response function characterising how global temperature responds over time
to an instantaneous change in radiative forcing. Such impulse response expressions have been widely
used (see [30, 31] for example).

In describing climate-to-carbon feedback, Enting [7] split off a linearised form of the radiative
forcing from CO2, (as is done in (5.2)) expressing the Laplace transform of (5.4) as

W̃(p) = Ũ(p)[F̃′(p) + aCO2Q̃(p)] (5.5)

where F′(t), with transform F̃′(p), denotes the radiative forcing from influences other than CO2. Thus
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α generalises to
Ã(p) = aCO2 Ũ(p) (5.6)

The coupling back to the carbon cycle was expressed as

Q̃(p) = R̃(p)[S̃ (p) + H̃(p) W̃(p)] (5.7)

where H characterises the carbon flux resulting from warming (or other temperature change). This
leads to

Q̃(p) = R̃FB(p)[S̃ (p)] =
R̃(p)

1 − G̃(p)
S̃ (p) (5.8)

with gain given by

G̃(p) = aCO2Ũ(p)R̃(p)H̃(p) = −
Ã(p) Γ̃(p)
1 + B̃(p)

(5.9)

with H̃(p) = −pΓ̃(p), as a generalisation of (5.3). The relation between the concentration and temper-
ature feedbacks can be simplified by expressing the response as

R̃FB(p) =
R̃null(p)

1 + B̃(p) + aCO2 Ũ(p) Γ̃(p)
(5.10)

illustrating the property that the gain from multiple linear feedbacks is additive.

5.2. Application

Equation (5.7) can be written as

Q̃(p) =
S̃ (p)/p

1 + B̃L(p) + B̃O(p)
−

[Γ̃L(p) + Γ̃O(p)]W̃(p)
1 + B̃L(p) + B̃O(p)

(5.11)

thus generalising (5.1) by incorporating a timescale, p, (with integration of the emissions, S (t), trans-
formed by multiplying the transform by 1/p).

While (5.1) has lead to a number of studies (e.g. those cited in [19]) that sought to estimate γ
as a single parameter, independent of timescale, two more recent studies [18, 19] incorporated a pa-
rameterised timescale dependence. The estimation by Rubino et al. [18] was based on the regression
equation, from the time domain form of (5.7):

MCO2(t) = θ0 + θγ

∫ t [
RX(t − t′)

∫ t′

H′(t′ − t′′) W(t′′) dt′′
]

dt′ (5.12)

The analysis covered the pre-industrial period and so S (t) was set to zero. The temperature series came
from various paleo-temperature estimates.

H was parameterized as
H̃(p) = −p Γ̃(p) = γ′

p
p + 1/τ

(5.13)

or
H(t) = γ′[δ(t) − exp(−t/τ)/τ] (5.14)
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where γ′ is a scale factor defining the size of the initial pulse response and τ is a relaxation time for
the effect to dissipate. A time constant of τ = 100 years was used, guided by the timescales used
for the climate-to-carbon influence in the MAGICC model [2]. The constant term θ0 is required in
the regression both to counter the residual effects of initial conditions and to resolve the ambiguity
in consistency of reference levels of M(t0) and the zero of W(t). By fitting M(t) rather than Q(t), θ0

becomes an estimate of the “pre-industrial” CO2 level implied by the zero of each particular paleo-
temperature estimate.

Enting and Clisby [19] extended the analysis into the industrial period by including an additional
term in the regression equation:

θs

∫ t

R(t − t′) S anthropogenic(t′) dt′ (5.15)

with R(t) approximated by RIinit(t) (see Table 1). The factor θs was included as an estimate of 1 − G
to account for the fact that RIinit(t) was arguably closer to RFB than to R. The estimates of θs varied
significantly depending on which temperature data set was fitted and on how much of the pre-industrial
era was included in the fit. As noted below, parameterized representations of 1 − G could provide a
basis for refining the analysis that was based on a single parameter θs. Another way in which the
regression analysis from [19] should be refined is through refining the assumption of white noise error
in the CO2 data as is implicit in regression analysis of (5.12). Refined analysis needs to also include
the noise structure in the paleotemperature data, especially given the finding of long-tailed (fractal)
relations between CO2 and temperature [32].

Both the study of pre-industrial times [18] and the study that included the industrial period [19]
produced a wide range of estimates of γ′, depending on the time period that was analysed and the data
set that was fitted. This may reflect the conclusion by Neukom et al. [33] that there were no globally
coherent pre-industrial climate fluctuations in the last millennium.

5.3. Decomposition

When response functions, or the models from which they are derived, are calibrated against 20th
century data, they will be implicitly including the effects of climate-to-carbon feedback [15]. Thus
many results will be estimates of RFB rather than R. In order to separate the effects, [21] took cases
from Joos et al. [1, 34] who gave an example where the feedback had been explicitly excluded. This
made it possible to combine estimates of R̃no feedback and R̃feedback to give an estimate of the loop gain,
G̃(p).

1 − G̃(p) =
R̃no feedback(p)
R̃feedback(p)

(5.16)

This is shown as the solid line in Figure 2. The negative gain at very long timescales was an artifact
of the original fits only using 1000 years of model output. Nevertheless, the [1,2] approximant could
follow the function from an unphysical starting point and give reasonable fits over the more relevant
decadal to century timescales as could the [2, 3] approximant [21].

In order to fit an approximation to the timescales actually fitted in [34], approximants were fitted to
Taylor series expansions about p = 0.02. The [0, 1] approximant is shown as the dotted line in Figure
2 and is given by

G̃(p) ≈
0.1069

1 + 16.65(p − 0.02)
(5.17)
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This produces an excellent fit over a wide range of timescales and extrapolates to p = 0 in a way
that avoids the artifacts arising from the original fits of R̃no feedback and R̃feedback. It could provide an
improved representation of the factor 1 −G that was fitted by the constant θs in (5.15) as used in [19].
Of particular note is the increase by a factor of 3 for the gain on century timescales compared to decadal
timescales. Higher order approximants to the Taylor series show increasing amounts of influence from
this anomalous small-p behaviour of G̃(p).

0.00 0.05 0.10 0.15 0.20

−0.05

0.00

0.05

0.10

0.15

0.20

0.25
Carbon−climate loop gain

p

G(p)
[1,2] wrt 0
[0,1] wrt 0.02

Figure 2. Laplace transform of climate to-carbon gain operator, calculated using estimates
of R̃no feedback and R̃feedback from [1]. The solid line is G̃(p) = 1 − R̃no feedback(p)/R̃feedback(p).
The dashed line is the [1, 2] approximant to the Maclaurin series expansion of G̃(p). The
dotted line is the [0, 1] approximant (equation (5.17)) to the Taylor series expansion of G̃(p)
around p = 0.02.

6. Discussion: comparison with other approximations

6.1. Framework

The expression of carbon-climate feedback in terms of α, β, γ, as in equation (5.3) from [24] has
proved highly influential. As described above, it can be generalised to include the dependence on
timescale through Ã(p), B̃(p), Γ̃(p). Some of the studies that go beyond treating all of α, β, γ as constant
are noted in the following sections.

6.2. Beta

Expressions such as (5.1) treat β as a constant, rather than incorporating the more general timescale
dependence of B̃(p). Approximating B̃(p) as a constant is equivalent to taking p R̃(p) to be constant.
This corresponds to assuming that the airborne fraction is constant, since in this case the asymptotic,
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cumulative and instantaneous airborne fractions are all equal. This corresponds to putting R(t) ≈ κΘ(t),
where Θ(t) is the unit step function.

In 1983, with 25 years of direct measurements of CO2 concentrations, Laurmann and Spreiter [35]
suggested that for most purposes the approximation of a constant airborne fraction could be an adequate
substitute for more complicated models. The exception was for deconvolution problems, as would be
expected since such inverse problems are more sensitive to model error [4, 36].

More recently, with 50 years of direct CO2 observations and ice-core data extending the record to
earlier times, the behaviour of the airborne fraction has been revisited. There were a series of disputed
claims concerning whether or not the instantaneous airborne fraction was showing a significant medium
term decrease and the possible reasons for such a change. In particular the question was whether a
change indicated a non-linearity in carbon cycle response or whether it reflected departures from pure
exponential growth over (−∞, t], and in particular the beginning of the industrial period. An overview
by Raupach et al. [37] (which cites earlier stages of the discussion) concluded that the change reflected
a combination of influences from slower than exponential CO2 growth, influence of volcanic eruptions,
sink responses to climate change and non-linearities in response to increasing CO2.

The reason why the change in airborne fraction was hard to detect is that 20th century emissions
grew with an e-folding time close to 50 years (32 year doubling). This has the consequence that
observations primarily constrain knowledge of R̃X(p = 0.02) [15].

As discussed in more detail as a possible future direction (see Section 7 below) additional infor-
mation can be obtained from analysis of data on the distribution of 14C (radiocarbon). As well as
calculating the air:land:ocean carbon partitioning of 1 : βL(c) : βO(c) for exponential growth at rate
c, Oeschger et al. [25] calculated corresponding partitioning of perturbations in 14C. Similarly, Enting
[5] explicitly considered 14C in terms of Laplace transforms. Such studies could give additional infor-
mation regarding how B̃(p) is partitioned into contributions from land, B̃L(p), and ocean, B̃O(p). The
analysis of 14C responses is outside the scope of the present paper.

6.3. Gamma

As noted in Section 5.2 above, a number of studies (e.g. those cited in [19]) sought to estimate γ
as a single parameter without any dependence on timescale. An early study by Woodwell et al. [38]
had noted that the temperature influence on CO2 was greater at decadal to century timescales than at
interannual or millennial timescales. The relevant comparisons with [38] are in terms of

Q̃(p) = −
Γ̃(p)

[1 + B̃(p)]
W̃(p) (6.1)

These are shown in Figure 3 for cases with with − Γ̃(p) = γ′ p
p+1/τ for τ = 100 and τ = 50 and

1 + B̃(p) derived from Iinit as above. The case with τ = 50 years shows less timescale dependence than
found in the older study by Woodwell et al. [38]. Similarly, Enting and Clisby [19] used a Laplace
transform analysis to revisit the estimates based on exponential smoothing by Bauska et al. [39] and
concluded that the results were broadly consistent with τ ≈ 125 years.

Wang and Nemani [40] proposed a simplified model that linked the relaxation of responses to con-
centration and temperature change, thus linking the parameterisation of B̃(p) and Γ̃(p) as generalisa-
tions of β and γ.
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Figure 3. Estimates of −Γ̃(p)/[1 + B̃(p)], in units of PgC/K. The solid line is a representative
result from [19] (γ′ = 1) using τ = 100 years, and the dotted lines give the approximate range
(γ′ = 0.6 and 1.8) . For comparison, the timescale dependence, using τ = 50 years is shown
as the chain curve.

For the pre-industrial period, with S (t) = 0, equation (5.7) can be transformed to[
R̃(p)

]−1
Q̃(p) = H̃(p) W̃(p) (6.2)

relating the fluxes from temperature to the deconvolution of concentration data. This approach was
used by Bauska [41].

7. Conclusions

The examples presented here illustrate the power of the Padé-Laplace technique in analysing the
carbon cycle and its coupling to climate change. The Laplace transform representation captures the
dependence on timescales in a way that is often neglected in simple parameterisations. As noted
in connection with β and the airborne fraction, the neglect of timescale dependence will give most
distortion in inverse problems such as those involved in fitting observational data. Thus, appreciation of
the timescale dependence in the gain of the carbon-climate feedback loop will be important in relating
model behaviour to current observations. Approximations using the Padé-Laplace technique provide a
systematic computational basis for assessing the limitations of such simple parameterisations.

An important extension of this work would be to include an analysis of radiocarbon (14C ). Before
the availability of CO2 concentration data from ice cores, much of the information about the carbon
cycle came from radiocarbon data [42]. Broadly speaking, samples that showed the effects of atmo-
spheric nuclear testing constrained the short timescale behaviour of the carbon cycle while material
that had been isolated from the post-1950 atmosphere constrained long-term behaviour on timescales
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comparable to the 14C half-life. As noted above, Oeschger et al. [25] calculated growth-rate dependent
expressions for ratios 1 : βL(c) : βO(c), and these can be interpreted as Laplace transforms (see equa-
tion 3.11)). Oeschger et al. also calculated comparable expressions for the partitioning of radiocarbon.
Enting [5] determined a number of radiocarbon responses of the box diffusion model, expressed as
Laplace transforms. The use of 14C data may require extensions to the approach described here, and
involve fitting Padé approximants with additional constraints beyond fitting a single Taylor series. In
addition, simple expressions as sums of exponentials may be useful in characterising uncertainties.

Clearly, a major limitation of this analysis is that it is restricted to linear systems, while non-
linearities in the earth system are becoming increasingly apparent. A recent analysis by Leach et al.
[31] explores the possibility of analysing non-linear behaviour using impulse response functions with
a scenario-dependent transformation of the timescale. Such an approach could extend the applicability
of the analyses presented in the present paper.

Notation

Where appropriate, functions are listed in the form f (t), f̃ (p). Upper case Greek such as Γ(t), and
also A(t) and B(t), are used to represent impulse response functions, with Γ̃(p), Ã(p) and B̃(p) as the
respective Laplace transforms. The corresponding lower case Greek, γ, α, β respresent constants that
approximate Γ̃(p), Ã(p) and B̃(p). Units here are scaled to express CO2 in terms of mass of carbon.
Some other studies have used the same or similar symbols with CO2 expressed in terms of mixing
ratios.

a j Amplitude of jth term in expression of response as sum of exponentials.

aCO2 Radiative forcing per unit of additional CO2 expressed as mass of carbon, and using a linearisation
of logarithmic forcing relation.

f (t), g(t), h(t), k(t), f̃ (p), g̃(p), h̃(p), k̃(p), Generic functions used to express generic properties of the
Laplace transform.

F′(t), F̃′(p) Radiative forcing from non-CO2 atmospheric constituents (and other changes).

G(t), G̃(p) Response function specifying the gain around the carbon-climate feedback loop.

H(t), H̃(p) Response function specifying the CO2 flux, caused by temperature change, into Land and
Ocean systems.

MCO2 Atmospheric CO2 content, in Gigatonnes (Pg) of carbon.

p Transform variable.

Q(t), Q̃(p) Perturbation in atmospheric CO2 content from notional pre-industrial level or other refer-
ence amount.

RX(t), R̃X(p) Generic atmospheric CO2 response. Specific cases are RL,RO,RFB.

t Time, notionally in years.

U(t), Ũ(p) Response defining warming from increase in radiative forcing.
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W(t), W̃(p) Temperature change (“warming”), relative to reference level.

α Parameterisation, as a single number, of the temperature increase from a change in CO2.

A(t), Ã(p) Response function giving the temperature change from a change in atmospheric CO2 con-
tent. A(t) = aCO2U(t).

βL, βO, β Parameterisation, as a single number, of the CO2 exchange caused by atmospheric CO2

change, for Land and Ocean systems and the combination β = βL + βO.

BL(t), BO(t), B(t), B̃L(p), B̃O(p), B̃(p) Response function specifying the CO2 exchange caused by atmo-
spheric CO2 change, for Land and Ocean systems and the combination B(t) = BL(t) + BO(t).

γL, γO, γ Parameterisation, as a single number, of the CO2 exchange caused by temperature change,
for Land and Ocean systems and the combination γ = γL + γO.

ΓL(t),ΓO(t),Γ(t), Γ̃L(p), Γ̃O(p), Γ̃(p) Response function specifying the CO2 exchange caused by tem-
perature change, for Land and Ocean systems and the combination Γ(t) = ΓL(t) + ΓO(t).

γ′ Scale factor used in the parameterisation of H, giving the size of the initial pulse response to a
change in temperature, W.

θ Coefficients in regression fit. Specific cases θ0, θγ, θs [19].

Θ(t) Unit step function.

κ(p) Asymptotic airborne fraction as a function of e-folding rate, p.

λ j Growth rate of jth term in expression of response as sum of exponentials.

τ Recovery time parameter used in parameterisation of H(t) [18, 19].
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