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Abstract: A landslide susceptibility assessment for the Three Gorges (TG) region (China) was 

performed in a Geographical Information System (GIS) environment and Persistent Scatterer (PS) 

InSAR derived displacements were used for validation purposes. Badong County of TG was chosen 

as case study field. Landslide parameters were derived from two datasets. The Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Map 

(GDEM) was used to calculate slope geometry parameters (slope, aspect, drainage, and lineament), 

while geology and vegetation cover were obtained from Landsat and ASTER data. The majority of 

historical landslides occurred in the sandstone-shale-claystone intercalations. It appears that slope 

gradients are more critical than other parameters such as aspect and drainage. The susceptibility 

assessment was based on a summation of assigned susceptibility scores (points) for each 30×30 m 
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unit in a database of a Vector Grid File (VGF) composed of „vector pixels‟. A landslide 

susceptibility map (LSM) was generated using VGF and classified with low, moderate and high 

landslide susceptibility zones. The comparison between the LSM and PS InSAR derived 

displacements suggests that landslides only account for parts of the observed surface movements. 

Keywords: ASTER GDEM; PS InSAR; Three Gorges; landslide susceptibility 

 

1. Introduction 

Landslides are natural processes that can be triggered directly or indirectly by natural and/or 

human activities. Natural activities include high rainfall, earthquakes and volcanic eruptions [1], and 

human activities include land-use change, deforestation, excavation, change in the slope profile, and 

irrigation [2]. Indirect effects could result from changes in rainfall associated with an increase in 

surface water area. Landslides are devastating to human activities, thus predicting their occurrence 

and effect is critical. An established tool for this is Landslide Risk Maps (LRMs). LRMs is an 

outcome of Landslide Hazard Maps (LHMs), but producing both LRMs and LHMs requires 

information which may be difficult to obtain (such as detailed geological maps, landslide inventory 

maps, historical records, rainfall records and earthquake magnitudes). A practical alternate is a 

Landslide Susceptibility Map (LSMs). 

LSMs map potential landslide areas [3]. Landslide susceptibility is determined by several related, 

spatially-distributed factors (e.g. geology, slope angle, slope aspect, drainage, etc.), pertinent to 

instability. The landslide susceptibility of any area has usually been categorized in the range “stable to 

unstable”, thus indicating landslide-prone areas [4,5]. 

In 1979, an early form of LSMs at the scale 1:125.000, was prepared of the San Francisco Bay 

region according to slope units, rock lithologies, susceptible bedrock, susceptible superficial deposits 

and landslide deposits [6]. Nilsen and Wright combined slope angle and rock lithology categories and 

classified the region into five areas: (1) stable, (2) generally stable, (3) moderately stable, (4) 

moderately unstable, and (5) unstable [3]. In general, various approaches have been developed to 

evaluate landslide susceptibility [7] and landslide hazard for the regional scale (e.g. river basin) [8–11]. 

Brabb circulated a questionnaire to international experts concerning the availability of 

landslide inventory maps to celebrate the start of the International Decade of Reduction of Natural 

Hazards (1991–2000) [12]. The result showed that most countries had landslide inventory maps 

with national coverage at less than 25% except Austria, Hungary, Korea, Taiwan, Hong Kong, 

New Zealand, Canada and Costa Rica [3]. 

Later, geoscientists in many countries started preparing landslide maps with the help of  

GIS [13–15]. Up to now, many research and educational institutes and commercial companies have 

been offering information on geological hazards, particularly landslides. This arises from a 
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widespread application of GIS and remote sensing techniques. Emergence of GIS applications in 

landslide map generation is critical by this time. 

Various studies have been conducted on landslide susceptibility mapping [1,4,6,8,15–22]. A 

rating was determined taking into account the ratio of the total aspect and slope of topography 

and the aspect and slope of topography per grid interval where the landslide occurred in the 

Janghung area of South Korea. Finally, the rating was summed to calculate the landslide 

susceptibility index (LSI) per grid cell [16,17]. Colorado State University proposed debris flow 

hazard susceptibility mapping at a scale 1:24.000, prepared using an algorithm taking into 

account the influence of factors such as slope angle, slope orientation, Unified Soil Classification 

System (USCS), clay content and clay‟s geotechnical and erosive properties [23]. With the help 

of a raster GIS, [24] used a weighting factor procedure to produce a landslide susceptibility map (LSM) 

in the Wondogenet area in the eastern Ethiopian rift. Landslide susceptibility assessments were 

performed using landslide occurrence data, and layers representing lithology, drainage network, 

geology, slope angle, slope aspect and vegetation cover. Weightings were assigned with regard to 

the observed landslide intensities for each class, resulting in LSMs. In this case, a landslide 

hazard map was subsequently created by overlaying the susceptibility maps; the values of each 

grid cell in the contributing layers were summed and divided by the total number of controlling 

parameters [3]. Zhu et al. integrated human expertise on landslide-environment relationships with 

GIS under fuzzy logic. Geology, slope and strata, slope gradient, relative relief and slope shape 

were used as rule set to conduct landslide susceptibility in Three Gorges area (China) [25]. 

Authors validated their analysis by examining the usefulness of the fuzzy membership values. 

They used 21 landslides and the computed fuzzy membership value for susceptibility at each site 

was obtained from the derived fuzzy membership map. 

In recent decades, several studies on landslide susceptibility mapping have been carried out in 

Italy. Orthophotos of southern Italy were used to determine landslide areas to form landslide 

inventory maps [21]. Magliulo et al. used lithology, landuse, slope gradient and aspect to prepare 

LSMs. These LSMs compared well with a geomorphological map. To obtain a LSM, a landslide 

occurrence map is required to evaluate landslide related data statistically. An occurrence map is used 

together with data such as geology, slope, aspect, drainage, etc. to determine potential landslide sites 

which have the same conditions as those on the occurrence map. Landslide susceptibility analysis 

requires a large amount of data as input, thus making high budgetary and time demands [20]. Kıncal 

et al. carried out landslide susceptibility assessment in Izmir city (Turkey) using the variables of 

lithology, slope gradient, slope aspect, distance to drainage, distance to roads and distance to fault 

lines in logistics regression analysis. Lithology played the most important role in determining 

landslide occurrence and distribution on the basis of the provided coefficients [26]. 

Bai et al. prepared a detailed landslide susceptibility map in the Zhongxian segment in the 

Three Gorges area of China using logistic regression method with the help of Geographical 

Information Systems (GIS). Statistical relationships for landslide susceptibility were conducted 

using landslide and landslide triggering factors [27]. Seed cells were used to be dependent 
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variable in order to create a reliable logistic regression model. The seed cells were formed from 

landslide boundaries and represented the pre-failure undisturbed morphological conditions. 

Yilmaz et al. [used statistical index (Wi) method of Van Westen to conduct landslide 

susceptibility in Devrek (Zonguldak/Turkey) [28,29]. Ten parameters of elevation, slope, aspect, 

profile curvature, plan curvature, distance to streams, drainage density, distance to ridges, distance 

to road and power line network, and lithology were used during the analyses. Seed cells of Süzen and 

Doyuran were used to define decision rules of slope instabilities and percentile class divisions [30]. In 

all data sets authors used, elevation, lithology, slope aspect and drainage density were found as 

critical parameters for landslide occurrence. Chen et al. prepared a landslide susceptibility map in 

the Zigui segment of the Three Gorges area of China by using light detection and ranging (LiDAR) 

and logistic regression model (LRM) [31]. After processing LiDAR & DMC data and 

geological maps and landslide-controlling factors were derived as landslide density, digital 

elevation model (DEM), slope angle, aspect, lithology, land use and distance from drainage. 

The likelihood ratio (LR) analysis then applied to find correlation between the landslide 

locations and landslide-controlling factors. Logistic Regression Model (LRM) was used to 

predict the occurrence of landslides. Wu et al. used rough sets and back-propagation neural 

networks (BPNNs) to map landslide susceptibility on the Zigui-Badong of the Three Gorges 

area [32]. Landslide inventory map was prepared with the help of field works. Twenty-two 

landslide related parameters were created using topographical and geological maps, Landsat 

ETM+ and HJ-A satellite images. Elevation, slope, profile curvature, catchment aspect, catchment 

height, distance from drainage, engineering rock group, distance from faults, slope structure, land 

cover, topographic wetness index, and normalized difference vegetation index were used as 

independent variables set by the rough set and correlation coefficient analysis. Three layered and 

four layered BPNN were trained and used to obtain landslide susceptibility map. Kavzaoglu et al. 

prepared nine thematic maps associated with lithology, slope, aspect, land cover, drainage density, 

topographic wetness index, elevation, slope length and distance to road to create landslide 

susceptibility map with the help of multi-criteria decision analyses (MCDA) and support vector 

regression (SVR) methods for the province of Trabzon (Turkey) [33]. Performances of the methods 

were compared with logistic regression model. Tehrany et al. used weights-of-evidence (WoE) 

model to assess the impact of classes of each conditioning factor on flooding through bivariate 

statistical analysis (BSA) [34]. Their WoE model was integrated with SVM in order to enhance the 

performance of each method. Also, increasing the accuracy of the flood susceptibility map to 

properly manage the prone area of the floods, is aimed. Wu et al. used object based data mining 

methods were applied to a case study of landslide susceptibility assessment on the Guojiaba Town 

of the Three Gorges area [35]. Eleven landslide related factors were extracted using satellite images, 

topographical and geological maps. These factors were calculated as independent variables using 

significance testing and correlation coefficient analysis including slope, profile curvature, 

engineering rock group, slope structure, distance from faults, land cover, tasselled cap 

transformation wetness index, reservoir water level, homogeneity, and first and second principal 
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components of the images. Decision tree and SVM models were used to prepare landslide 

susceptibility map. Du et al. used support vector machine (SVM) to produce landslide susceptibility 

maps for the Daguan County of Zhaotong City (Yunnan Province/China) [36]. Landslide 

conditioning parameters of slope angle, slope aspect, altitude, distance to faults, distance to rivers, 

and distance to roads, NDVI, rainfall and lithology were used during the analysis. SVM model was 

validated by using area under the curve (AUC) methods. The validation results authors obtained 

showed high accuracy (84.73%). 

In this paper, we present a landslide susceptibility map as a case study for the Badong County in 

Three Gorges (TG) region of China to use geology, slope aspect, slope angle, drainage network, 

lineament and vegetation cover data from Landsat imagery, ASTER imagery and a GDEM to create a 

Vector Grid File (VGF) (= Vector pixel) based GIS model. Then, we compare this VGF-based LSM 

with the deformation signals derived using Persistent Scatter Interferometric Synthetic Aperture 

Radar (PS InSAR). 

2. Study Area 

The study area, located in the TG region (China, Figure 1), is well known for its dam 

construction. The TG dam is the largest water management project in the world today. The total 

catchment area of TG project is about 1.0×10
6
 km

2
 with 4.5×10

11
 m

3
 the average annual runoff [37]. 

It is claimed that the main functions of the TG dam include flood control and hydro-electric power. 

This dam is the most important flood control project built on the Yangtze River. The flood season of 

the Yangtze River is between June and September during which 70% to 75% of the total annual 

rainfall occurs. Historical records show that 214 floods occurred in the Yangtze Valley between the 

beginning of the Han Dynasty (206 B.C.) and the end of the Qing Dynasty (1911 A.D.), i.e. about 

one per decade [38]. Since the 1920s, flood hazards have threatened more than 1.5 million ha of 

crops, 15 million people and their properties and railway transportation. The normal water level and 

the total storage capacity of the dam are 175 m and 3.93×10
10

 m
3
, respectively. The water level is 

reduced to 145 m to control any harmful effects of floods on the dam structure. 

There are frequent precipitation-related hazards in the TG region. More than 30,000 people died 

in a huge flood on the Yangtze in 1954, in which 90 percent of the 30,000 deaths were disease 

related [40]. At least 2,000 km
2
 of farm land were flooded and more than 1,500 people lost their lives 

because of the flood in 1998 [41]. In 2008, heavy precipitation led to serious storm and flood 

disasters such as the collapse or flooding of rural homes, destruction of cropland, heavy loss of 

livestock and poultry farms and damage to urban and rural roads [42]. Other frequent natural hazards 

in this region are geological disasters, such as landslides and mud flows. It was reported that 34 

counties in Chongqing had suffered from collapse, landslide and rock and mud flow [43]. The 

impounding of the TG dam reservoir was started on April 1, 2003 [37]. From this time, the water 

level of the Yangtze River rose and TG Dam Lake was created. Landsat images can be used to 

display water level change from 2000 to 2006 (Figure 2). 
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Figure 1. Geology and tectonic setting map of Three Gorges region (Modified from [39]) (** : 

Presinian crystalline basement, * : Sinian-Eocene sedimentary cover series). 

 

Figure 2. Water level change in the Yangtze River in the years 2000 and 2006. (Locations of 

the large landslides were extracted from [44]). 
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Many landslides occurred near the water level of the Yangtze River and more than 97% of 

landslides were on the main channel of the TG region (Figure 2 and 3). Some landslides, such as 

those in Wanxian County where is nearly 190 km far from the study area in the southwest-west 

direction, occurred at different elevation ranges and with sliding surfaces following the nearly 

horizontal rock stratums (Figure 3) [45]. Slope instabilities already threaten several new towns and 

the rising water level in the reservoir has the potential to trigger old instabilities as well as create 

new ones [39]. 

 

Figure 3. Elevation ranges of the old landslides that have occurred  

in Wanxian County (modified from [42]). 

A field trip was carried out in the Badong County to check surface movements and cracks have 

occurred on the man-made structures (Figure 4). This field work showed that landslides in the area 

are still active. Cracks were recorded on some roads which were built in 2006 and 2007. 

 

Figure 4. (a) A view of surface cracks seen in a landslide field in Badong County;  

(b) Surface displacements observed in a landslide field in Badong County. 
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The geological setting of the area consists of two major formations, a Pre-Sinian crystalline 

basement and a Sinian-Eocene sedimentary cover series (Carbonates, shales, sandstones and 

conglomerates) (modified from [46]). The crystalline basement is composed of metamorphic and 

magmatic rocks and the sedimentary cover is composed of interbedded sandstone, shale and 

claystone intercalations. 

The Huangling anticline is the major folding system in the area. It is 50 km in length, lying to the 

southeast of Zigui, with Pre-Sinian metamorphic and magmatic rocks forming the fold‟s core [39]. The 

reason for building the TG Dam in its present location is the strength and stability of this anticlinal 

structure and the lack of any significant earthquakes in this area [37] (Figure 1). 

The southern Zigui and Badong area is characterised by secondary faults, consistent with the 

ENE–WSW oriented fold system [47]. Weak zones were formed by the secondary fault and fracture 

systems which trigger slope instability. 

3. Datasets Used in This Study 

A detailed investigation has been performed mainly involving remotely sensed Landsat ETM+ 

and ASTER images, SAR interferometric processing, LSM and validation. PS InSAR data was 

used to validate analyses performed. Our GIS-model is based on the information provided by 

ASTER and Landsat TM and ETM+ images, ASTER GDEM data, published literature and limited 

field observations. 

3.1. ASTER Optical Imagery 

Data from the NASA Earth Observing System (EOS) satellite-based instruments offer many 

resources for collecting high spatial and temporal resolution information related to urban and non 

urban areas. ASTER on board the Terra platform is well-suited for geological analysis [48]. The 

ASTER instrument was built by Japan‟s Ministry of Economy, Trade and Industry (METI) and 

launched onboard the NASA‟s Terra spacecraft in December 1999. It has an along-track stereoscopic 

capability using its infrared spectral bands and its nadir-viewing and backward-viewing telescopes to 

acquire stereo images with a base-to-height ratio of 0.6. One nadir-looking ASTER Very Near 

Infrared (VNIR) scene consists of 4,100 samples by 4,200 lines [49]. ASTER data can be used for 

analysing and investigating urban land cover/land-use and biophysical parameters such as biomass, 

spatial metrics and surface temperature/emissivity [50–52]. In this study, two Terra ASTER Level 1A 

images acquired on July 17, 2000 and September 25, 2002 were used. 

3.2. Landsat Optical Imagery 

The Landsat Thematic Mapper (TM), a sensor carried onboard Landsats 4 and 5, has acquired 

images of the Earth from July 1982. The temporal resolution of TM is sixteen days [53]. Landsat 7 
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was launched on April 5, 1999. The Earth observing instrument on Landsat 7, the Enhanced 

Thematic Mapper Plus (ETM+), extends the capabilities of the highly successful Thematic Mapper 

instruments on Landsat 4 and 5 [54]. The scene size is 170 km in the north-south and 183 km in the 

east-west directions. Landsat images have been resampled using cubic convolution (CC). Four 

Landsat images acquired on April 17, 1987, May 14, 2000, November 6, 2000 and September 12, 

2006 were used in this study (Table 1). Landsat images were used in this study to map water level 

changes of the Yangtze River and prepare geological and vegetation maps. 

In this study, geological boundaries were visually interpreted using Landsat TM 7-3-1, 7-4-1 

and ETM+ 7-3-1 and 7-4-2 data. Screen digitisation was performed during the preparation of a 

geological map. ASTER band combinations of different channels 3-2-1, 4-6-9 and 4-6-12 images 

were then employed to correct some contacts of the formations (Figures 5 and 6). Details of the 

satellite images are given in Table 1. 

Table 1. Landsat and ASTER images used in this study. 

Acquire 

Date 
Dataset 

Cloud 

cover (%) 
Path/Row 

Number of 

Bands 
Spatial resolution 

Cover 

area (km) 

1987-04-17 Landsat TM 0 125/39 7 Band 6=120 m 

Other bands=30 m 

170183 

2006-09-12 Landsat TM 0 125/39 7 

2000-05-14 
Landsat 

ETM+ 
0 125/39 8 Band 6L=60 m 

Band 8=15 m 

Other bands=30 m 2000-11-06 
Landsat 

ETM+ 
0 125/39 8 

2000-07-17 ASTER 3 125/39 14 
Bands 1, 2, 3N and 

3B= 15 m 

Bands 4-9=30 m 

Bands 10-14=90 m 

6060 2002-09-25 ASTER 5 125/39 14 
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Figure 5. ASTER 321 false color composite view of the study area (The ASTER image was 

acquired in 25
th

 of September, 2002). 

 

Figure 6. Geological map of the Three Gorges Project area extracted from Landsat 

TM/ETM+ and ASTER images. 
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3.3. ASTER GDEM 

ASTER GDEM (Version 1) was used in this study to prepare the maps of slope angle, slope 

aspect, drainage, and lineament. 

Independent research was conducted using GPS survey benchmarks to assess the absolute 

vertical accuracy of ASTER GDEM in different geographical regions over China [55]. In the TG 

region, the coordinates of 121 GPS survey stations were obtained with centimetre level accuracy 

(Figure 7.a), and then a correlation analysis between GPS and ASTER GDEM was performed. A 

correlation of 0.97, a mean difference of -5.9 metres and a RMS value of 12.1 metres were 

observed [56] (Figure 7.b). 

 

Figure 7. (a) Shaded relief map of the study area in Three Gorges with the locations of Static 

GPS points plotted on the ASTER GDEM. Red circles represent GCPs. (b) Scatterplot of 

ASTER GDEM and Static GPS heights in Three Gorges. The dashed line represents the line of 

perfect fit [55]. 

4. Methods 

Methods can be divided into six stages: (i) determination of variables relevant to landslide 

susceptibility; (ii) preparation of thematic maps using variables, (iii) extraction of spatial 

information to generate a Vector Grid File (VGF) having 30 x 30 metres resolution, (iv) preparation 

of a LSM using the VGF and (v) preparation of a thematic deformation map using Persistent 

Scatterer (PS) InSAR techniques and (vi) a comparison of (iv) and (v) (Figure 8). 

After visual interpretation of Landsat and ASTER images to extract geological outcrop 

boundaries in the study area, these outcrops were regrouped based on lithological attributes rather 

than their stratigraphic content and age [18, 30]. Many researchers involve lithology as a factor in 



127 

AIMS Geosciences Volume 3, Issue 1, 116-141 

susceptibility mapping [57–63]. Vector Grid File (VGF) based GIS model was created to determine 

the LSM for the Three Gorges, Yangtze River (China) site. Then, this LS map is validated with 

InSAR results. 

Researchers working on soils obtained from different landslide sites in TG area have found that 

the average internal friction angle for saturated soils is 10 degrees [64]. A slope angle map was thus 

categorized in classes 0–10, 11–20, 21–30, 31–40 and > 40 as having low (for 0–10), moderate 

(for 11–20 and 21–30) and high landslide susceptibility (for 31–40 and >40) (Table 3, Figure 9). 

An aspect hazard map was prepared according to whether the aspect of the slope inclined 

towards the Yangtze River. This aspect map was classified into 8 classes according to aspect 

directions of 0–45, 45–90, 90–135, 135–180, 180–225, 225–270, 270–315 and 315–360. 

For the southern slopes of the Yangtze River, an aspect zone of 315–45 was chosen and for the 

northern slopes of the Yangtze River, an aspect zone of 135–225 was chosen as the critical aspect 

zones for landslides (Figure 8 and 9). 

 

Figure 8. The processing of the data-sets used to obtain LSM. Flow chart of the study ((i) 

determination of variables relevant to landslide susceptibility; (ii) preparation of thematic maps 

using variables, (iii) extraction of spatial information to generate a Vector Grid File (VGF) 

having 30 x 30 metres resolution, (iv) preparation of a LSM using the VGF and (v) preparation of 

a thematic deformation map using Persistent Scatterer (PS) InSAR techniques). 

Lineaments were digitised as geological structures. The distance to the lineament map 

(lineament buffer map) signifies the presence of joint-fractures affecting shear strength [18,30]. 

Buffer zones were created for distances of 0–50, 50–100 and 100–200 metres for each lineament 

feature (Figure 8). 
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The drainage network was digitized from generated contours using ASTER G-DEM data [65]. 

After digitising, buffer zones were created at 0–50, 50–100 and 100–200 metres for each drainage 

channel (Figure 9b). Also, water level in 2006 digitized from a Landsat image, was considered 

during the drainage buffer analysis, as later described. 

 

Figure 9. (a) ASTER GDEM of the study area, (b) Vector drainage network of the study area 

(c) Slope angle map of the Badong County, (d) Aspect map of the Badong County. 

A vegetation map was prepared using the Normalized Difference Vegetation Index (NDVI) 

calculation in the range between -1 and 1. Forest, agricultural fields, barren land, water and wet 

areas are the main land cover classes determined from this image. The NDVI map was classified as 

water (-1.00 to -0.01), wet areas (0.00 to 0.32), barren land (0.33 to 0.63), intermediate vegetation 

(0.64 to 0.76) and dense vegetation (0.77 to 1.00). A high susceptibility score was given to barren 

land and a low score to forested land. 

In an approach developed by [66], spatial information for all map layers saved in a database 

related to landslide potential was produced. An overlay technique was used to combine data from a 

number of maps in order to prepare a new map that is termed a “VGF-based LSM”. For the prepa-

ration of the susceptibility map, raster background images (e.g. geological maps derived from 

satellite imagery) were digitized to form geology layers. Then, all digital thematic maps (geology, 

slope angle, slope aspect, drainage, lineament, vegetation) were converted to vector pixels from a 

dataset of all digital maps [66]. GIS enables end users to carry out a complete land-use planning 

and seismic-risk assessment at regional, sub-regional and local scales [67]. All analyses for the 

present study were carried out at a sub-regional scale.  

A Vector Grid File (VGF), containing 132.692 vector areas (or “vector pixels”) of size 30×30 

m was created using the “Grid Maker” command (of MapInfo Professional) to cover the Badong 
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County (see Figure 10). Then, columns were inserted into the VGF file‟s attribute database – one 

for each digital raster map. Next, each digital thematic map was overlaid on the new blank VGF. 

A susceptibility score was assigned to the database for each map pixel as suggested by [24] 

and [68] (Table 3). Then the VGF susceptibility score was calculated according to Equation (1)  

   VegDraLinLitSasSan of Points lity Susceptibi Landslide  ........................ 1 

where;  

San: Slope Angle, Sas: Slope Aspect, Lit: Lithology, Lin: Lineament, Dra: Drainage, Veg: Vegetation. 

A LSM was prepared using the total number of VGF susceptibility points (scores) (Figure 11). 

The LSM has been obtained by reclassifying the values obtained by means of Eq. (1) into three 

categories: High, Medium and Low. 

A deformation map was then created using PS InSAR results. The prepared LSM and the PS 

InSAR deformation results are compared in Section 6. 

Table 2. Details of variables used to prepare landslide susceptibility map. 

Variable Data Source Techniques used Data Type 

Geology Landsat and ASTER images Visual interpretation Polygon 

Slope angle ASTER GDEM  Contouring Polygon 

Slope Aspect ASTER GDEM Contouring Polygon 

Lineament Ortorectified Landsat & ASTER images Screen digitising Polyline 

Drainage ASTER GDEM Screen digitising Polyline 

Vegetation Landsat NDVI Polygon 

NDVI: Normalized Difference Vegetation Index  

5. Landslide Susceptibility Analysis 

LSMs are a special type of engineering geological maps, and present all the components of the 

geological and geo-morphological environment. Such maps should be based on the combination of 

all relevant – mainly engineering geological – parameters. This combination can be realized by using 

an overlay process in the GIS environment, which is perhaps one of the key functions of a GIS; it 

allows for construction of a new integrating layer [69]. One can distinguish three major categories of 

approaches to GIS-based land-use suitability analysis in the literature: (1) computer-assisted overlay 

mapping, (2) multi-criteria evaluation methods, and (3) soft computing or geo-computation methods [70]. 

Overlay with a weighting technique was used during the landslide susceptibility analysis. Point 

scores were assigned according to sliding susceptibilities as defined in Table 3 and 4. If the unit cell 

in the VGF is more susceptible to sliding, then a high point (score) is given, otherwise a low one is 

assigned [71,72]. Categories (1) and (2) are performed in this study as other scientists did. But, different 

point scores to the areas which have different type of susceptibility class are given in this study and VGF-
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based technique is a novel in this case study area. For this purpose, the existing landslide inventory map 

of the study area was used in order to perform a zonation of land units similarly prone to generate 

landslides or in order to quantitatively validate the obtained susceptibility map. 

Table 3. Points (scores) assigned to each vector pixels of VGF depending on susceptibility factors. 

Geology/lithology 

Category 

Lithology 

Points 

Slope Aspect 

Category 

Slope Aspect 

Points 

Sandstone-shale-claystone 

intercalations 

30 0-45 20 

Bedded limestone and 

sandtone 

10 45-90 10 

Massive limestone 10 90-135 10 

Presinian metamorphic rock 10 135-180 20 

Presinian magmatic rock 10 180-225 20 

Vegetation 

Category 

Vegetation 

Points 
225-270 10 

No 10 270-315 10 

Intermediate 10 315-360 20 

Dense  0 

Lineament 

Category 

Lineament 

Points 

Drainage 

Category 

Drainage 

Points 

In 50 m buffer 5 In 50 m buffer 5 

In 50-100 m buffer 10 In 50-100 m 

buffer 

10 

In 100-200 m buffer 15 In 100-200 m 

buffer 

15 

Slope Angle Category Slope Angle 

Points 

0-10 10 

11-20 20 

21-30 20 

31-40 30 

> 40 30 

There is no doubt that landslides will be seen along the slopes of the Yangtze River. Slope angle 

and slope aspect maps were prepared to determine landslide susceptibility analysis zones (Figure 10). 

As already stated, the vector grid file (VGF) is made up of 132,697 cells (Figure 10) with the 

dimension of each cell being 30 x 30 m (Table 3 and 4). 
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Table 4. Database example. Vector grid layer created using geology, slope angle, slope aspect, drainage, lineament and vegetation cover 

maps for fifteen vector pixels (LQ177-LQ188). 

Vektor 

pixel 

coordinate 

Vektor 

pixel 

column 

id 

Vektor 

pixel 

row 

number 

Slope 

_min 

Slope 

_max 

Score of 

the slope 

Aspect 

_min 

Aspect 

_max 

Score 

of the 

aspect Lithology 

Score of 

the 

Lithology 

Score of the 

Lineament 

_50m 

Score of the  

Lineament 

_100m 

Score of 

the 

Lineament 

_200m 

LQ177 LQ 177 10 20 20 225 270 10 

seyl and 

sandstone 30 0 0 0 

LQ178 LQ 178 10 20 20 225 270 10 

seyl and 

sandstone 30 0 0 0 

LQ179 LQ 179 10 20 20 225 270 10 

seyl and 

sandstone 30 0 0 0 

LQ180 LQ 180 10 20 20 225 270 10 

seyl and 

sandstone 30 0 0 0 

LQ181 LQ 181 10 20 20 225 270 10 

seyl and 

sandstone 30 0 0 0 

LQ182 LQ 182 10 20 20 225 270 10 

seyl and 

sandstone 30 0 0 0 

LQ183 LQ 183 10 20 20 225 270 10 

seyl and 

sandstone 30 0 0 0 

LQ184 LQ 184 10 20 20 225 270 10 

seyl and 

sandstone 30 0 0 0 

LQ185 LQ 185 10 20 20 225 270 10 

seyl and 

sandstone 30 0 0 0 

LQ186 LQ 186 10 20 20 225 270 10 

seyl and 

sandstone 30 0 0 0 

LQ187 LQ 187 10 20 20 225 270 10 

seyl and 

sandstone 30 0 0 0 

LQ188 LQ 188 10 20 20 180 225 20 

seyl and 

sandstone 30 0 0 0 
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Score of the 

Stream_50m 

Score of the 

Stream_100m 

Score of the 

Stream_200m 

Score of the 

Vegetation TOTAL SCORE 

0 0 0 10 70 

0 0 0 10 70 

0 0 0 10 70 

0 0 0 10 70 

0 0 0 10 70 

0 0 0 10 70 

0 0 0 10 70 

0 0 0 10 70 

0 0 0 10 70 

0 0 0 10 70 

0 0 0 10 70 

0 0 0 10 80 

 

Figure 10. Thematic map prepared using the VGF file for slope angle. 

Point scores (weighting factors) were given to the “slope angle” categories according to their 

landslide susceptibilities as follows:  ten points for 0-10; twenty points for 11–30; and, thirty points 

for >31, respectively. 

Point scores (weighting factors) were given to the “slope aspect” categories according to their 

landslide susceptibilities with ten points for 45–90, 90–135 and 225–270, and twenty points for  

0–45, 135–180 and 180–225 slopes, respectively (Tables 3 and 4). 

Point scores (weighting factors) were given to the “lithology” categories according to their 

landslide susceptibilities with ten points for bedded limestone, massive limestone and Presinian 

metamorphic and magmatic rocks, and thirty points for sandstone-shale-claystone intercalations. 
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Point scores (weighting factors) were given to the “lineament” and “drainage” categories 

according to their landslide susceptibilities as five, ten and fifteen for 0–50, 50–100 and 100–200 

metres distance from the river bed, respectively. 

Point scores (weighting factors) were given to the “vegetation” categories according to their 

landslide susceptibilities as ten points for the barren field, ten points for the less vegetation zones and 

zero-point for dense vegetation zones (Table 3). 

Finally, all susceptibility point scores in the six columns were summed and a column named 

“Total” created in the database (Equation 1). The LSM was created as a thematic map based on the 

total value of these point scores after applying the relevant weighting factors. 

76 ≤ Landslide Susceptibility  =>  High landslide susceptibility zone 

36 ≤ Landslide Susceptibility < 76 =>  Moderate landslide susceptibility zone 

        Landslide Susceptibility < 36 =>  Low landslide susceptibility zone 

Classes were divided into three categories with the help of the landslide inventory map and 

statistical natural breaks of the total point range data (Figure 11). 

The susceptibility of each „vector pixel‟ to landslides is displayed in Figure 11 with an 

explanation of low to high landslide susceptibility. Areas of high susceptibility are categorised by 

steep slope gradients with a „soft‟ sandstone-shale-claystone intercalations lithology. Smaller 

features with high susceptibility values observed in the map generally correspond to lineaments 

and/or drainage network. A LSM is considered to be categorised if it shows three susceptibility zones: 

(a) high, (b) moderate and (c) low landslide potential zones (Figure 11). 

 

Figure 11. Landslide susceptibility map of the Badong County in the Three Gorges Region. 
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6. Validation of LSMs with PS InSAR Derived Deformation Map 

Interferometric SAR (InSAR) has been used to map surface displacements of the Earth‟s 

surface by calculating the phase differences in complex representations (magnitude and phase). 

Synthetic Aperture Radar (SAR) images are acquired under similar geometric conditions but at 

different acquisition dates [73]. The sources of error for conventional InSAR principally include 

atmospheric water vapour effects and temporal decorrelation [74]. Several approaches have been 

developed to address these two issues. Ferretti et al. proposed Permanent Scatterers InSAR improved 

by Colesanti et al. and by Kampes [75–78]. In these methods, the amplitude information of a group 

of PS candidates are analysed using a series of interferograms. These methods work well in urban 

areas where corner-like reflecting objects appear bright in SAR images. But these methods do not 

turn out very well in natural terrain because of the absence of man-made structures [56]. The second 

approach identifies PS pixels primarily on phase characteristics as demonstrated by Hooper et al. 

[79,80]. This method can find low-amplitude but stable pixels that cannot normally be identified 

using only amplitude data. 

Persistent Scatterer (PS) InSAR supports users with reliable deformation measurements by 

identifying single coherent pixels using a long temporal series of interferograms and estimating 

atmospheric signals [76]. 

In this study, the StaMPS package was used to process 13 ENVISAT images from descending 

track 075 collected between November 2003 and March 2008 [79]. The comparison between two 

adjacent tracks shows the PS derived deformation map is reliable with a RMS of 0.41 mm [56]. 

To evaluate the GIS-model, PS-InSAR derived deformation signals were overlaid on the 

susceptibility map. In Figure 10, grey points represent stable pixels, purple points indicate 

subsidence pixels and blue points imply uplift pixels. It should be noted that the density of PS-

InSAR points does not show the magnitude of deformation; substantial clusters of PS-InSAR points 

merely correspond to more populated areas (e.g. houses indicated in white in Figure 12) which 

possibly exhibit high radar backscatter values from man-made buildings. A simple spatial analysis of 

Ikonos imagery reveals that 13.5 % of PS points are located on tops of buildings. 

Although PS points are limited to points with good coherence from a long series of 

interferograms, there is a good correspondence of points with the GIS-based susceptibility model. It 

is clear in Tables 5 that 84.8% of the subsidence deformation points are located in areas classified by 

the GIS-model as moderately and highly susceptible to landslides. 

Table 5. Distribution of the PS-point values to the landslide susceptibility classes. 

Susceptibility 

 

Deformation (mm/yr) 

 

High 

 

Moderate  

 

Low  

 

Total 

0.6 to 4.2 (uplift) 85 (6.8%) 7 (0.6%) 17 (1.3%) 109 (8.7%) 

-0.8 to 0.6 (stable) 187 (14.8%) 40 (3.2%) 38 (3.0%) 265 (21.0%) 

-9.9 to -0.8 (subsidence) 615 (48.7%) 138 (10.9%) 135 (10.7%) 888 (70.3%) 

Total 887 (70.3%) 185 (14.7%) 190 (15.0%) 1262 (100.0%) 
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Figure 12. Landslide Susceptibility Map overlaid with PS InSAR derived deformation signals 

(Locations of the large landslides were extracted from [44]). 

7. Conclusions 

In this case study, a LSM generated for the Badong County, TG of China, using information 

layers derived from satellite optical images (specifically ASTER and Landsat) and ASTER 

GDEM, which agrees well with our PS InSAR derived deformation maps. Both suggest that 59.8% 

of the study area is classified as “Highly susceptible to landslides”, and 19.4% of this is classified 

as “moderately susceptible to landslides” (Figure 12). 84.8% of the subsidence PS-InSAR points 

were calculated in moderately and highly susceptible landslide zone. Landslides which have 

occurred do indeed show in the “High landslide susceptibility zone” of the LSM prepared in this 

case study (Figure 13) [44]. 

A VGF was created to calculate a GIS-based analysis with 30 meters accuracy. For local scales, 

this resolution can be increased depending on the scales of the digital thematic maps prepared. 
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As a result, the investigated case study site of Badong County can be considered an active 

landslide area with the help of PS InSAR data and field observations. Landslides can be re-activated 

by the land-use changes which are now happening in Badong County. New landslides may occur in 

the area classified as “high landslide susceptible zone” in the LSM if preventive measures are not 

met against the triggering effect of reactivated fossil landslides. Mass movements, other than 

landslides, such as planar, wedge and toppling forms should also be analyzed in the future, after 

obtaining relevant detailed field data. 

 

Figure 13. Landslides which were occurred previously as observed in the “High Landslide 

Susceptibility Zone” (Locations of the large landslides were taken from [44]). 

Perspective 

This work can be used in landslide susceptibility mapping studies if a vector-based database is 

available. Also, the weighting of each digital thematic layer on landslide susceptibility is scored in 

this case study. Authors who have score points for different geo-referenced areas could use this work 

in their studies. Vector-pixel based landslide susceptibility analyses has more advantages then raster-

pixel based one. We suggest geoscientists to use this work in their scientific studies to obtain fast and 

reliable results during their landslide susceptibility analysis. 
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