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Abstract: In the present study, the reflection of inhomogeneous waves is investigated at the stress-free
plane surface based on multiphase poroelasticity theory. The porous medium is considered as dissi-
pative due to the presence of viscosity in pores fluid. Four inhomogeneous (i.e. different direction of
propagation and attenuation) reflected waves (three longitudinal and one shear) exists due to an inci-
dent wave. By using the appropriate boundary conditions, closed-form analytical expressions for the
reflection coefficients are derived at the stress-free surface. These reflection coefficients are used to
drive the analytical expressions for the energy shares of various reflected inhomogeneous waves. In
mathematical framework, the conservation of incident energy is confirmed by considering an interac-
tion energy between two dissimilar waves. It validates that the numerical calculations are analytically
correct. Finally, a numerical example is considered to study the effects of viscous cross-coupling,
porosity, saturation of gas, pore-characteristics and wave frequency on the energy shares of various
reflected inhomogeneous waves and depicted graphically.

Keywords: viscous cross-coupling; partially saturated porous solid; immiscible pore-fluids;
inhomogeneous wave; reflection coefficients

1. Introduction

The phenomenon of wave propagation in multiphase poroelasticity theory is appealing extensive
attention due to its importance in large number of practical applications in the fields of seismology,
geophysics, rock mechanics, soil mechanics and hydrogeology. Biot [14] was the first who introduce
the equations of motion for the propagation of elastic waves in a porous solid saturated with single
fluid. He found that three (two longitudinal and one shear) waves exist in such a porous medium. In
comparison to the porous medium saturated with single fluid, the studies of porous media saturated
by multi-fluids are rare. For more realistic interpretations of elastic waves propagation in porous me-
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dia demand an accurate and developed mathematical theory. An approach, based on mixture concept,
Brutsaert [5] was the first who extended Biot’s theory as Mixture theory to includes the effects of two
immiscible pore fluids on the behaviour of elastic waves propagation. Mixture theory, generally, de-
veloped for two-fluid system, was further improved and generalised by many authors (Brutsaert and
Luthin [6]; Bedford and Drumheller [7]; Garg and Nayfeh [8]; Berryman et al. [9]; Santos et al.
[10,11]; Corapcioglu and Tuncay [12]; Tuncay and Corapcioglu [13]; Wei and Muraleethara [14,15];
Hanyga [16]; Lu and Hanyga [17]; Lo [18]; Lo et al. [1921]). In multiphase poroelasticity theory, the
solution of coupled differential equations of motion showed that four (three longitudinal and one shear)
mode of elastic waves exist. Based on the above mentioned models, a study of reflection of plane har-
monic waves at the stress-free surface of porous solid have been carried out by some researchers e.g.
Sharma and Kumar [22]; Kumar and Kumari [23]; Sharma [24]; Sharma[25]; Tomer and Goyal [26].
A latest book by Carcione [27] is referred for relevant references and detailed procedures. In all the
above mentioned hydrologic models of subsurface multiphase flow, the effect of viscous resistance due
to relative velocity between two adjacent fluids on elastic waves behavior in unsaturated porous media
still remains ignored. A recent mathematical model ’based on continuum mixture theory’ presented by
Lo et al. [28] incorporated the viscous cross-coupling between two immiscible pore fluids. Thus, all
the above mentioned models can be derived as the special case of this model. Further, in case of single
fluid in medium, this model reduced to Biot [1,2] theory. To account the viscous resistance, they first
generalised the equations of motion proposed by Lo et al. [19]. Next, they derived the dispersion re-
lations, which physically shows the existence of four (three longitudinal and one shear) waves in such
a medium. At different frequency and water saturation level, the essence of viscous cross coupling
on the phase speed and attenuation coefficient of these four elastic waves is analysed for Columbia
fine sandy loam containing an gas-water mixture.Keeping the importance of viscous cross-coupling in
mind, in this work, we have extended the work of Lo et al. [28]. Present study considers the reflection
of inhomogeneous waves at the stress-free plane surface. The methodology is analogous to that pre-
sented in Sharma [28]. Firstly, the mathematical model developed by Lo et al. [28] is solved for the
propagation of three compressional waves and lone transverse wave after that definition and suitable
boundary conditions for the problem are described. By using the appropriate boundary conditions, the
closed-form analytical expressions for the reflection coefficients are derived at the stress-free surface.
The analytical expressions for the energy shares of various reflected inhomogeneous waves are derived
by using these reflection coefficients. Further, a numerical example is considered to illustrate the in-
fluences of viscous cross-coupling, porosity,saturation of gas, pore-characteristics and wave frequency
on the energy flux characteristics of seismic waves respectively. Specifically, the Lo-Yeh-Lee theory
(LYLT) [28] considering viscous cross-coupling between two immiscible fluids in an isotropic porous
solid is compared with Tuncay-Corapcioglu theory (TCT) [13], and Lo-Sposito-Majer theory (LSMT)
[19] of porous solid containing two immiscible fluids. In mathematical framework, the conservation of
incident energy is confirmed by considering an interaction energy between two dissimilar waves. It val-
idates that the numerical calculations are analytically correct. Finally, some conclusions are addressed
which may be drawn from the discussions of the numerical results.
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2. Basic Equations

The mathematical model proposed by Lo et al. [28] has been considered as reference work, wherein
equations of motion for deformable porous media containing two immiscible fluids (say, a gas and a
water) incorporating the viscous cross-coupling due to relative velocity between two adjacent fluids
are derived. The equations of motion, in the absence of body force, are given by

〈τs〉i j, j = ρsαsüi + A11(v̈i − üi) + A12(ẅi − üi) + A21(v̈i − üi) + A22(ẅi − üi)
+ R11(v̇i − u̇i) + R12(ẇi − u̇i) + R21(v̇i − u̇i) + R22(ẇi − u̇i),

〈τ1〉i j, j = ρ1α1v̈i − A11(v̈i − üi) − A12(ẅi − üi) − R11(v̇i − u̇i) − R12(ẇi − u̇i),
〈τ2〉i j, j = ρ2α2ẅi − A21(v̈i − üi) − A22(ẅi − üi) − R21(v̇i − u̇i) − R22(ẇi − u̇i), (1)

where ui, vi and wi represent the solid, gas and water particles displacement components respectively.
The indices s, 1 and 2 represent the three phases of composite medium such as solid, gas and water,
respectively. Else, the variable indices in the tensors can take the values 1, 2, 3. The partial time
derivative is represented by a dot over variable. The τ’s are used to define stresses, ρ’s are material
densities and α’s are volume fractions of the different phases. Coefficients A11 and A22 represent the
inertial coupling of two fluid phases with solid. A12 (= A21) identifies inertial coupling between two
fluids. Coefficients R11 and R22 define the viscous coupling of two fluid phases with solid particles
whereas R12 and R21 represents the viscous cross coupling between two fluids.

The stress-strain relations for the composite medium are given by

〈τs〉i j = ((a11 −
2
3

G)uk,k + a12vk,k + a13wk,k)δi j + G(ui, j + u j,i),

〈τ1〉i j = (a12uk,k + a22vk,k + a23wk,k)δi j,

〈τ2〉i j = (a13uk,k + a23vk,k + a33wk,k)δi j, (2)

where δi j is Kronecker symbol. G is the shear modulus of the porous frame and the elastic coefficients
ai j (= a ji) of the porous aggregate are given in the Appendix.

Equations of motion, in terms of the displacement components are written as follows.

(a11 +
1
3

G)u j,i j + a12v j,i j + a13w j,i j + Gui, j j = (ρsαs − A11 − A12 − A21 − A22)üi

+(A11 + A12)v̈i + (A12 + A22)ẅi − (R11 + R12 + R21 + R22)u̇i + (R11 + R21)v̇i + (R22 + R12)ẇi

a12u j,i j + a22v j,i j + a23w j,i j = (A11 + A12)üi + (ρ1α1 − A11)v̈i − A12ẅi

+(R11 + R12)u̇i − R11v̇i − R12ẇi,

a13u j,i j + a23v j,i j + a33w j,i j = (A21 + A22)üi − A21v̈i + (ρ2α2 − A22)ẅi

+(R21 + R22)u̇i − R21v̇i − R22ẇi. (3)

3. Harmonic Plane Waves

The displacement components to study the propagation of plane harmonic wave in the medium are
given by

(ui, vi,wi) = (Ai, Bi,Ci) exp {iω(s jx j − t)}, (i = 1, 2, 3), (4)
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where the vectors (A1, A2, A3), (B1, B2, B3) and (C1,C2,C3) are defined as the polarizations of the solid,
gas and water particles in the composite medium respectively. The slowness vector (s1, s2, s3) = n/V
represents the propagation/attenuation of a wave through a unit vector n = (n1, n2, n3) and the velocity
V . By substituting (4) in (3), we get nine homogeneous equations, given by

[(a11 +
1
3

G)nin j + (G − ρssV2)δi j]A j + [a12nin j − ρs1V2δi j]B j + [a13nin j − ρs2V2δi j]C j = 0, (5)

[a12nin j − ρ1sV2δi j]A j + [a22nin j − ρ11V2δi j]B j + [a23nin j − ρ12V2δi j]C j = 0, (6)
[a13nin j − ρ2sV2δi j]A j + [a23nin j − ρ21V2δi j]B j + [a33nin j − ρ22V2δi j]C j = 0, (7)

where
ρss = ρsαs − A11 − A12 − A21 − A22 −

ι
ω

(R11 + R12 + R21 + R22),
ρs1 = A11 + A12 + ι

ω
(R11 + R21),

ρs2 = A12 + A22 + ι
ω

(R12 + R22),
ρ1s = A11 + A12 + ι

ω
(R11 + R12),

ρ11 = ρ1α1 − A11 −
ι
ω

R11,

ρ12 = −A12 −
ι
ω

R12,

ρ2s = A21 + A22 + ι
ω

(R21 + R22),
ρ21 = −A21 −

ι
ω

R21,

ρ22 = ρ2α2 − A22 −
ι
ω

R22.

The equations (6) and (7) are solved into two relations, given by

Bi = Γi jA j, Γ =
b0

a0
(I − nT n) +

b0V4 + b1V2 + b2

a0V4 + a1V2 + a2
nT n, (8)

Ci = ∆i jA j, ∆ =
c0

a0
(I − nT n) +

c0V4 + c1V2 + c2

a0V4 + a1V2 + a2
nT n, (9)

where, I is the identity matrix and nT identify the transpose of the row-matrix n = (n1, n2, n3).
The above relations interrelate the polarisations (displacements) of solid particles with gas and water
particles in the porous aggregate. The polarisation vector A defines the polarisation of solid particles
in the aggregate. Polarisations of the gas and water particles are calculated from the relations (8) and
(9), respectively.
where, a0 = ρ11ρ22 − ρ12ρ21, a1 = a23ρ12 + a23ρ21 − a22ρ22 − a33ρ11, a2 = a22a33 − a2

23,
b0 = ρ12ρ2s − ρ1sρ22, b1 = a12ρ22 + a33ρ1s − a13ρ12 − a23ρ2s, b2 = a13a23 − a12a33,
c0 = ρ1sρ21 − ρ2sρ11, c1 = a13ρ11 + a22ρ2s − a12ρ21 − a23ρ1s, c2 = a12a23 − a13a22.

Substituting (8) and (9) in (5), we get the following relations

Di jA j = 0, D = a3(I − nT n) + b3nT n, (10)

a3 = G − (ρss + b0
a0
ρs1 + c0

a0
ρs2)V2,

b3 = a11 + 4
3G − ρssV2 + (a12 − ρs1V2)

(
b0V4+b1V2+b2
a0V4+a1V2+a2

)
+ (a13 − ρs2V2)

(
c0V4+c1V2+c2
a0V4+a1V2+a2

)
.

The system of equation (10) represent the Christoffel equations. Non-trivial solution of this system
is ensured by a cubic equation (in V2)

d3V6 + d2V4 + d1V2 + d0 = 0, (11)
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where, 
d3

d2

d1

d0

 =


a0 b0 c0

a1 b1 c1

a2 b2 c2

0 0 0



ρss

ρs1

ρs2

 −


0 0 0
a0 b0 c0

a1 b1 c1

a2 b2 c2




a11 + 4
3G

a12

a13

 ,
and a linear equation (in V2), given by

G − (ρss +
b0

a0
ρs1 +

c0

a0
ρs2)V2 = 0. (12)

The three roots of the cubic equation (11) explains the existence of three longitudinal waves (i.e.,
polarization vector is parallel to propagation vector) propagating with velocities (V j, j = 1, 2, 3). For
convenience, the three longitudinal waves identified with velocities V1, V2 and V3 are termed as P1, P2

and P3 wave, respectively.
In an analogs manner, the single root of equation (12), explains the existence of lone transverse

wave (i.e., polarization vector is normal to propagation vector) propagating with velocity V4, given by
the relation V2

4 = G/(ρss + b0
a0
ρs1 + c0

a0
ρs2). This lone transverse wave is identified as S V wave.

4. Reflection at Plane Boundary

In this study our goal is to analyze the effects of viscous cross-coupling, porosity, saturation of
gas, pore-characteristics and wave frequency on the energy shares of various reflected inhomogeneous
waves at the stress free surface of partially porous solid.

Figure 1. Geometrical Figure

4.1. Definition of the Problem

Consider a rectangular coordinate system (x, y, z), in which half-space z > 0 is occupied by a sat-
urated porous solid with its depth increasing along the z-direction as shown in geometrical Figure 1.
The plane z = 0 is considered as stress free surface of this medium. Following Borcherdt [29], in terms
of angle of propagation (θ0), angle of attenuation (γ0), propagation vector (P) and attenuation vector
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(A), the horizontal slowness is defined as

s = |P| sin θ0 − ι|A| sin(θ0 − γ0), (13)

where, for incident wave of velocity V0, we have

|P|2 =
1
2

[Re(
ω2

V2
0

) +

√
(Re(

ω2

V2
0

))2 + (Im(
ω2

V2
0

))2/ cos2 γ0], (14)

|A|2 =
1
2

[−Re(
ω2

V2
0

) +

√
(Re(

ω2

V2
0

))2 + (Im(
ω2

V2
0

))2/ cos2 γ0]. (15)

Due to the dissipative nature of porous medium, the incident wave at the boundary z = 0 is specified
through its propagation direction (θ0) and attenuation direction (γ0). The vector (s, 0, q0) specify the

slowness vector of incident wave, where q0(= ±
√

V2
0 − s2) is the vertical slowness of incident wave.

To ensure the propagation of incident wave towards the boundary (i.e., negative z-direction), we must
have <(q0) < 0. According to Snell’s law the horizontal slowness (s) of both incident and reflected
waves will be remains same. Then, the vector (s, 0, qk) specify the slowness vector for reflected waves,

where qk = ±

√
V2

k − s2, (k = 1, 2, 3, 4). To assure the decay of reflected waves moving away from
boundary (i.e., positive z-direction), we must have =(qk) > 0. Then, the total displacement of material
particles of medium is the sum of displacements associated with incident wave and three reflected
waves. Hence, for two dimensional motion in xz-plane, the general displacement of material particles
is expressed as

u j = [A(0)
j exp {ιω(sx − q0z − t)} +

4∑
k=1

fkA(k)
j exp {ιω(sx + qkz − t)}],

v j = [B(0)
j exp {ιω(sx − q0z − t)} +

4∑
k=1

fkB(k)
j exp {ιω(sx + qkz − t)}],

w j = [C(0)
j exp {ιω(sx − q0z − t)} +

4∑
k=1

fkC
(k)
j exp {ιω(sx + qkz − t)}], ( j = x, z), (16)

where, fk are the excitation factors for reflected waves relative to incident wave. The index “0“ repre-
sent the incident wave. The index “k“(= 1, 2, 3, 4) represent, respectively, the reflected (P1, P2, P3, S V)
waves. To define polarization of a longitudinal and transverse wave, the required unit vector n is
obtained as n = (s, 0, qk)Vk.

4.2. Boundary Conditions

In the present geometry, boundary conditions for the particle motion are considered at the stress
free plane surface z = 0. In this problem,we consider two kinds of boundary conditions at the plane
z = 0, one is impermeable boundary (sealed pores) and other is permeable boundary (fully-opened
pores). In case of impermeable boundary (sealed pores), no discharge of interstitial fluid is allowed
at the surface with the passage of waves. While in case of permeable boundary (fully-opened pores),
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the fluid pressure should be vanish at the plane z = 0. Hence, the suitable boundary conditions to be
satisfied at the plane z = 0 are given by

i) 〈τs〉zz = 0,
ii) 〈τs〉zx = 0,
iii) ζT0v̇z − (1 − ζ)〈τ1〉zz = 0,
iv) ζT0ẇz − (1 − ζ)〈τ2〉zz = 0, (17)

where, T0 is a scaling parameter that ensures dimensional homogeneity. The parameter ζ = 1 define the
impermeable boundary (sealed surface-pores) and ζ = 0 define the permeable boundary (fully-opened
surface-pores).

4.3. Reflection Coefficients

We obtain a system of four simultaneous non-homogeneous linear equations after solving the four
boundary conditions (17) using displacements defined in equation (16). The system of four equations,
are given by

4∑
k=1

blk fk = −bl0, (l = 1, 2, 3, 4). (18)

For (k = 1, 2, 3, 4), we have
b1k = (a11 − 2G/3)[sA(k)

x + qkA(k)
z ] + a12[sB(k)

x + qkB(k)
z ] + a13[sC(k)

x + qkC
(k)
z ] + 2GqkA(k)

z ,

b2k = G[qkA(k)
x + sA(k)

z ], b3k = ζT0B(k)
z − (1 − ζ)Yk, b4k = ζT0C

(k)
z − (1 − ζ)Zk,

where, Yk = a12[sA(k)
x + qkA(k)

z ] + a22[sB(k)
x + qkB(k)

z ] + a23[sC(k)
x + qkCk

z ]
and Zk = a13[sA(k)

x + qkA(k)
z ] + a23[sB(k)

x + qkB(k)
z ] + a33[sCk

x + qkC
(k)
z ].

System (18) is solved for four unknowns fk(k = 1, 2, 3, 4) by using Gauss elimination method.
These unknown may be treated as reflection coefficients.

4.4. Energy Partition

In this article, our goal is to study the partition of incident wave energy into distinct reflected waves.
The energy communicated per unit area at the plane z = 0 is the scalar product of surface traction
and particle velocity (Achenbach[30]). Due to dissipative nature of porous medium, the concept of
interaction energy (Borcherdt [29]; Krebes [31]) or the interference energy (Ainslie and Burns [32])
between two dissimilar waves is also involved. Therefore, total energy flux is the sum of energy flux
carried out by reflected waves and interaction energy between two dissimilar waves. In the present
geometry, medium supports the propagation of four (one incident and three reflected) waves. Hence,
to described the distribution of incident energy at the surface z = 0, an energy matrix is defined as

Elk = <(Plk fl f̄k)/<(P55), (l, k = 1, 2, 3, 4, 5); (19)

where f5 = 1. A bar over a complex quantity denotes conjugate. The elements Plk in equation (19) are
given by

Plk =
[
(a11 − 2G/3)[sA(l)

x + qlA(l)
z ] + a12[sB(l)

x + qlB(l)
z ] + a13[sC(l)

x + qlC(l)
z ] + 2GqlA(l)

z

]
Ā(k)

z
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+ G
[
sA(l)

z + qlA(l)
x

]
Ā(k)

x + YlB̄(k)
z + ZlC̄(k)

z . (20)

The energy matrix Ei j, (i, j = 1, 2, 3, 4), calculates the energy shares of three reflected (P1, P2, P3, S V)
waves in porous medium. The diagonal entries E11, E22, E33 and E44 identify the energy shares of
reflected P1, P2, P3 and S V waves, respectively. The interaction energy due to the interference of
each reflected wave with incident wave is given by EIR =

∑4
i=1(E5i + Ei5). The interaction energy due

to the interference between each pair of reflected waves is given by ERR =
∑4

i=1(
∑4

j=1 Ei j − Eii). Then,
conservation of energy at the stress free surface is assured through the relation

∑5
l=1

∑5
k=1 Elk = 0.
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Figure 2. Variations in energy partition with incident direction (θ0) and gas saturation
(σ); φ = 0.45, ω = 2πkHz, γ0 = 450, ν = 0.2, ζ = 1; incident P1 wave.
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Figure 3. Variations in energy partition with incident direction (θ0) and frequency (ω);
φ = 0.45, σ = 0.2, γ0 = 450, ν = 0.1, ζ = 1; incident P1 wave.

5. Numerical Results and Discussion

5.1. Numerical Example

The main purpose of this study is to analyze the effects of viscous cross-coupling, porosity, satu-
ration of gas, pore-characteristics and wave frequency on the energy shares of various reflected inho-
mogeneous waves at the stress free surface of partially porous solid. Numerical study is carried out by
Matlab. Hence, a numerical example is considered. To choose the numerical values of various param-
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eters, we consider a reservoir rock (sandstone) saturated with water and CO2. The values of relevant
material and fitting parameters (Garg and Nayfeh [8]; Lo et al. [19]) are given in Table 1.
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Figure 4. Variations in energy partition with incident direction (θ0) and viscous cross-
coupling parameter (ν); φ = 0.45, ω = 2π × kHz, σ = 0.8, γ0 = 450, ζ = 1; incident P1

wave.

5.2. Discussion of Numerical Results

The partitions of incident energy among various reflected waves and interaction energy between
two distinct waves is defined by the energy matrix E in the section 4.4. The variations of these energy
shares with incident direction (θ0 ∈ (0, 900)) are presented in figures 2 to 7 (for incident P1 wave) and

AIMS Geosciences Volume 3, Issue 1, 67-90



77

in figures 8 to 13 (for incident S V wave). The detailed discussion on figures is as follows.

20 40 60 80

0.2

0.4

0.6

0.8

E
ne

rg
y 

(P
1)

20 40 60 80

0.2

0.4

0.6

0.8

E
ne

rg
y 

(S
V

)

20 40 60 80

0.02

0.04

0.06

0.08

0.1

0.12

0.14

E
ne

rg
y 

(P
2)

 

 
TC Model (E

22
× 10)

20 40 60 80

0.05

0.1

0.15
E

ne
rg

y 
(P

3)

 

 

TC Model (E
33

× 103)

20 40 60 80
−3

−2.5

−2

−1.5

−1

−0.5

x 10
−4

E
ne

rg
y 

(in
c−

re
fl)

θ
0
 (in degree)

 

 

TC Theory
LSM Theory
LYL Theory

20 40 60 80
−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

E
ne

rg
y 

(r
ef

l−
re

fl)

θ
0
 (in degree)

Figure 5. Variations in energy partition with incident direction (θ0), corresponding to
three different theories; σ = 0.5, φ = 0.45, ω = 2π × 100Hz, γ0 = 450, ζ = 1; incident
P1 wave.

5.2.1. For the Incidence of P1 Wave

Figure 2 presents the essence of incident direction (θ0) and gas saturation (σ) on the various energy
shares and interaction energies. A significant effect of gas saturation is clearly seen on all the reflected
waves and interaction energy between two dissimilar waves. For the incidence below 550, P1 wave
strengthens with the increase of gas shares in pores. However, beyond 550 it weakens slightly with

AIMS Geosciences Volume 3, Issue 1, 67-90



78

this change. The S V wave strengthens with the increase of gas share in pores, particularly beyond
250. Further, it is clear that P2(P3) wave weakens (strengthens) with the increase of gas share in pores.
Near normal (grazing) incidence domination shift in favour of P1(S V) wave. In the mathematical
framework, energy conservation at the boundary is confirmed by considering the interference energy
between two dissimilar waves.
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Figure 6. Variations in energy partition with incident direction (θ0), corresponding to
open and sealed surface-pores; φ = 0.45, ω = 2π × kHz, σ = 0.2, γ0 = 450, ν = 0.3;
incident P1 wave.
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Figure 7. Variations in energy partition with incident direction (θ0) and porosity (φ);
ω = 2π × 500Hz, σ = 0.2, γ0 = 450, ν = 0.1, ζ = 1; incident P1 wave.

Figure 3 displays the essence of frequency on the various energy shares. The P1 wave strengthens
with the increase of frequency and beyond incidence 500, it weakens with the increase of frequency.
For incidence beyond 200, S V wave strengthens with the increase of frequency. Further, it is noted that
qualitative behaviour of P2 and P3 waves are alike. All the waves are dispersive in nature.

Figure 4 shows the effect of viscous cross-coupling parameter (ν) on the various energy shares with
the incident direction θ0. The negligible influence of viscous cross-coupling is visible on the P1, P2 and
S V waves. Whereas, a significant effect of viscous cross-coupling is noticed on the propagation of P3

wave and interaction energies. All the waves are weakens with the increase of viscous cross-coupling.
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Figure 8. The same as the Figure 2 but for incident S V wave.

Figure 5 displays the variations of various energy shares with incident direction (θ0), corresponding
to three different theories. Mathematical theory presented by Lo et al. [28] (LYLT) incorporated the
viscous cross-coupling between two immiscible pore fluids. It is observed that after neglecting the
viscous cross-coupling terms from equations of motion, the LYLT reduces to LSMT. Further, in the
absence of both inertial coupling and viscous cross-coupling terms, it reduces to TCT. It is clear that
the qualitative behaviour of all energy shares are alike in all the three different theories.

In case of P3 wave, a significant quantitative difference between these theories appear. Further,
the energy shares of P1 and S V waves are maximum for TCT and minimum for LYLT. While, the
energy shares of reflected P2 and P3 waves are maximum for LYLT and minimum for TCT. A weaker
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quantitative difference in all energy shares is observed corresponding to LYLT and LSMT except the
energy share of P3 wave.
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Figure 9. The same as the Figure 3 but for incident S V wave.

The variations in energy partition with incident direction (θ0), corresponding to open and sealed
surface-pores is depicted in Figure 6. A permeable boundary surface reflect a stronger P1 wave, be-
low the incidence 500. The reflected S V wave at permeable boundary (fully-opened surface-pores)
is almost dominated on impermeable boundary (sealed surface-pores), for θ0 ∈ (0, 900). Further, a
large quantitative difference is noticed in the reflected P2 and P3 waves at permeable and impermeable
boundary. At impermeable (permeable) boundary, the P2 and P3 waves are significant (insignificant).
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The effect of porosity on the various energy partition is shown in Figure 7. The effect of porosity on
P1 wave is quite significant below the incidence 550. Whereas, for the incidence beyond 300, a little bit
essence of porosity is observed on the S V wave. Further, reflected P2 and P3 waves becomes stronger
with the increase in porosity.
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Figure 10. The same as the Figure 4 but for incident S V wave.

5.2.2. For the Incidence of S V Wave

Figure 8 displays the variations of energy shares with incident direction (θ0) and gas saturation (σ).
Alike the incident P1 wave in Figure 2, a significant essence of gas saturation is clearly visible on all
the energy shares. The critical angles are found for P1 and S V waves around 400 and 280, respectively.

AIMS Geosciences Volume 3, Issue 1, 67-90



83

Variational pattern of P1 wave shows a reverse behaviour to that of the S V wave. For the incidence
below 400, P1 wave strengthens with the increase of gas saturation. Whereas, for the incidence beyond
400, S V wave strengthens with the increase of gas shares in pores. Moreover, P2(P3) wave weakens
(strengthens) with the increase of gas shares in pores. For near normal incidence, it is observed only
S V wave survive quantitatively.

20 40 60 80
0

0.2

0.4

0.6

0.8

E
ne

rg
y 

(P
1)

20 40 60 80

0.2

0.4

0.6

0.8

E
ne

rg
y 

(S
V

)

20 40 60 80

0.05

0.1

0.15

E
ne

rg
y 

(P
2)

 

 

TC Model (E
22

× 10)

20 40 60 80

0.05

0.1

0.15

0.2

E
ne

rg
y 

(P
3)

 

 

TC Model (E
33

× 103)

20 40 60 80

−3

−2

−1

0
x 10

−3

E
ne

rg
y 

(in
c−

re
fl)

θ
0
 (in degree)

 

 

TC Theory
LSM Theory
LYL Theory

20 40 60 80

−0.15

−0.1

−0.05

0

E
ne

rg
y 

(r
ef

l−
re

fl)

θ
0
 (in degree)

Figure 11. The same as the Fig. 5 but for incident S V wave.

Figure 9 displays the effect of wave frequency (ω) on the various energy shares. With the increase
of wave frequency, P1 and S V waves becomes quite stronger but P2 and P3 waves becomes weaker
with this change. Further, variational pattern of P2 and P3 waves are almost alike.
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Figure 10 shows the essence of viscous cross-coupling parameter (ν) on the various energy shares.
Almost all the energy shares decreases with the increase of viscous cross-coupling. The effect of
viscous cross-coupling on P1, P2 and S V waves is little bit significant.
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Figure 12. The same as the Fig. 6 but for incident S V wave.

The variations in energy partition with incident direction (θ0), corresponding to three different the-
ories are shown in Figure 11. In case of P3 wave, a significant difference is observed between these
theories. Whereas, in case of P1, P2 and S V waves, a insignificant difference is observed between
LYLT and LSMT.

The variations in energy partition with incident direction (θ0), corresponding to open and sealed
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surface-pores is depicted in Figure 12. The observation found corresponding to these surface-pores
characteristics are nearly same as the case of incident P1 wave in Figure 6.
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Figure 13. The same as the Figure 7 but for incident S V wave.

The effect of porosity on the various energy shares with incident direction θ0 is shown in Fig. 13.
It is clearly visible that for incidence below 400, P1 wave strengthens with the increase of porosity
and beyond 400, S V wave strengthens with the increase of porosity. Further, P1 and P2 waves also
strengthens with the increase of porosity.
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6. Conclusions

In this article, reflection of inhomogeneous waves at the stress-free plane surface of partially satu-
rated porous solid is investigated. Porous medium is considered dissipative due to the involvement of
viscosity in pores fluid. Four waves (three longitudinal and one shear) are found to be reflected, as a
result of incident wave. All the reflected waves are inhomogeneous in nature (i.e., different direction
of propagation and attenuation). Appropriate boundary conditions are used for opened surface-pores
(permeable boundary) and fully closed surface-pores (impermeable boundary). For both incident P1

and S V waves, energy flux characteristics of seismic waves are studied analytically and numerically
for a particular model. The closed-form analytical expressions for the reflection coefficients of vari-
ous reflected waves are computed analytically at the stress-free plane surface. Further, these reflection
coefficients are used to calculate the energy shares of various reflected waves. Conservation of the
incident energy at the plane interface is confirmed by considering the interaction energy between two
dissimilar waves. Finally, for particular model, effect of hydrological properties (like, viscous cross-
coupling, porosity, saturation of gas, pore-characteristics) and wave frequency has been studied on
energy flux characteristics of seismic waves. The energy flux characteristics correspond to the TCT,
LSMT and LYLT are also presented in this study. Finally, some conclusions are addressed which may
be drawn from the discussions of the numerical results.

• At the normal incidence of S V wave, only S V wave is survive quantitatively among all the re-
flected waves. While at the normal incidence of P1 wave, only S V wave is not survive quantita-
tively.
• The P2 wave weakens but P3 wave strengthens, with the increase of gas saturation.
• For both incident P1 and S V waves, P2 and P3 waves are found to be strengthens (weakens), with

the increase of porosity (frequency).
• The P2 and P3 waves are strengthens (weakens) when the pores at the reflecting boundary are

fully-closed (fully-opened). Whereas, P1 and S V waves are weakens (strengthens) when the
pores at the reflecting boundary are fully-closed (fully-opened).
• The basic difference between TCT, LSMT and LYLT is mainly observed in the behaviour of

P2 and P3 waves. Due to the involvement of viscous cross-coupling between two fluids in the
equations of motion, energy shares of P2 and P3 waves are found to be strengthen.
• The energy shares of P3 wave is found to be greatly influenced due to the involvement of viscous

cross-coupling terms in the equations of motion. Hence, this fact shows that the present study is
in good agreement with the Lo et al. [28] study. This is due to the fact that Lo et al. [28] study
shows that the presence of viscous cross-coupling between two fluids, significantly influenced the
phase speed of P3 wave.
• All the waves are dispersive (i.e., frequency dependent) in nature.
• In mathematical framework, the conservation of the incident energy is confirmed by considering

the interaction energy between two dissimilar waves due to the dissipative nature of the considered
medium. This validates that the numerical calculations are analytically correct.

Finally, for both incident P1 or S V wave, it is found that the energy flux characteristics of seismic
waves depend on several factors, such as wave frequency, gas saturation, porosity, pore-characteristics
and viscous-cross coupling between two fluids. Therefore, the study of energy flux characteristics can
yield to useful information about the rock properties.
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Table 1. Material and fitting parameters of a reservoir rock (sandstone) saturated with
water and CO2.

Parameter Symbol Value
Bulk modulus of gas K1 3.7MPa

Bulk modulus of solid Ks 35GPa
Bulk modulus of the porous framework Kb 12GPa
Shear modulus of the porous framework G 9GPa

Bulk modulus of water K2 2.25GPa
Fitting parameter n 2.145
Fitting parameter η 0.5
Fitting parameter χ 1m−1

Material density of gas ρ1 103Kg/m3

Material density of solid ρs 2650Kg/m3

Material density of water ρ2 990Kg/m3

Intrinsic permeability of porous framework ks 5.3 × 10−13m2

Viscosity of gas µ1 18 × 10−6Ns/m2

Viscosity of water µ2 0.001Ns/m2

Apendix

Following Lo et al. [21], the elasticity coefficient ai j in terms of directly measurable parameters are
given as
a11 = K0[α0N1{K1K2 + K1N2σ + K2N2(1 − σ)} + KbK0(1 − α0){K1(1 − σ) + K2σ + N2}]/N3,
a12 = [K0K1(1 − α0)σN1(K2 + N2)]/N3, a13 = [K0K2(1 − α0)(1 − σ)N1(K1 + N2)]/N3,
a22 = [K1(1 − α0)σ{K2

0(1 − α0)(σK2 + N2) + K2(1 − σ)N1N2}]/N3,
a23 = −[K1K2(1 − α0)(1 − σ)σ{N1N2 − (1 − α0)K2

0}]/N3,
a33 = [K2(1 − α0)(1 − σ){K2

0(1 − α0)(K1(1 − σ) + N2) + K1σN1N2}]/N3,
dpc
dσ = (ρ2g/(n − 1)m)[{(1 − σ)−( n

n−1 ) − 1}(
1−n

n )(1 − σ)−( 2n−1
n−1 )],

N1 = K0α0 − Kb, N2 =
dpc
dσσ(1 − σ),

N3 = [N1{K1N2σ + K1K2 + K2N2(1 − σ)} + K2
0(1 − α0){K1(1 − σ) + N2 + K2σ}],

where K0, K1, K2 and Kb denote the bulk moduli of three constituent phases and porous skeleton,
respectively.
Viscous cross-coupling coefficients are given by
R11 = −

λ22α
2
1

∆
, R12 = λ12α1α2

∆
, R21 = λ21α1α2

∆
, R22 = −

λ11α
2
2

∆
,

λ11 =
(

1+ν1
2

)
b∗1, λ12 =

(
1−ν1

2

)
b∗1, λ21 =

(
1−ν2

2

)
b∗2, λ22 =

(
1+ν2

2

)
b∗2,

∆ = λ11λ22 − λ12λ21, χ1 = σχ[1 − (1 − σ)
n

n−1 ]
2(n−1)

n , χ2 = (1 − σ)χ[1 − {1 − (1 − σ)
n

n−1 }
n−1

n ]2,
b∗1 = χ1/η1, b∗2 = χ2/η2, where ν j signifies the interfacial coupling parameter of fluid phases
j (Ayub and Bentsen [33]). For an idealized channel flow, according to Ayub and Bentsen [33]
ν1 = ν2 = ν = 1 − φ (φ being the porosity). η1 and η2 denote the viscosities of gas and liquid
phases, respectively. The relative permeabilities χ1, χ2 for the flow of two pore-fluids are defined in
comparison to the intrinsic permeability (χ0) of the composite medium. The capillary pressure (pc) is
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due to the interfacial interactions between the two viscous pore-fluids. It varies with the fraction (σ)
of gas or the fraction of liquid (1 − σ) in twin-fluid mixture filling the pore space. The quantities m, n
and χ are model parameters. These are obtained by fitting the experimental data on the pc-σ and χ j-σ
relations, which are used in defining ai j.
According to Lo et al. [19], inertial-coupling coefficients are given by
A11 = ρ1α1(1 − βs),
A22 = ρ2α2(1 − βs),
A12 = A21 = −0.1

√
α1α2ρ1ρ2β2

s ,
βs = α0

2(α0−1) .
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